
Implementation issues for high-speed TCPs
1st October 2003

UCL

Tom Kelly

ctk21@cam.ac.uk

Laboratory for Communication Engineering

University of Cambridge

Implementation issues for high-speed TCPs – p.1/19

Motivation for new high-speed TCPs

Some Internet users (mainly scientific) want to perform
very large bulk transfers

TCP congestion control performs poorly at
high-speeds in wide area networks

Even “turning off” congestion control functions
unreliably on some implementations

Implementation issues for high-speed TCPs – p.2/19

Problem area 1: algorithm

Poor performance of TCP in high bandwidth wide area
networks due to TCP congestion control algorithm

Throughput Window Loss recovery time Supporting loss rate

10Mbps 170pkts 17s 5.4× 10
−5

100Mbps 1700pkts 2mins 50s 5.4× 10
−7

1Gbps 17000pkts 28mins 5.4× 10
−9

10Gbps 170000pkts 4hrs 43mins 5.4× 10
−11

Characteristics of a 200ms, MTU 1500 bytes TCP connection

Implementation issues for high-speed TCPs – p.3/19

Problem area 2: OS implementation

What is causing the Linux TCP stack to become
unpredicatable with large windows?

Problem with PAWs implementation?
Hardware/software driver issues?
SACK implementation problems?

Implementation issues for high-speed TCPs – p.4/19

Changing the algorithm - aims and
assumptions

Make effective use of high bandwidth links

Changes need to be robust in a wide variety of
networks and traffic conditions

L2 switches, bugs, packet corruption, reordering and jitter

Do not adversely damage existing network traffic

Do not require manual tuning to achieve reasonable
performance

80% of maximal performance for 95% of the people for the

foreseeable future

Implementation issues for high-speed TCPs – p.5/19

The generalised Scalable TCP
algorithm

Let a and b be constants
for each ack in a RTT without loss:
cwndr ← cwndr + a

for each window experiencing loss:
cwndr ← cwndr − b× cwndr

Loss recovery times for RTT 200ms and MTU 1500
bytes

Scalable TCP: log(1−b)
log(1+a)

RTTs

e.g. if a = 0.01, b = 0.125 then it is about 2.7s

Traditional: at 50Mbps about 1min 38s, at 500Mbps about 27min 47s!

Implementation issues for high-speed TCPs – p.6/19

The Scalable TCP algorithm

c
2

Rate
(pkts/RTT)

c

Time (RTT)

c
2

c
2

C
2

C
2

C
2

Rate
(pkts/RTT)

C

Time (RTT)

log(1+a)

−log(1−b)Rate
(pkts/RTT)

(1−b)c

Time (RTT)

c

bc

log(1+a)

−log(1−b)Rate
(pkts/RTT)

bC

(1−b)C

Time (RTT)

C

Implementation issues for high-speed TCPs – p.7/19

Fairness

Choose a legacy window size, lwnd

When cwnd > lwnd use the Scalable TCP algorithm

When cwnd ≤ lwnd use traditional TCP algorithm

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

T
hr

ou
gh

pu
t (

bp
s)

Drop rate

Scalable theory
Traditional theory

Traditional theory (with RT)
scale4

normal3

Same argument used in the HighSpeed TCP proposal

Fixing lwnd, fixes the ratio a

b Implementation issues for high-speed TCPs – p.8/19

Variance and Convergence

increasing b, more variable flows but faster backoff

increasing a, instability but more agressive ramp up

lwnd = 16, a = 0.01, and b = 0.125 represents a good
trade off of concerns

b a Rate CoV Loss recovery
time

Rate halving
time

Rate doubling
time

1
2

1
25

0.50 17.7Tr (3.54s) Tr (0.20s) 17.7Tr (3.54s)
1
4

1
50

0.35 14.5Tr (2.91s) 2.41Tr (0.48s) 35Tr (7.00s)
1
8

1
100

0.25 13.4Tr (2.68s) 5.19Tr (1.04s) 69.7Tr (13.9s)
1
16

1
200

0.18 12.9Tr (2.59s) 10.7Tr (2.15s) 139Tr (27.8s)

Implementation issues for high-speed TCPs – p.9/19

Linux TCP implementation

Includes all standard high-speed TCP extensions;
PAWs, timestamps, SACK

Includes some experimentatal non-standard features:
Forward acknowledgement (FACK) to capture flight size during

recovery

Rate-halving; send packet every other acknowledgement during

recovery

Aggressive RTO checking on sent segements when receiving
duplicate acknowledgements

Mechanisms for undoing congestion window decreases if thought to
be due to bogus loss detection

Implementation issues for high-speed TCPs – p.10/19

Impact of driver TX interrupts

Default Linux SysKonnect does no transmit interrupt
moderation

By altering the driver TX interrupts can be moderated

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

N
et

 th
ro

ug
hp

ut
 (

M
bp

s)

Time (s)

TX Moderation
No TX Moderation

Implementation issues for high-speed TCPs – p.11/19

Linux NAPI driver model

Around for some time in 2.5.x and incorporated in
2.4.20

On receiving a packet, NIC raises interrupt

Driver switches off RX interrupts and schedules RX
DMA ring poll

Frames are pulled off DMA ring and is processed up to
application

When all frames are processed RX interrupts are
re-enabled

Dramatic reduction in RX interrupts under load

Implementation issues for high-speed TCPs – p.12/19

Experimental SysKonnect NAPI
driver implemented

No spec sheet for PCI card ASIC since SysKonnect
was bought by Marvell

Still some RX flagged interrupts appearing; appears
benign but makes me su spect there is a bug
somewhere

Bottom line is improved performance under heavy load

Implementation issues for high-speed TCPs – p.13/19

NAPI receiver results

2.4Ghz machines connected through router with 2.4.20
sender using TX inter rupt moderation

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40

N
e

t
re

ce
iv

e
 r

a
te

 (
M

b
p

s)

Interpacket gap (us)

1400b
1200b
1000b

800b
600b
400b
200b
100b

50b

2.4.19 non-NAPI receiver

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35 40

N
e

t
re

ce
iv

e
 r

a
te

 (
M

b
p

s)

Interpacket gap (us)

1400b
1200b
1000b

800b
600b
400b
200b
100b

50b

2.4.20 NAPI receiver

Better throughput for NAPI receiver under load

Some strange behavior with 100b and 50b packets...
Implementation issues for high-speed TCPs – p.14/19

Scaling loss detection and recovery
algorithms

SACK block processing and segment retranmission
both involve trawling the send queue

Trawling the send queue can be O(cwnd) for each
acknowledgement

The queues are there to avoid copying packets

A fix (hack) is to exploit likely fastpath
Packets delivery in order

SACK blocks in acks only change in first block

Cache pointers and assume incremental changes each ack

Implementation issues for high-speed TCPs – p.15/19

Bulk throughput

DataTAG 2.4Gbps link and minimal buffers (2048/40)

Flows transfer 2 gigabytes and start again for 1200s

1 2 4 8 16

0.5

1

1.5

2

Number of flows

G
oo

dp
ut

 (
G

bp
s)

+128%

+529%
+178%

+563%

+122%

+400%

+83%

+198%

+60%

+115%2.4.19 TCP
2.4.19 TCP with high−speed
kernel modifications
2.4.19 Scalable TCP

Implementation issues for high-speed TCPs – p.16/19

Web traffic results

DataTAG 2.4Gbps link and minimal buffers (2048/40)
4 bulk concurrent flows across 2 machines for 1200s

4200 concurrent web users across 3 machines

No change in web traffic with and without bulk transfers
in all scenarios

2.4.20 TCP 2.4.20 with HSKM 2.4.20 Scalable TCP
0

0.5

1.0

1.5

G
oo

dp
ut

 (
G

bp
s)

+61%

+167%

Implementation issues for high-speed TCPs – p.17/19

Problems

Result set is small!
Difficult to conduct controlled implementation experiments

Linux TCP implementation a mess for high-speed
Should split data segments from packet headers and protocol state
(e.g. OpenBSD)

Need scatter-gather I/O to do this with minimal copies

Scalable TCP
Synchronisation problems due to design, worse than TCP but

simulations don’t match reality

Which workloads and topologies m?

Implementation issues for high-speed TCPs – p.18/19

Conclusion

Linux implementation can be greatly improved for
high-speed operation

Scalable TCP an easy evolution from the traditional
TCP AMID scheme which can improve performance

Much more to be done deciding between schemes;
HSTCP, Vegas/FAST, Westwood, etc.

Freely available working code
http://www-lce.eng.cam.ac.uk/~ctk21/scalable

Implementation issues for high-speed TCPs – p.19/19

http://www-lce.eng.cam.ac.uk/~ctk21/scalable

	Motivation for new high-speed TCPs
	Problem area 1: algorithm
	Problem area 2: OS implementation
	Changing the algorithm - aims and assumptions
	The generalised Scalable TCP algorithm
	The Scalable TCP algorithm
	Fairness
	Variance and Convergence
	Linux TCP implementation
	Impact of driver TX interrupts
	Linux NAPI driver model
	Experimental SysKonnect NAPI driver implemented
	NAPI receiver results
	Scaling loss detection and recovery algorithms
	Bulk throughput
	Web traffic results
	Problems
	Conclusion

