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Motivation for new high-speed TCPs

Some Internet users (mainly scientific) want to perform
very large bulk transfers

TCP congestion control performs poorly at
high-speeds in wide area networks

Even “turning off” congestion control functions
unreliably on some implementations
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Problem area 1: algorithm

Poor performance of TCP in high bandwidth wide area
networks due to TCP congestion control algorithm

Throughput Window Loss recovery time Supporting loss rate

10Mbps 170pkts 17s 5.4× 10
−5

100Mbps 1700pkts 2mins 50s 5.4× 10
−7

1Gbps 17000pkts 28mins 5.4× 10
−9

10Gbps 170000pkts 4hrs 43mins 5.4× 10
−11

Characteristics of a 200ms, MTU 1500 bytes TCP connection
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Problem area 2: OS implementation

What is causing the Linux TCP stack to become
unpredicatable with large windows?

Problem with PAWs implementation?
Hardware/software driver issues?
SACK implementation problems?
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Changing the algorithm - aims and
assumptions

Make effective use of high bandwidth links

Changes need to be robust in a wide variety of
networks and traffic conditions

L2 switches, bugs, packet corruption, reordering and jitter

Do not adversely damage existing network traffic

Do not require manual tuning to achieve reasonable
performance

80% of maximal performance for 95% of the people for the

foreseeable future
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The generalised Scalable TCP
algorithm

Let a and b be constants
for each ack in a RTT without loss:
cwndr ← cwndr + a

for each window experiencing loss:
cwndr ← cwndr − b× cwndr

Loss recovery times for RTT 200ms and MTU 1500
bytes

Scalable TCP: log(1−b)
log(1+a)

RTTs

e.g. if a = 0.01, b = 0.125 then it is about 2.7s

Traditional: at 50Mbps about 1min 38s, at 500Mbps about 27min 47s!
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The Scalable TCP algorithm
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Fairness

Choose a legacy window size, lwnd

When cwnd > lwnd use the Scalable TCP algorithm

When cwnd ≤ lwnd use traditional TCP algorithm
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Same argument used in the HighSpeed TCP proposal

Fixing lwnd, fixes the ratio a
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Variance and Convergence

increasing b, more variable flows but faster backoff

increasing a, instability but more agressive ramp up

lwnd = 16, a = 0.01, and b = 0.125 represents a good
trade off of concerns

b a Rate CoV Loss recovery
time

Rate halving
time

Rate doubling
time
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0.18 12.9Tr (2.59s) 10.7Tr (2.15s) 139Tr (27.8s)
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Linux TCP implementation

Includes all standard high-speed TCP extensions;
PAWs, timestamps, SACK

Includes some experimentatal non-standard features:
Forward acknowledgement (FACK) to capture flight size during

recovery

Rate-halving; send packet every other acknowledgement during

recovery

Aggressive RTO checking on sent segements when receiving
duplicate acknowledgements

Mechanisms for undoing congestion window decreases if thought to
be due to bogus loss detection
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Impact of driver TX interrupts

Default Linux SysKonnect does no transmit interrupt
moderation

By altering the driver TX interrupts can be moderated
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Linux NAPI driver model

Around for some time in 2.5.x and incorporated in
2.4.20

On receiving a packet, NIC raises interrupt

Driver switches off RX interrupts and schedules RX
DMA ring poll

Frames are pulled off DMA ring and is processed up to
application

When all frames are processed RX interrupts are
re-enabled

Dramatic reduction in RX interrupts under load
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Experimental SysKonnect NAPI
driver implemented

No spec sheet for PCI card ASIC since SysKonnect
was bought by Marvell

Still some RX flagged interrupts appearing; appears
benign but makes me su spect there is a bug
somewhere

Bottom line is improved performance under heavy load
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NAPI receiver results

2.4Ghz machines connected through router with 2.4.20
sender using TX inter rupt moderation
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2.4.20 NAPI receiver

Better throughput for NAPI receiver under load

Some strange behavior with 100b and 50b packets...
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Scaling loss detection and recovery
algorithms

SACK block processing and segment retranmission
both involve trawling the send queue

Trawling the send queue can be O(cwnd) for each
acknowledgement

The queues are there to avoid copying packets

A fix (hack) is to exploit likely fastpath
Packets delivery in order

SACK blocks in acks only change in first block

Cache pointers and assume incremental changes each ack
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Bulk throughput

DataTAG 2.4Gbps link and minimal buffers (2048/40)

Flows transfer 2 gigabytes and start again for 1200s
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Web traffic results

DataTAG 2.4Gbps link and minimal buffers (2048/40)
4 bulk concurrent flows across 2 machines for 1200s

4200 concurrent web users across 3 machines

No change in web traffic with and without bulk transfers
in all scenarios
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Problems

Result set is small!
Difficult to conduct controlled implementation experiments

Linux TCP implementation a mess for high-speed
Should split data segments from packet headers and protocol state
(e.g. OpenBSD)

Need scatter-gather I/O to do this with minimal copies

Scalable TCP
Synchronisation problems due to design, worse than TCP but

simulations don’t match reality

Which workloads and topologies m?
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Conclusion

Linux implementation can be greatly improved for
high-speed operation

Scalable TCP an easy evolution from the traditional
TCP AMID scheme which can improve performance

Much more to be done deciding between schemes;
HSTCP, Vegas/FAST, Westwood, etc.

Freely available working code
http://www-lce.eng.cam.ac.uk/~ctk21/scalable
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