Compatibility between Differentiated Networks

ROBIN MASON

Department of Economics

 $University\ of\ Southampton$

http://www.soton.ac.uk/~ram2/

1. Introduction

• **Objective:** understand economic forces behind interconnection in the Internet

• Early years of Internet

- o 'bill-and-keep' system
- flows were symmetric

• Transition of Internet from academic to commercial

- o large increases in traffic volumes,
- unequal development of networks
- o 1997: U.S.'s 4 largest networks carry 85-95% of backbone traffic
- rest carried by 40 networks

• Recent developments

- 1996: Commercial Internet Exchange (CIX) starts to dissolve
- 1997: UUNet leaves CIX, and attempts to cancel peering with 15 smaller ISPs
- o MCI and BBN leave CIX
- o larger networks continue to peer between themselves
- o growing fear of anti-competitive behaviour by large networks
- Ideally, would like a dynamic model of this situation
- Difficult; instead, a dynamic interpretation of a static model

• Basic setting:

- \circ network size \equiv quality
- networks 'horizontally' differentiated (e.g. offer different content)

- heterogeneous consumer preferences for network size and 'location'
- Central question: what are networks' incentives to be compatible?

• Compatibility has two effects

- decreases degree of vertical differentiation between networks of different sizes
- \Rightarrow increases competition
 - makes market share less important for horizontally differentiated networks
- \Rightarrow decreases competition

• Structure of talk

- o describe model and its interpretation
- illustrate dependence of equilibrium on parameter representing relative importance of vertical to horizontal aspects in consumers' utility
- conclusions

2. The Model

- 2 networks compete to attract customers in a 1-period model
- Utility that a consumer gains from joining a network when networks are not compatible

$$U_{NC}(\alpha, \theta, 1; \beta, \underline{\theta}) = V + \beta(1 - \alpha) + (1 - \beta)\theta Q_1 + \underline{\theta}Q_1 - p_1,$$

$$U_{NC}(\alpha, \theta, 2; \beta, \underline{\theta}) = V + \beta \alpha + (1 - \beta)\theta Q_2 + \underline{\theta}Q_2 - p_2.$$

• When networks are compatible

$$U_C(\alpha, \theta, 1; \beta, \underline{\theta}) = V + \beta(1 - \alpha) + (1 - \beta)\theta + \underline{\theta} - p_1,$$

$$U_C(\alpha, \theta, 2; \beta, \underline{\theta}) = V + \beta \alpha + (1 - \beta)\theta + \underline{\theta} - p_2.$$

• Model interpretation

- $\circ V$ is a constant term, independent of network joined
- \circ α : consumers with α close to 0 (1) prefer to join network 1 (2)
- \circ θ : consumers with high θ gain greater utility from joining a large network
- \circ θ and α jointly uniformly distributed over unit square
- o $\frac{1}{8} < \underline{\theta} < \frac{1}{3}$: all consumers gain some utility from network size
- \circ p_i is price to join network i

• Relative importance of horizontal and vertical terms: β

- $\circ \beta = 0$: model is purely 'vertical'
- $\beta = 1$: model is 'horizontal'
- $0 \le \beta \le 1$: full range of models

• Strategies

- network: choice of price, given other network's price and decisions of consumers
- *consumer*: choice of network to join, given prices quoted by networks and decisions of other consumers
- o consumers are assumed to join 1 and only 1 network
- o look for Nash equilibrium in pure strategies

• Compatibility: a binary variable

- \circ networks not compatible: consumers' utilities from joining network i depend only on size and location of network i
- \circ networks compatible: consumers' utilities from joining network i depend on location of network i and total market size
- o compatibility perfect, 2-way and costless

2.1. A Conjecture about Equilibrium

- Start by working out extreme points: $\beta=0$ and $\beta=1$
- A. $\beta = 0$: Pure Vertical
 - \bullet Utilities of consumer θ joining network i are

$$U_{NC}(\alpha, \theta, i; \beta = 0, \underline{\theta}) = V + (\theta + \underline{\theta})Q_i - p_i,$$

$$U_C(\alpha, \theta, i; \beta = 0, \underline{\theta}) = V + \theta + \underline{\theta} - p_i.$$

- Consider incompatibility
- Wlog, suppose that $p_1 \geq p_2$

$$\Rightarrow Q_1 \ge Q_2$$

 \Rightarrow consumers with higher θ join network 1

• Marginal consumer θ^* in different between 2 networks

$$U_{NC}(\alpha, \theta^*, 1; \beta = 0, \underline{\theta}) = U_{NC}(\alpha, \theta^*, 2; \beta = 0, \underline{\theta}),$$

$$\Rightarrow (\theta^* + \underline{\theta})(1 - 2\theta^*) = p_1 - p_2.$$

• Nash equilibrium

$$Q_1 = \frac{4+3\underline{\theta}}{5},$$

$$Q_2 = \frac{1 - 3\underline{\theta}}{5},$$

$$p_1 = \frac{(1+2\underline{\theta})(4+3\underline{\theta})}{25},$$

$$p_2 = \frac{(1+2\underline{\theta})(1-3\underline{\theta})}{25},$$

$$\pi_1 = \frac{(1+2\underline{\theta})(4+3\underline{\theta})^2}{125},$$

$$\pi_2 = \frac{(1+2\underline{\theta})(1-3\underline{\theta})^2}{125}.$$

• Features of equilibrium

- 1. network 1 is larger
- 2. when $\underline{\theta} = \frac{1}{8}$, $Q_1 = 7Q_2$
- 3. when $\underline{\theta} = \frac{1}{3}$, network 1 is a monopolist
- 4. both networks earn positive profits when $\underline{\theta} < \frac{1}{3}$
- 5. network 1 is more profitable

• Now consider compatibility equilibrium

- \circ each consumer θ receives same gross utility regardless of network joined
- consequently, networks are pure Bertrand competitors
- earn zero profits in equilibrium

\Rightarrow Profits decrease through compatibility

B. $\beta = 1$: Horizontal

• Utilities of consumer α joining network 1 are

$$U_{NC}(\alpha, \theta, 1; \beta = 1, \underline{\theta}) = V + 1 - \alpha + \underline{\theta}Q_1 - p_1,$$

$$U_C(\alpha, \theta, 1; \beta = 1, \underline{\theta}) = V + 1 - \alpha + \underline{\theta} - p_1,$$

ullet Utilities of consumer α joining network 2 are

$$U_{NC}(\alpha, \theta, 2; \beta = 1, \underline{\theta}) = V + \alpha + \underline{\theta}Q_2 - p_2,$$

$$U_C(\alpha, \theta, 2; \beta = 1, \underline{\theta}) = V + \alpha + \underline{\theta} - p_2.$$

• Incompatibility

 \circ marginal consumer α^* , indifferent between 2 networks:

$$U_{NC}(\alpha^*, \theta, 1; \beta = 1, \underline{\theta}) = U_{NC}(\alpha^*, \theta, 2; \beta = 1, \underline{\theta}),$$

$$(1-\underline{\theta})(2\alpha^*-1) = p_1-p_2.$$

• equilibrium

$$Q = \frac{1}{2},$$

$$p = 1 - \underline{\theta},$$

$$\pi = \frac{1 - \underline{\theta}}{2}.$$

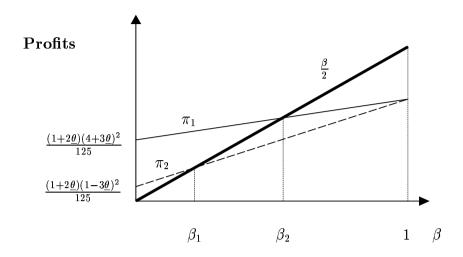
• Compatibility

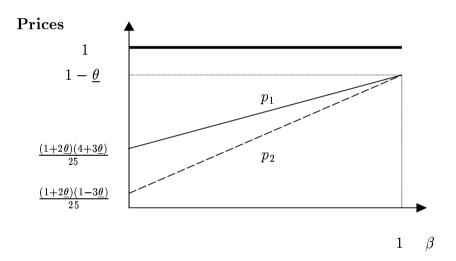
- o model is standard Hotelling
- equilibrium

$$Q = \frac{1}{2},$$

$$p = 1 > 1 - \underline{\theta},$$

$$\pi = \frac{1}{2} > \frac{1 - \underline{\theta}}{2},$$


 \Rightarrow Profits increase through compatibility


ullet Three cases arise, depending on eta

 $\beta < \beta_1$: both networks prefer not to be compatible

 $\beta_1 \leq \beta < \beta_2$: smaller network prefers to be compatible, larger network does not

 $\beta \geq \beta_2$: both networks prefer to be compatible

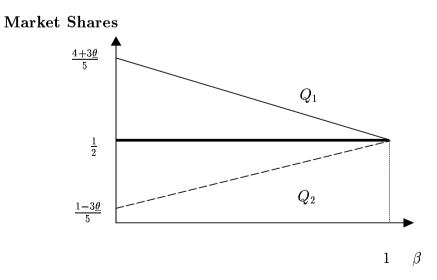


Figure 1: Illustrative Network Profits, Prices and Size

2.2. A Dynamic Interpretation

• Low number of Internet users

- o vertical aspects less important
- $\circ \beta$ high
- o networks symmetric
- interconnection preferred by all networks

• Growth in use of Internet

- o vertical term increases in size
- \circ equivalent to a decrease in β
- o networks diverge
- interconnection preferred by small network, not by large

3. Conclusions

- Developed a generalised model of network competition
 - consumers vary in their preferences for network size and location
 - networks are endogenously vertically and exogenously horizontally differentiated
- Analysed effect of compatibility on degree of competition

• Compatibility

- decreases vertical differentiation, and hence increases competition
- decreases importance of market share, and hence decreases competition
- Which effect dominates depends on relative importance of horizontal and vertical aspects in consumers' utilities

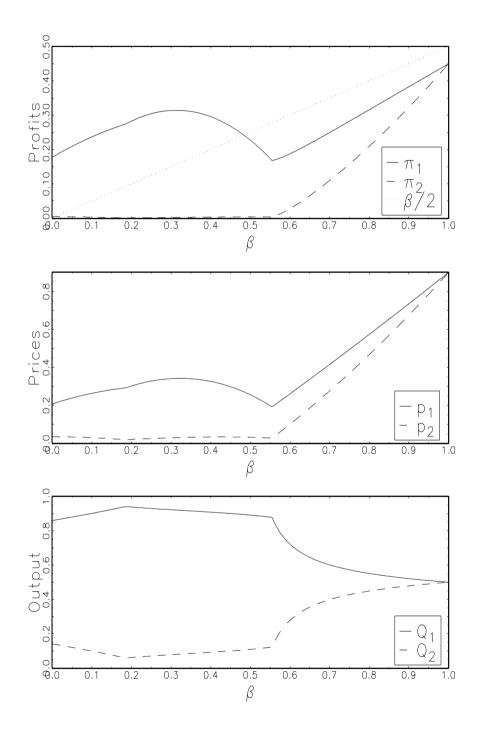


Figure 2: Equilibrium across all Cases