
1

A Software Development Methodology for Service
Management

David Lewis

dl@uhc.dk

UH Communication A/S, Denmark

Abstract: Software development frameworks typically consist of logical and technological architectural
guidelines coupled with methodological guidelines. The lack of a common logical architecture for
service management and the range of technological solutions applicable to this area retard the definition
of an open development framework for service management. The effectiveness of any common
development framework may therefore depend more on the common applicability of the its
methodological guidelines than on that of its architectural guidelines. It is therefore proposed that a
common methodological approach to service management system development will be more effective
than attempting to synthesis a set of common architectural guidelines. Specific methodological
guidelines have been validated though implementation projects in the EU-funded ACTS program and
are presented here as UML modelling constructs.

Keywords: Service Management, UML, Software Development Methodology

1 INTRODUCTION
Service Management is an area that is currently not well addressed by standards. The TMN family of
standards focus largely on network and network element problems, with few standards available that
are applicable to service management. Correspondingly, there is little evidence that TMN interface
development methodology [m3020] is applicable to service management problems. Two industrial
bodies that have addressed service management development in some detail at the Telecoms
Management Forum (TMF) and the Telecommunications Information Networking Architecture
Consortium (TINA-C). Both these bodies, in addition to developing some specific service management
interfaces, have also provided some guidance on how Service Management Systems (SMS) could be
developed within their particular architectural frameworks. The TMF has suggested an approach to
open service management interface development that draws heavily on current object-oriented analysis
and design techniques and notations. In particular the TMF promotes the use of use cases and graphical
modelling using the OMG's Unified Modelling Language (UML) [vincent]. This is done with a
framework of telecoms management business processes (termed the Telecoms Operation Map or TOM)
used to identify which management tasks should be analysed to develop industry interface agreements.
The TINA-C development approach is heavily based on the use of the five viewpoints specified in the
ITU-Ts Open Distributed Processing (ODP) recommendations [x901]. This makes heavy use of multi-
interfaces distributed objects (computational objects), which, by separation into service-specific and
service-independent sets, provides strong support for software reuse when implemented in CORBA.

Both of these approaches have merit, the TMF one for its focus on addressing the real need of industry
through analysing business processes, and TINA-C's for its support for component reuse. This paper
presents a methodology that attempts to combine the best of these approaches to developing SMS. This
methodology integrates the analysis of business processes and the design and implementation of
systems built largely from reusable components. Maximum leverage has been made of existing
software engineering techniques and tools, with UML used throughout. Aspects of business process re-

2

engineering techniques, and their application using UML activity diagrams, have been adopted for
matching system requirements to component capabilities. This matching task is supported by modelling
components at high levels of abstraction using constructs based on the widely used Object Oriented
Software Engineering (OOSE) technique proposed by Ivar Jacobsen [jacobsen97].

The techniques suggested for this methodology have been validated and refined though SMS
development in several EU-funded ACTS projects [lewis95][lewis99c]. The specific techniques
proposed in this paper have been trialed and validated in a current EU project, FlowThru. Here three
telecommunications management scenarios have been analysed, design and implemented using the
methodology. Each scenario represents process interactions from one the process areas identified in the
TMF TOM [nmf-gb910], i.e., fulfilment, assurance or billing (the second of these is being
demonstrated at the EU stand in the Telelcoms’99 Expo). The implementation of each scenario has
been constructed from existing management components, reused integrated using the proposed
modelling constructs.

2 BACKGROUND
An analysis of the problems facing SMS developers [lewis99a], suggested that this area can benefit
from an approach to modelling and integrating SMS that is commonly understood by SMS developers,
Commercial Off-The-Shelf (COTS) Software Vendors and developers of service management
standards. These stakeholder types must interact in developing their products, i.e. either SMS, COTS
software for SMS or interface standards, as indicated in Figure 1. Such interactions have therefore been
identified as points of communication where a common development methodology would be most
beneficial.

Standards
Developer

Software
Vendor

SMS
Developer

Service
Provider

Service
Customer

3rd Party
Service
Provider

open standards

open standards

SMS
SM

applications

management
services

management
services management

services

components and
platforms

Development Domain

Operational Domain

SMS
Developer

SMS

interoperable
interface

agreements

Figure 1: Relationships between stakeholders in SMS development

2.1.1.1 REUSABLE COMPONENT MODELLING APPROACH

Reusable components are typically presented to system developers as sets of libraries, i.e. as a set of
software modules and the definition of the individual operations they provide. The component is
presented in terms of its design model and software. This may cause problems in the development of
systems that reuse the component, since any changes required to accommodated the reuse of
components are only likely to become apparent during the design process, therefore possibly countering
aspects of the system’s analysis model. Components are often part of a framework. The framework
may be general, e.g. CORBA Services, or aimed at a particular problem domain, e.g. the TINA Service

3

Architecture. In either case, the framework will provide some high level architectural and technological
guidance on how components can be integrated together and how they can support the development of a
system. Such frameworks are often considered at the analysis stage to ensure that the system’s analysis
model is structured in a way that will accommodate the inclusion of the framework’s components at the
design stage. This situation is depicted in Figure 2a. However, frameworks typically only give general
guidance on the use of components. The suitability or otherwise of individual components in satisfying
requirements still needs to be considered in the design activity. For SMS development, such a typical
component reuse situation is difficult to standardise because there is no commonly accepted framework
that supports a suitably wide range of components. The methodological guidelines for component reuse
presented here are motivated by the absence of such a framework. As such, the methodology presented
in this paper attempts to provide guidance on how components can be specified in a more self-contained
manner that is easily understood by those performing the analysis of the system. In this way, decisions
about reuse can be made based on the suitability of individual components rather than on a wider
assessment of the suitability of an entire framework. The approach is also aimed at supporting reuse
decisions based on the architectural and functional aspects of a component rather than its
implementation technology. A component’s technology is treated as an orthogonal issue, with
heterogeneity handled primarily through the employment of suitable gateways.

Deploy

Requirements
Capture

Requirements
Analysis

Design

Implementation

Testing

Requirements
model

Analysis
model

Software

Design
model

trace

Component
framework

Component

i/fDesign
model

Software i/f

exports

exports

trace

trace

part of

a) Conventional (design model level) component reuse

b) Analysis model level component reuse

trace

Requirements
Capture

Requirements
Analysis

Design

Implementation

Testing

Requirements
model

Analysis
model

Software

Design
model

trace

Component

Software i/f

i/fDesign
model

exports

exports

trace

Deploy

i/fAnalysis
model

exports

i/fUse case
model

exports

facade

4

Figure 2: Differing Approaches to Component Reuse

The approach is derived from that described in Jacobsen’s OOSE methodology [jacobsen97]. The basis
of the approach is that components are not presented just as units of design and of software within an
encompassing framework. Instead, they should be packaged together with the requirement statement
and analysis model of the component for presentation to potential reusers. If the modelling techniques
used for the requirements capture and analysis modelling of the component are similar to those used for
modelling the system in which it might be included, then it becomes much easier for an analyst to assess
whether the component is suitable for use in the system. In addition the system’s analysis model can
directly import the analysis abstractions of the various components it reuses, easing the task of
requirements analysis and ensuring, at an early stage, compatibility between components and the
system requirements. This analysis model-based reuse approach is depicted in Figure 2b.

The presentation of a component for reuse in this way is termed a facade. A facade presents the re-user
of a component with only the information needed to effectively reuse the component, while at the same
time hiding from the re-user unnecessary design and implementation details about the component. The
usefulness of the facade is strengthened if there is clear traceability between the different models, so
that re-users can easily determine which parts are useful to them by matching facade use cases and
analysis objects to their requirements and tracing to relevant design model elements. Obviously, the
construction of a facade from the internal development models of a component will be greatly eased if
the same type of modelling approach was used for developing the component in the first place. Also,
traceability in the facade will be greatly eased if the models of the underlying component are strongly
traced.

One of the problems raised from examination of the previous case studies was that the boundaries
between the different development activities were not always well defined, especially between
requirements capture and analysis and between analysis and design. This meant that the level of
abstraction used in the models resulting from these activities varied, making it difficult to define
traceability mechanisms between the different models. Defining the structure of the different
development models was therefore essential to applying useable traces between them. As use cases had
already proven effective for SMS and component development in the previous case studies, Jacobsen’s
suggestion of using use cases for the requirements model and the closely related robustness model for
the analysis model was adopted. Jacobsen suggests three types of object that may be used in forming a
robustness model:

• Entity objects that represent long-lived data in the system under analysis.

• Boundary object that deal with the interactions between the system and its environment.

• Control objects that deal with the dynamic behaviour of the system as described in use cases, and
in particular the interactions between boundary and entity objects.

The object types were therefore used as the basis of an enhancement of the component façade concept,
referred to here as a Projection.

2.1.1.2 OPEN BUSINESS PROCESS MODELLING APPROACH

The attempt to provide a standardised architectural framework for analysing business requirements for
SMS have centred either around the definition of distinct business roles and the reference points that
exist between them, as in TINA, or on the definition of a common business process model as in the
TMF’s TOM. These two inputs where therefore chosen as the basis for a model that will enable
business process modelling to be applied to the multi-domain problems of SMS development, but in a
way would support the on-going standardisation of service management functions within these two
bodies. The approach taken in mapping the TOM to the TINA business model and reference points was
to identify which TMF processes operate in which TINA Business Roles. A mapping of the TMF
business processes onto TINA business roles, initially presented in [lewis99a], is given in Figure 3.

5

Consumer
Customer

Retailer

Service Planning/
Development

Service
Configuration

Service Problem
Resolution

Service Quality
Management

Rating and
Discounting

Order Handling Problem Handling Customer QoS
Management

Invoicing/
Collection

Sales

Broker
Sales Order Handling

Rating and
Discounting

Bkr

Bkr

Bkr

Bkr

Bkr

Ret

TCon TCon TConConS

ConS

3Pty

3Pty

RtR

CSLN LNFed

Connectivity Provider
Network Planning/

Development
Network

Provisioning
Network Inventory

Management
Network Maintenance

& Restoration
Network Data
Management

3rd Party Service Provider
Service Planning/

Development
Service

Configuration
Service Problem

Resolution
Service Quality
Management

Rating and
Discounting

Network
Provisioning

Network Inventory
Management

Network Data
Management

Figure 3: Mapping of TMF Business Processes onto TINA Business Roles

The TOM provides a model of suitable business processes which reflect the typical operations of a
service provider. This mapping, therefore, helps in the analysis a Service Provider’s business processes
in order to identify where existing solutions, possibly available as reusable components implementing
reference point segments, can be applied. The analysis of business processes is typically performed by
identifying discrete activities and the events that propagate the control of execution of a task between
activities. A common representation of such a control flow is event-driven process chains, and the
inclusion of activity diagrams allows UML to support a similar type of model.

3 METHODOLOGICAL GUIDELINES
A series of case studies were conducted around the development of SMS in a number of research
projects. These culminated in the FlowThru Project, which developed and validated specific techniques
for constructing from reusable component the SMS that implemented specific process information
flows. FlowThru provided evidence of the development techniques that developers found most useful in
practice. Based on this evidence and the analysis of current development techniques in management
system development, the following general recommendations were made:

• Use case modelling should be used for describing the external functionality of service management
standards, systems and components.

• For multi-domain SMS analysis, business roles and business processes should be used to
supplement use cases.

• The UML notation should be used both internally for the different stakeholder’s development
processes and externally for exchanging models between developers involved in these processes.

• The Projection packaging construct should be used for publishing COTS software, publishing
standards and for documenting internally developed reusable software.

• Where possible, an analysis and design process that uses OOSE analysis modelling should be
adopted.

This section defines the notations that should be used by SMS development stakeholders and the meta-

6

models, i.e. the structure of information, to which models expressed in these notations should conform.
As recommended above, the core notation used is UML, specifically the OMG’s current version 1.1
[ad/97-08-03]. UML is, however, a general purpose modelling language and its designers acknowledge
that it is necessary to extend and profile it to suit software development requirements of specific
problem domains. This section therefore uses the UML stereotyping mechanism to propose extensions
to UML for the SMS development framework. This is presented in terms of stereotypes defining new
modelling elements and the meta-model that defines the relationships of these elements with each other
and with existing UML v1.1 elements. Class diagrams are used to show these relationships with
existing UML model elements, identified for convenience by the stereotype marker <<uml1>>. Existing
UML model elements are written in double inverted commas when first introduced, and subsequently
where needed to avoid ambiguity. The specific modelling constructs defined here are:

• A Business Requirements Model combining Business Process, Business System and Use Case
Models

• A Projection modelling construct which is a refinement of Jacobsen’s facade construct.

3.1 BUSINESS REQUIREMENTS MODEL
The Business Requirements Model is a stereotype of “model” that aims to support the identification of
requirements in complex multi-domain situations. It consists of a Business System Model together with
a Use Case Model, of the type already described in UML, and a Business Process Model. All three are
UML “model” stereotypes. Model elements in the Business System Model are associated with model
elements from the other two models as depicted in Figure 4.

business
requirements

model

business
system model

use case
model

business
process model

<<import>> <<import>>

Figure 4: Structure of the Business Requirements Model

The contents of the Business System Model and the Business Process Model, and the association
between elements in all three models are summarised as follows:

Business Process Model:

This contains the following modelling elements::

• Business Process: This represents a process that must be conducted to perform the business
functions required of the system. It is a high level identification of an ongoing business task
rather than specific identification of an activity with defined initiation and termination
conditions and the flow of control between them as used in UML activity diagrams.

7

• User: This acts as a source and/or a sink of information that must be handled by one or more
Business Processes. The set of users in the model defines the environment that motivates the
flow of information between business processes. A User must be mapped to an actor in the use
case model.

• Information Flows: This represents the flow of information that may pass between Business
Processes or between Business Processes and Users.

Business System Model:

This contains the following modelling elements:

• Organisational Domains: This represents an organisation involved in the business scenario
under analysis, e.g. a service provider or a customer.

• Business Role: This is a role played by a User within a specific Organisational Domain, e.g.
service user or service administrator.

• Responsibility: This is a unidirectional relation between two Business Roles defining the
contractual obligation one has to the other, e.g. “pay charges by due date”.

• Service Management Systems: This represents the system under analysis, which may be one of
several operating within an Organisational Domain.

• Contract: This represents the set of functions that may exist between two Service Management
Systems.

business
process

multidomain
system

use case
model

<<uml1.1>>

actor

<<uml1.1>>
organisational

domain

business
role

responsibility
set

service
management

system

contract

information
flow

*

contains
1..*

1..*

responsibility

1..*

1..*

user

1..*

1..*

operates within1..*

plays

1..*

1..*

1..*

1..*

1..*

functional requirements described by

functional requirements described by

user
1..*1..*

Figure 5: Relationships between the Elements of the Business Requirements Model

The following relationships exist between the modelling elements in a Business Requirements Model.
They are also depicted in Figure 5:

8

• Business Roles should map one to one to actors in the use case model, so the descriptions a
Responsibility between two Business Roles should be consistent with the corresponding actor
to use case interactions and User to Process Information Flows.

• Business Processes should be wholly instantiated in within an Organisational domain.

• Individual Systems should exist wholly within one Organisational Domain

The identification of these modelling elements and their relationships enable the business requirements
to be expressed in terms of requirements upon specific contracts in terms of Responsibilities and
Information Flows. This is particularly useful for defining reference points between Organisational
Domains that do not involve direct interactions with actors and are therefore not addressed directly by
the use case model.

The process of generating a Business Requirements Model consists of the following steps:

First, establish a multi-domain organisational model (part of the Business System Model) that identifies
Organisational Domain, Business Roles with those domains and Responsibilities between them. This
can be done using a UML class diagram together with corresponding textual Responsibility
descriptions.

Second, establish a use case model where the actors represent the different Business Roles from the
multi-domain organisational model and the use cases describe a system consisting potentially of
multiple Organisational Domains.

Third, establish a Business Process Model where the users are the different multi-domain user case
actors. This can be done using a component diagram to show which Business Processes interact with
which Users in which Organisational Domain. Figure 6 shows such a diagram for the processes, roles
and domains identified in Figure 7 for the fulfilment scenario defined for FlowThru.

ATM Service
Customer

<<Organisational Domain>>

ATM Service
Provider

<<Organisational Domain>>

Sales

<<Business Process>>

customer

<<User>>

Order Handling

<<Business Process>>

Service
Planning/Development

<<Business Process>>

Service
Configuration

<<Business Process>>

Network
Planning/Development

<<Business Process>>

Network
Provisioning

<<Business Process>>

Network
Invetory

Management

<<Business Process>>

Connectivity
Provider
Manager

<<User>>

Retailer Manager

<<User>>

Figure 6: Example of static Business Process Model using a UML Component Diagram

Fourth, refine the Business Process Model to show for each multi-domain use case the information flow
that must flow between Business Processes and between Business Processes and Users. This can be
performed using UML sequence diagrams. An example is given in Figure 7 for the processes and users
in Figure 6, for the “subscribe to ATM service” use case.

9

customer

<<user>>

Order
Handling

Service
Configuration

Network
Planning and
Development

Network
Provisioning

Network
Inventory

Management

order()
request for NAP()

request to activate NAP()
NAP ID()

user ID()

capacity request()
trunk resource request()

bandwidth allocation request()

Figure 7: Example of Dynamic Business Process Model using a UML Sequence Diagram

Fifth, establish a Business System Model that shows the SMS under analysis and the other SMS and
the Business Roles with which it interacts in the same or in collaborating Organisational Domains. The
model should identify the Contract via which interactions are performed. This model can be represented
using a UML component diagram, an example of which is give in Figure 8 for the SMS making up the
fulfilment trial business system.

ATM Service
Customer

<<Organisational Domain>>

ATM Service
Provider

<<Organisational Domain>>

Customer
Application

<<Service Mgmt System>>

Order Handler

<<Service Mgmt System>>

Network
Planner

<<Service Mgmt System>>

Configuration
Manager

<<Service Mgmt System>>

customer

<<User>>

user
interface

<<contract>>

resource
mgmt

<<contract>>

NAP
mgmt

<<contract>>

customer
ordering

<<contract>>

Figure 8: Example of SMS Level Business System Model using a UML Component Diagram

Finally a use case model can be generated for the SMS under analysis, with actors representing the
users and other SMS with which it interacts. The individual use cases involved should be triggered by
inward Information Flow for a Business Process handled by this SMS, as identified by the dynamic
Business Process Model. As the actors represent the Users and SMS that interact with the SMS under
analysis via Contracts, the aggregation of the all interactions between the user cases and a specific
actor will define the functions required at the corresponding Contract.

10

3.2 THE PROJECTION MODELLING CONSTRUCT
A Projection allows models to be exchanged between development stakeholders whose internal models
may not yet conform to the common structure used in the Projection. In such cases a mapping must
exist between the meta-model used internally by the stakeholder and the Projection meta-model. As with
facades, a Projection can provide a selective view of a system, revealing only the details judged by the
owner of the system as needed for a specific type of user of the system, e.g. a software reuser or a
specification reuser. Consequently a system may support several Projections in parallel. The Projection
construct has a more defined structure than the façade construct currently defined in UML. This
structure is shown in Figure 9.

projection

requirements
model

analysis model

design modelrealisation
model

verification
model

requirement
statements

use case
model

<<import>>

<<import>>

<<import>>

<<import>><<import>>

<<import>>

Figure 9: Structure of the Projection Modelling Construct

A Projection consists of the following elements, each a stereotype of “model”, and dependencies
between their modelling elements:

Requirements Model:

This contains a complete requirements statement for the system concerns addressed by the
Projection. It consists of two parts:

1. A set of textual requirements statements that are uniquely identifiable within the context of the
Projection and which fall into one of the five requirements categories defined in the TMF
development methodology, i.e. Structural Information, Dynamic Information, Abnormal
Conditions, Expectations and Non Functional Requirements and System Administration
Requirements.

2. A Use Case Model of the system being modelled addressing only the concerns relevant to the
details revealed by the Projection.

11

analysis
object

control
object

boundary
object

entity
object

classifier

<<uml1.1>>

stereotyped by

collaboration

<<uml1.1>>

analysis
collaboration

message

<<uml1.1>>

analysis
object

diagram

use case

<<uml1.1>>
analysis

actor

+contraints: [create|delete|read|modify]

analysis object interaction

0..* 1..*

1..*

1..*
1..*

stereotyped by

1..*

1..*

1..*

actor
<<uml1.1>>

classifier

<<uml1.1>>

stereotyped by

maps to

1..*

static analysis

maps todynamic analysis

class
diagram

<<uml1.1>>

stereotyped by

collaboration
diagram

<<uml1.1>>depicted by

Figure 10: Relationship between Elements of the Projection Construct’s Use Case and Analysis
models

Analysis Model:

This provides an analysis of the requirements presented in the Requirements Model. It contains:
classes of the analysis object types defined by Jacobsen, i.e. the control, boundary and entity object
types; actors that place requirements on the system and identification of interactions between
analysis objects and between analysis objects and actors. Interactions may be classified by the one
or more of the following types: create, delete, read, and modify. The static view of the Analysis
Model may be represented in an analysis object diagram, which is a class diagram that supports the
analysis object stereotypes. In parallel the Analysis Model should contain collaboration diagrams
which show the dynamic behaviour of the classes in the analysis object diagram in terms of
messages that pass between instances of them. The structure of the Analysis Model is driven by the
Requirements Model. Each use case in the latter should be reflected by at least one analysis object
diagram and one analysis collaboration in the former. In addition the analysis actors should have a
one to one mapping to the use case model actors in the Requirements Model. These model elements
and their relationships to each other and to elements in the use case model are depicted in Figure
10. An example of an Analysis object Diagram is given in Figure 11.

12

Provider
Administrator

Accounting
Management

Provider
Management

Application

Customer
Management
Application

Customer
Administrator

PA Interface CA interface

Subscription Service

Service

Subscription
Contract

Subscription

Service Level
Ageement

0..*

Customer
Account

Subscription
Manager

Service
Record

1..*

0..*

1..*

Subscription
Management

Interface

Accounting
Management

Interface

Use case reference:
The diagram refers
to both the Create
and Break
SUG/Assigned
Record Connection

Figure 11: Analysis Object Diagram for Subscribe a Customer to a Service Use Case

Design Model:

This defines a view of the design details of the system judged sufficient by the system designer to
allow the use of the system by others. Typically this will consist of:

• A description of functional structure of the system in terms of components and the interfaces
they offer to and require of external entities and optionally each other. This may be expressed
in terms of a component diagram.

• A definition of the interfaces offered to, and required of, external entities defining interface
operations, their parameters and exceptions. This may be expressed in a UML class diagram or
directly in a suitable interface definition language.

• A definition of the dynamic behaviour between interfaces and external elements, expressing any
temporal dependencies between separate operation invocations. This may be expressed in terms
of UML sequence diagrams or collaboration diagrams.

A mapping should exist between model elements in the Analysis Model and the Design Model. This
mapping may be a one to one, or possibly one to many in order to accommodate the more detailed level
of modelling required in the Design Model. These relationships may also be many to one where
designers have consolidated two or more analysis objects into a design object that performs the analysis
object’s behaviour. The mappings from the Analysis Model’s modelling elements to Design model
modelling elements are as follows:

• Actors to external entities in the Design Model.

• Control objects to functional components.

• Boundary objects to interfaces.

• Entity object to interface operation parameters.

• Analysis object interactions to corresponding interface operation types, including factory
operations for creating and deleting functional components or their interfaces.

13

• Analysis collaboration messages to interface operations.

• Analysis collaboration diagrams to design interaction diagrams

Realisation Model:

This defines the physical realisation of the design model in terms that support its integration into other
models by the Projection’s user, including the constraints of any configuration that can be performed by
the user. The Projection definition does not prescribe the notation for this model, though UML
deployment and component diagrams may both be useful here.

Verification Model:

This defines the information and procedures needed by the user of the capabilities of the system defined
by the Projection in order to ensure that it is operating consistently with its requirements in the
environment in which the user has placed it. The Projection definition does not prescribe the notation
for this model.

4 APPLICATION OF THE GUIDELINES
The Projection modelling approach was applied within FlowThru to the integration of components in
three separate scenarios demonstrating different business process areas from the TMF’s Telecoms
Operations Map. The components from which these systems are constructed were from different EU
funded projects, and as such they were originally developed using a variety of notations. To validate the
reusable component modelling approach described above the specifications of these existing
components had to be recast as Projections. The core aim was to be able to export the Projection in a
form that presented each of its constituent models and the traces between them. An HTML-based
approach was therefore taken in order to allow traces to be implemented at hyper-links. The publication
of the facade on the web is recounted in more detail in [lewis99b].

In mapping use cases to an analysis model for a facade, entity objects were derived from noun phrases
that occur in one or more use cases. Boundary objects were identified by any interactions between the
users and the system. Control objects were initially allocated per use case, and then consolidated as
functional commonalties are identified between use cases. Interaction diagrams were required at this
stage to detail the lifecycle of objects and dynamic aspects of the relationships between them. Refining
the analysis model into the design model for a Projection took into account design level issues, such as
scalability, load balancing, platform dependencies, database schemes etc. Strong tracing between
objects in the analysis model and the design model had to be maintained during this process.

Though it is preferable to generate a Projection from a component model of the same structure, it is not
a requirement for the component to have been originally developed and documented using an OOSE-
like process. Indeed, part of the benefit of the use of Projections is that that they can hide the internal
model if necessary. In FlowThru the latter situation was demonstrated by developing Projections for
components that had been developed and documented using ODP viewpoints. The following mappings
were be used to help reverse engineering the ODP models into the Projection format:

• Roles in the enterprise viewpoint onto actors in the use case modelled in the Projection.

• Computational objects from the computational viewpoint onto control objects in the Analysis
Model.

• Computational object interfaces, individually or grouped, onto boundary objects in the Analysis
Model.

• Information object onto entity objects in the Projection’s Analysis Model.

• Where sequence diagrams had been used to clarify the interactions between computational and
information objects, then these formed the basis for reverse engineering use cases, otherwise use
cases were based on the component's requirements.

14

The analysis of a management task in a specific business scenario was initially described in terms of a
use case giving the interactions of the system with the human roles involved in the task. These use cases
were then broken down into internal activities performed with the system, using a UML activity
diagram. The activities in these diagrams were placed within swim-lanes representing TMF business
processes, were necessary residing in different administrative domains. This eased the identification of
which existing TMF business agreements matched the requirements of the task at hand. The mapping of
the TOM process onto the TINA business roles also then enabled the identification of where TINA
reference point definitions should apply. The activity diagram for the “Subscribe to ATM Service” use
case is presented in Figure 12.

Order
Handling

Accept Order for ATM
Service

Create Customer
Account

[Credit check OK]

[Credit check fail]

Order Failed

Determine Location of
Customer Site(s)

Activate Network
Access Points

Network Planning and
Development

Network
Provisioning

Determine CoS to be
used at each site

Determine the users to
use each CoS at each

site

Service
Configuration

Place Order

Authorise users to use
service

Update network usage
predictions

Update network
topology

Reconfigure VP network
[physical network

capacity
adequate]

[VP network capacity inadequate]

Order Complete

Customer Interface
Management

Network Inventory
Management

Locate NAP

Determine available
CoS

Install NE hardware
and lines to NAP

[network access point in place]

[network access point not in place]

Install trunk NE
hardware and lines

[physical network
capacity

inadequate]

Activate CoS user
groups

Figure 12: UML Activity Diagram for the Subscribe to ATM Service Use Case

By comparing these activities to the use cases in the imported components’ Projections, a mapping
could be obtained of which activities could be handled by which components. From this a clearer
picture of the interactions required between the component was formed. This enabled the identification
of specific requirements for modifications to components in order that they satisfy the overall system
requirements. For instance, the activities in the Order Handling swim lane in Figure 12 and their
interactions with the Customer Interface Management swim-lane activities were identified as ones that
could be performed by the subscription management component. This analysis indicated, however, that
the design of this component needed to be modified to support asynchronous interactions with
components performing activities in the Network Provisioning and Network Planning and Development
swim-lanes, as these could result in considerable delays. The TMF already had an interface agreement,
Service Provide to Service Provider Order Handling [nmf-504], that addressed aspects of this process
area. This standard contained abstractions for tracking orders in slow response situations, which
therefore could be applied to the modification of the subscription management component.

The overall system analysis model was then defined in terms of the interactions between analysis model

15

elements from the imported component Projections, and in particular the bindings between their
boundary objects. The overall system design model consisted of the modified IDL for each component
and detailed sequence diagrams showing inter-component interactions that enacted the system’s use
cases.

4.1 EVALUATION OF APPROACH
The experiences of this case study relate the generation of the Projection for pre-existing components
and to how this may be integrated into the development of an SMS in a way that ensures the
satisfaction of business process requirements and ready integration with existing open standards. The
Projection presents the component model at levels of abstraction, i.e. as Use Case and Analysis Models,
which facilitate the components integration into the SMS. It was found that the division in the
Projection between the Analysis Model and the Design Model provided a good basis for delineating
between the exposure of internal details of a component needed for its features and capabilities to be
understood. At the same time the Projection hid all detailed design issues except those relating to the
interfaces via which it is re-used.

Publishing the Projection in HTML with a structure suitable for re-users to make best use of the traces
between elements in the different models was found to be relatively simple with Paradigm Plus.
However, the fact that the same teams were involved in Projection generation and the design of the
systems that reused the components meant that the effectiveness of the Projection construct in
component selection and comprehension could not be assessed. In addition, therefore, a questionnaire
was used to get a more structure view of the developers’ experiences, against which the above
observations may be compared. Fourteen completed questionnaires were returned. The responses
mostly were in line with the above observations and the findings of the previous case studies. The
business process modelling was rated highly for both system and component development. The
Projections were also rated highly by system designers, though the rating for the Projection’s Use Case
Model, indicated that this was not clearly related to the Analysis and Design Model in all cases.

The responses to some open questions included in the questionnaire were as follows:

• In response to the question “Do you think the use of component Projections resulted in a better-
designed component?” six replied yes, three no and four did not express an opinion. Comments
were made that in most cases the component design was fairly mature, so the Projection generation
was purely a documentation exercise.

• In response to the question “Do you think the design of the trial business systems was made easier
or not by the use of the component Projection structure?” seven replied yes, two no and five did not
express an opinion.

• In response to the question “Do you think the modification of components for reuse in the trial
business system was made easier or not by the use of Projections?” five replied yes, none no and
nine did not express an opinion.

5 CONCLUSIONS
This work has provided experience in the application of UML and commercially available CASE tools
for service management process analysis and component reuse. It is hoped these results will prove
useful to industry practitioners faced with building service management systems. The methodology and
experiences presented here are currently being disseminate via the ACTS program as well as providing
input to the TMF, TINA and ITU workgroups.

The business process to reference point mapping model was found useful in bringing together the
business process model approach to establishing management requirements from the TMF and the
component-based reference points based defined in TINA. This assisted the understanding of
developers with backgrounds in TINA who needed to use their systems to satisfy business process

16

requirements. This mapping has been presented to the TMF and TINA-C by the author. It has been
received with interest by both and at the time of writing is forming the basis of negotiation on a possible
liaison agreement between the two bodies. Such a mapping, combined with the representation of
reference points as the Projections of their constituent components, points the way to the integration of
existing component and interface specifications with business process driven SMS development. It also
provides a path to expanding the scope of reference points based on existing business process analyses.

6 ACKNOWLEDGEMENTS
The work presented in the paper was conducted with partial funding of the European Commission
under the FlowThru project (AC335). The views expressed here are not necessarily those of the
FlowThru consortium.

7 REFERENCES
[ad/97-08-03] UML Summary, v1.1, ad/97-08-03, OMG, Aug 1997

[jacobsen97] Software Reuse - Architecture, Process and Organisation for Business Success, Jacobsen,
I., Griss, M., Jonsson, P., 0-201-92476-5, Addison-Wesley, 1997

[nmf-504] SMART Ordering - SP to SP Interface Business Agreement, NMF 504, Issue 1.0, TMF,
Sep 1997

[nmf-gb910] NMF Telecoms Operation Map: A high-level view of end-to-end service fulfilment,
service assurance and billing, NMF, Morristown, 1998

[vincent] Modeling/Design Methodology and Template, Draft 4, Vincent, A, Hall, C., TMF, Oct 1997

[x901] Open Distributed Processing- Reference Model: Part 1: Overview and Guide to Use, ITU-T
Recommendation X.901/ ISO/IEC International Standard 10746-1, 1995

[lewis95] Experiences in Multi-Domain Management Service Development, Lewis, D., Tiropanis, T.,
Bjerring, L.H., Hall, J., in [ISN95], pp174-184, Springer-Verlag, Oct 1995

[lewis99a] A Development Framework for Open Management Systems, Lewis, D., Journal of
Interoperable Communication Networks, vol. 2/1, pp11-30, Mar 1999

[lewis99b] Modelling Management Components for Reuse Using UML, Lewis, D., Malbon, C.,
DaCruz, A., Proceedings of the 6th International Conference on Intelligence in Services and
Networks, Barcelona, Spain, pp210-222, Springer-Verlag, Apr 1999

[lews99c] The Development of Integrated Inter and Intra Domain Management Services, Lewis, D.,
Wade, V., Bracht, R., Integrated Network Management VI: Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Network Management, Boston, USA,
pp279-292, Addison-Wesley, May 1999

