
A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE
MANAGEMENT SYSTEMS

David Lewis
Department of Computer Science, University College London

United Kingdom

ABSTRACT

Management systems for communication services
operate in a competitive, multi-domain
environment in which open interfaces are
essential for service providers in order to
interoperate with customers and other service
providers. Open interfaces and framework
agreements are also required to take advantage
commercial off the shelf components and so
reduce the costs and time taken in management
system development. This paper defines the
requirements for a framework that will
specifically support the development of open
service management systems. Requirements are
defined for a system architecture, a business
model and a development methodology.

The system architecture consists of a functional
framework, a technology framework and a
component framework. An analysis of the current
state of the art in these areas, as applied to service
management, suggests that these frameworks
should not be heavily prescriptive in order to
accommodate the current heterogeneity in the
market. Equally, with the telecommunications
sector undergoing major structural changes, a

well-defined set of business roles is seen as being
of only limited value to management system
developers. Therefore, it is suggested that
business modelling for service management
systems should be based on the modelling of
business processes, as currently espoused by the
TeleManagement Forum.

The development methodology, however, is
suggested as an area where a common
prescriptive approach can be of great benefit to
open management system developers. Adoption of
UML as a modelling notation will ease the
communications between different stakeholders in
the development of open management systems
and the components they reuse. The proposed
methodology emphasises the iterative nature of
the development process and the pre-eminent
place of component definition within it.
Representing components at an analysis level as
well as at a design level enables component reuse
to become much more central to the analysis
process and to become directly relevant to the
business process reengineering activity.

KEYWORDS:

SERVICE MANAGEMENT, COMPONENT REUSE, BUSINESS PROCESS RE-ENGINEERING

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

1. INTRODUCTION

The world-wide deregulation of the
telecommunication market has resulted in a rapid
increase in the number and the dynamism of
service providers and of the services they offer.
However, the proprietary nature of many of the
existing systems used to manage communications
services is proving an obstacle to providers’
ability to react flexibly and quickly to this rapidly
changing environment. Service management
systems are required to help reduce operating
costs and to interact efficiently with customers
and suppliers [1]. Service management systems
must be able to quickly meet requirements as
services evolve, but with tightly controlled
development costs. Increasingly developers are
turning to open system solutions in order to meet
these challenges, principally in the following
forms:
• Open Management Platforms: Service

management systems are necessarily
distributed because the service and network
components they manage are distributed.
Adopting open distributed computing
platforms based on standards such as CMIP,
SNMP, CORBA or HTTP greatly eases the
task of integrating different provider’s and
vendor’s systems.

• Open Management Interfaces: By agreeing
standards for exchanging management
information for specific management
functions, the risks of tying commercial
relationships to technical interfaces are
reduced and the development of off-the-shelf
solutions encouraged.

• Open Components: There is increasing
interest in using industry agreements, both
on open platforms and on open interfaces for
specific problems, to support the
development of a more open market in
software components. It is envisaged that this
will produce a large population of
commercial off-the-shelf components that
can be easily integrated into solutions to
specific problems, greatly reducing bespoke
development costs.

Developments in these areas are proceeding apace
and across a wide range of different bodies, many
of them general in nature and not specifically
addressing the needs of telecommunications
management. Developers of service management

systems, therefore, will benefit from a framework
that presents current and emerging open solutions
in a manner that supports their problem domain
directly. If such a framework is to provide
comprehensive guidance to the developers of open
service management systems it must address the
following:
• System Architecture: to provide guidance on

how to construct software systems from
components originating from different
sources, thus ensuring that these components
are themselves structured so as to be easily
integratable. A system architecture may also
provide guidance on how different
technologies should be integrated and how
the problems of distribution should be
addressed.

• Business Model: to provide guidance on
which types of organisational stakeholders
are typical of the service management
problem domain, what forms of business
relationships may exist between them and the
functional scope of those relationships. Care
must be taken that this is not too constrictive
in modelling the structure of the fast
changing telecommunications sector.

• Development Methodology: this is a set of
processes and notations that enable the
stakeholders in the development of open
management systems to communicate their
needs and capabilities to each other more
clearly. It should also provides these
stakeholders with a more rigorous,
measurable development process aimed at
improving the efficiency of their overall
software engineering activities.

Many frameworks have been proposed for various
problem domains within the telecommunication
sector. The framework proposed here contrasts
with some proposed in the area of network
signalling and Intelligent Networks (IN) [2][3],
which aim to provide a high level of automated
support in the development of network control.
Such service creation techniques rely on a high
level of technological homogeneity and a stable,
well-defined functional base from which to create
new services. This does not reflect the situation in
service management where a wide range of
technologies are applicable, where business
requirements are still not well understood and
where there is no stable base to build on, e.g. no

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

common model covering the range of services to
be managed.

Instead the framework proposed here only loosely
ties together the different technologies,
architectures and business models involved. It
aims to provide an accessible knowledge-base to
be used when attempting to construct open service
management systems according to a tailored
development methodology, rather than being the
basis for a service creation environment.

The next section describes in more detail the
stakeholders in the development of open
management systems, and identifies the bodies of
work existing in this area. Section 3 describes in
detail how far existing standards go in satisfying
the requirements for a System Architecture.
Section 4 details an approach to Business
Modelling, based on existing NMF and TINA
solutions. Section 5 describes a suitable
Development Methodology, building on existing
approaches, but focussing on business process
reengineering and component reuse problems in
service management.

2. BACKGROUND

A model of the overall business context in which
open service management systems are developed
can help in our understanding of the requirements
for a suitable development framework. The
business model for the development of open
service management systems centres on a
management system developer stakeholder
operating in a market where it provides
management systems (possibly internally) to a
service provider stakeholder. A management
system must support one or more management
tasks required by the service provider, which may
involve interactions between the service provider
and customer stakeholders and/or other service
providers. Ideally, the development of
management systems should make use of
commercial off-the-shelf components, purchased
from component vendor stakeholders in an open
market. The system developer also relies on the
use of open standards for platforms and common
management functions. These ensure both the
interoperability between the provider’s systems
and those operated by customers and/or other
providers and the interoperability between

components purchased from different vendors.
The general management system development
situation is summarised in figure 1.
Several bodies have already addressed problems
in the area of service management. The
distinction between service management and
network management was recognised initially in
the Telecommunications Management Network
(TMN) standards. The TMN architecture [4]
defines conceptual layers addressing different
concerns within a provider’s operation support
structure. These layers are; a network element
management layer, a network management layer,
a service management layer and a business
management layer. The TMN functional
architecture makes distinctions between; network
element functions; mediation functions; adapter
functions to non-TMN compliant network
element managers; workstation functions
presenting information to human operators; and
general operations system functions. It also makes
distinctions between different reference points
that may exist between these different types of
functional units and between functional units
within and outside of the same organisational
domain. These reference points provide the basis
for defining interfaces between implementations
of the functional units. Initially it was assumed
that these interfaces would be implemented using
OSI Management, i.e. CMIP used to access
Managed Objects (MOs) defined in GDMO.
However, current revisions to the TMN standards
are encompassing other technologies such as the
CORBA from the Open Management Group
(OMG) where MOs would be defined using the
accompanying Interface Definition Language
(IDL). The TMN family of standards also
includes methodological guidance on the
development of management interfaces [5]. This
is based on the definition of management
functions that are hierarchically decomposed into
MO definitions. Management functions have been
defined not only for general functions such as
event management and log control, but also for
network-oriented management functions, e.g. [6].
Though some of these standards can be reused at
the service management layer, the ITU-T or OSI
communities have defined few management
functions specifically for this layer.

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

other service
providers

service
providerscustomers

system
developers

component
vendors

standards

Development

Operation

frameworks &
interface definitions

business needs

working software

component
& frameworks

system requirements

business
needs

requirements

frameworks &
interface definitions

Figure 1: Business Model for the Development of Open Management Systems

One body that has analysed service management
requirements more directly is the
TeleManagement Forum (TM Forum), formerly
the NMF. This industrial forum aims to build on
existing TMN standards with business
agreements and procurement guidelines that
directly reflects the industry’s short term needs. It
has developed a business process model that,
based on surveys of major service providers,
provides a more detailed breakdown of the set of
business processes that typically encompass a
service provider’s operations management
activities. Interactions between processes in
different providers are also identified. This model
is intended for use as the basis for identifying the
requirements for specific agreements on common
interfaces and information models, the
development of which is an ongoing activity
within the TM Forum. The TM Forum has also
been very active in analysing the application of
different technologies to telecommunications
management, as well as techniques for supporting
migration and co-existence of different
technologies, e.g. CORBA-CMIP gateways [7].
The TM Forum has produced its own internal
guidelines for workgroups developing agreements
on management interfaces [8]. This is similar to a
general system development approach, and draws
on analysis techniques such as use cases and

graphical modelling techniques such as OMT
class and sequence diagrams [9].

Another body that has performed in-depth studies
of service management is the Telecommunication
Information Network Architecture Consortium
(TINA-C) [10]. This group has aimed to develop
a comprehensive architecture for
telecommunications control and management
based on Open Distributed Processing (ODP)
principles as defined by ITU-T in [11]. It has
generated detailed models for the integrated
control and management of multimedia services
and broadband networks based on existing
concepts from TMN, IN and ATM. Notable
results in relation to open service management
systems have been the development of a general
business model and reference point scheme [12],
the detailed modelling of specific service
management functions [13], and the application
of reusable object-oriented components in the
architecture [14]. TINA-C has developed internal
guidelines for modelling its systems. These are
based on ODP modelling concepts, principally the
use of the five ODP viewpoints that separate,
enterprise, computational, informational,
engineering and technology concerns. This has
been supplemented with OMT class diagrams,
sequence diagrams and simple block diagrams

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

showing computational component structures and
their interfaces.

Further work on development methodologies has
been performed in recent European research
projects. The EURESCOM project P.610 has
performed case studies developing multimedia
service management systems [15]. As with other
projects, these case studies have made use of the
Unified Modelling Language (UML) [16], a third
generation object-oriented graphical modelling
notation, combining concepts from many of its
predecessors, e.g. OMT, and now subject to
standardisation by the OMG. The case studies
provided examples of the application of UML use
case diagrams for capturing the requirements of
management systems, and of UML class,
sequence and component diagrams to the design
of these systems. The ACTS project TRUMPET
performed a case study of an inter-domain service
management problem that used ODP viewpoints
modelled using UML [17]. They found UML
mapped well to ODP viewpoints, with use cases
used for the enterprise viewpoint, class diagrams
for the information viewpoint, component and
sequence diagrams for the computational
viewpoint and deployment diagrams for the
engineering viewpoint. However, some problems
were identified with UML’s ability to represent
ODP computational objects.

A more detailed study into development
methodologies for service management was
carried out in the ACTS project Prospect. This
project implemented a series of multi-domain
management systems in phases over three years,
with the aim of reusing and evolving components
between phases. A development methodology was
adopted that was use case driven, and that made
use of class diagrams, sequence diagrams,
collaboration diagrams and component diagrams
[18]. The process was applied to the analysis of
multi-domain management scenarios and to the
complete development cycle, from analysis to
testing, of both single providers’ systems and of
individual reusable components. The
methodology aimed to support the iterative
application of the development cycle to these
systems and components, as was required by the
phased nature of the project. ODP viewpoints
were initially used in this process, however
problems were encountered with the separation
between the information and computational
viewpoints. Though the viewpoints were seen as

useful for documenting a completed system, the
tools were not available to provide the strong
traceable links between information and
computational objects that are needed if the
design is to be modified through multiple
iterations. The separation between information
and computational viewpoints was therefore
diluted, and both systems and components were
designed using class diagrams, component
diagrams and sequence diagrams that mixed
computational and information object types. This
provided the designers with the flexibility they
required to express the design models in the way
that most closely represented the solutions to the
various tasks required of the system or
component. Prospect used UML to represent its
use case diagrams, class diagrams, sequence
diagrams, collaboration diagrams and component
diagrams. It also adopted conventions for the
structure of use case descriptions, for the naming
of components and for IDL specifications. The
use of these notations by the different groups
concerned with performing either multi-domain
analyses, system development or component
development, made communication between the
groups much more straight forward. A
questionnaire of these developers revealed that
the use cases in particular enabled the different
groups to understand each other’s output more
clearly.

The following sections describe in more detail
how these existing approaches can satisfy the
requirements for a development framework for
open service management system, and also where
more study is required.

3. SYSTEM ARCHITECTURE

Several, apparently competing, system
architectures are available to the developer of
open management systems. No attempt to
synthesise them into a single system architecture
is attempted here, instead their relevant features
and commonalities are presented. The main
features of a system architecture are analysed
below in terms of a functional framework, a
technological framework and a component
framework.

3.1 Functional Framework

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

A functional framework is required to provide a
well understood context into which specific
functional solutions can be placed and where their
relevance to the rest of the architecture can be
easily understood. They are important in
supporting the development of open interface
standards, by providing an overarching
framework for the output of the on-going
standardisation process. As has already been
discussed, the most well established architectural
standard in this problem domain, TMN, has a
functional architecture that restricts itself to
specifying functional layers relevant to
telecommunication management, as well as to
conventions for identifying reference points
between functional unit in these layers.

The TINA Consortium has divided its overall
architecture into Service, Network, Management
and Computing areas. This has helped structure
its working groups internally, with specific
solutions concentrated in the Service and
Network architectures, each tightly integrated
with Management and Computing architecture
concepts that were provided more as guidelines.
A business model and a set of reference point
between business roles has been defined to
provide a mechanism to map business
requirements to specific interface solutions, as
explained in section 4.2. The TINA functional
framework can therefore be classified as quite
restrictive, being optimised to provide tight
integration between its functional areas at the
possible expense of broader applicability.

With CORBA, the OMG has taken a much
broader and more loosely coupled approach to its
functional architecture, reflecting a wider
constituency, i.e. information technology in
general rather than just its application to
telecommunications. The Object Management
Architecture (OMA) defines an Object Request
Broker as the mechanism for distributed object
communication, and defines different classes of
interface standards under which any ongoing
standards work must operate. These classes are;
CORBA Services, which are regarded as basic
common services required by most application;
Horizontal CORBA Facilities which are higher
level service definitions support recurring
application needs; and Vertical or Domain
CORBA Facilities which address problems

common to specific application domains,
including telecommunications.

Though these approaches differ, they can all be
said to show some form of functional layering,
where higher level functions, offering the
developer problem-specific functions at a higher
level of abstraction, build on the services offered
by more generic lower layers.

3.2 Technological Framework

Though many standardisation efforts have begun
with the assumption that a certain underlying
technology would be used, e.g. CMIP with TMN
and CORBA with OMA, there is a growing
realisation that standards must support
interoperability between the results of these
parallel efforts. This is partially due to the
proliferation of industrially led, technology
specific fora that are separate from the traditional
working groups of the ITU-T and OSI, e.g. OMG,
ATM Forum. It is also supported by the wide
acceptance of key interoperability technology,
principally TCP/IP. The most comprehensive
analysis of the many, apparently competing,
technologies currently available for
telecommunications management is being
conducted by the TM Forum in the development
of its Technology Integration Map [19]. This is
based on a survey of current service providers’
technology approaches and a synthesis of how
technologies can be most optimally integrated,
and where additional technology inter-working is
required. Essentially, the result follows a three-
tier or model-view-controller paradigm. It is
expected that CMIP and SNMP will persist as the
mechanism for controlling and determining the
state of the network. However, CORBA is
expected to be deployed at the network, service
and business layers, as it more closely matches
the peer-to-peer model of systems at this level and
supports well the integration of legacy operation
systems. It is also expected that business
information will be consolidated in distributed
databases accessed through SQL services, rather
than residing in separate operational units.
Finally, it is expected that customer and
operations staff will increasingly access
information through WWW-based thin-clients
possibly using Java applets. This has the
advantage of decoupling user location from
operations systems and reducing application
maintenance costs. Many of the technology

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

interworking standards are already in place, e.g.
CORBA-CMIP and CORBA-SNMP gateways and
Java-IDL mappings.

Consequently, the proposed technology
framework cannot opt for a single solution, but
must encompass and bridge between the wide
range of applicable technologies.

3.3 Component Framework

Many system architectures have traditionally
focussed on supporting the definition of open
interfaces, whether defined as a protocol or as an
application programming interface. There is an
increasing realisation however, that if the benefits
of component reuse are to be fully exploited,
standardisation frameworks need to address the
definition of components. This goes beyond
simply defining open interfaces, but must also
cover platform dependencies. For instance, OSI
System Management Functions provide standard
interfaces to access functions in a CMIP agent. It
is clear that very powerful agent operations can be
provided by combining different functions, yet
how their implementations interact within the
agent is regarded as a platform specific issue, and
left unstandardised. Thus it is not currently
possible to buy platform independent
implementations of these functions that can plug
into different agent platforms.

TINA addresses this issue by specifying
components according to its Universal Service
Component Model. This requires a component to
specify the different service interfaces it offers,
which management interfaces it offers, and which
services of other components or of the platform it
uses. An extension to IDL, called Object
Definition Language (ODL), is employed to
group this information, and accompanying IDL
definitions, together in a component specification
[20]. ODL and its accompanying graphical
notation are now being considered by ITU-T
study group 10 for standardisation.

The OMG has also been addressing the use of
components through its Request For Proposals
(RFP) on a CORBA Component Model [21]. This
aims to provide a component model that supports
objects with multiple interfaces and the
referencing of objects by value, in addition to
specifying well defined mechanisms for
describing components, handling component

events, serialising component state and
controlling component lifecycle. The OMG RFP
also aims for compatibility with the Java
component model, JavaBeans [22]. JavaBeans
were initially only defined for application
components, providing well-defined hooks for
customising components and for integration with
application builders. This has now been extended
to server side components, termed Enterprise
JavaBeans [23]. Enterprise JavaBean are
components that are intended to run in a
container that manages the lifecycle of
components and provides them with support for
remote interactions, naming, transaction,
persistency and multithreading, freeing the
component developer of these concerns. A
component can be modified through extension
classes, or at run time through property tables.
The aim is that container platforms can be
constructed from existing technologies such as
CORBA, COM, or Distributed DBMS. The
impact of component reuse on the development
process is considered in more detail in section
5.2.

4. BUSINESS MODEL

Any development of open management systems
needs to be driven by business requirements. A
business model can be used in a development
framework to provide guidance on domain
specific business needs and business relationships
when developing open interfaces or open
components. A business model can also act as an
entry point for system developers, who can
compare their own particular requirements with
the framework’s business model in order to
ascertain which existing open solutions within the
framework may be applicable. Many different
business models have been proposed by
telecommunications system frameworks in the
past, identifying business roles and the possible
relationships between them. These models often
reflect the different biases and concerns of the
bodies proposing them. For instance the business
models proposed by TINA-C and the
EURESCOM P.610 project are fairly similar, but
still differ in some types of business roles, e.g.
TINA-C proposes a Broker role, while P.610
suggests an Access Network Provider role.
However great care must be taken is adopting any
specific business model. The deregulation of the
global telecommunications market is leading to
very rapid structural changes through mergers,

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

collaborations (sometime imposed by regulation)
and a wide range of new market entrants. This
can quickly make parts of any specific business
model irrelevant or inaccurate, reducing its
usefulness to developers.

A more long-lived approach may be that taken by
the TM Forum. Instead of attempting to provide
well-defined business roles, the TM Forum has
constructed a model of the various business
processes that go on within service providers in
general. These processes collectively represent the

different possible functions of a service provider,
and so any potential business role could be
described by constructing sets of these processes.
The following sections describe in more detail the
TM Forum business model and then demonstrates
how it can combined with the more prescriptive
TINA business model in building multi-domain
management business models that can be readily
analysed to make best use of existing open
interface solutions.

Network Planning/
Development

Network
Provisioning

Network Inventory
Management

Network
Maintenance &

Restoration

Network Data
Management

Service Planning/
Development

Service
Configuration

Service Problem
Resolution

Service Quality
Management

Rating &
Discounting

Order Handling Problem Handling Customer QoS
Management

Invoicing/
Collection

Sales

Customer Care Processes

Service/Product Development and Maintenance
Processes

Network and Systems Management Processes

Physical Network and Information Technology

Customer Interface Management Process

Customer

Information
Systems

Management
Processes

Fulfilment Assurance Billing

Figure 2: NMF Telecommunications Operations Map

4.1 TM Forum’s Telecommunications
Operations Map

The TM Forum business model is described in the
TM Forum Telecommunication Operations Map
[24]. The primary aim of this model is to provide
a reference against which the definition of
standardised interfaces between service providers
and customers, suppliers or other service
providers can be conducted. It was based on
surveys of existing providers and framed so as to
enable discussion of industrial agreements
without having to expose the possibly sensitive

internal process structure of any particular TM
Forum member. A simplified view of the model is
presented in figure 2. The model is partitioned
horizontally into processes that relate directly to
the customer, to internal service development and
maintenance and to the management of the
provider’s networks and systems. The processes
are also grouped vertically into major service
management areas, i.e. the fulfilment/delivery of
the service, the assurance/maintenance of the
service and the billing/accounting for the service.
Individual processes are defined in terms of

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

activities within the process and of input and
output triggers to the process.

4.2 TINA Business Model and Reference Points

The TINA approach to business modelling is to
identify a number of business roles and define the
reference points that exist between them. The
TINA Business Model defines the following
business roles.
• The Consumer role, which takes advantage

of services provided by a TINA system but
without the intention of providing TINA
services to other business roles.

• The Broker role, which enables other
business roles to locate service providers.

• The Retailer role, which is concerned with
providing services to the Consumer role.

• The Third Party Provider role, which is
concerned with providing services to
Retailers or other Third Party Providers, but
not directly to Consumers.

• The Connectivity Provider, which operates a
network and provides connectivity services
over it to other business roles.

A set of business relationships (see figure 3) is
specified between these business roles. TINA
reference points are defined in relation to the
business relationships they support. All the non-
Consumer roles have self referential business
relationship supporting the federation of and
business co-operation between these roles.

Bkr Bkr

Bkr Bkr Bkr

Ret 3Pty

3PtyRtR

ConS ConS TConTConTCon

CSLN LNFed

Retailer

Connectivity
Provider

Consumer 3pty Service
Provider

Broker

Figure 3: TINA Business Roles and Relationships

In a business situation where a TINA conformant
system is required to support inter-domain
interactions, the different business administrative
domains involved may be characterised by the
TINA business roles they play with respect to
each other. This determines the TINA business
relationships they have with respect to each other.
The identification of business relationships then
allows inter-domain conformance specifications
to be defined by the amalgamation of the
reference points related to these business
relationships, plus any service specific
interactions required. These reference points are
defined in segments, with common segments used

to cover the core parts of TINA system
functionality. The primary segmentation is
between access functionality and usage
functionality. The access segment is concerned
with the authentication and authorisation of users,
the selection of services and the setting up the
context for the use and management of services.
The usage segment is subdivided into primary
usage segments that cover the functionality that is
the main objective of the service, and ancillary
usage segments that address administrative and
management functionality. This segmentation of
reference point definitions enables any inter-
domain reference point to be defined with the

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

minimum set of functionality needed for the
business relationships being analysed.

The TINA Service Architecture defines the
details of interactions between components in
terms of feature sets. These feature sets specify
levels of functionality in a TINA system, such as
basic session control or multiparty session
control. Different feature sets are supported by
interfaces provided by the individual software
components defined in the TINA Service
Architecture. These components are contained in
a software architecture that supports their
integration in different configurations to
implement different groups of feature sets.

Feature sets can be mapped to reference point
segments, so that the segments for any particular
inter-domain reference point should determine,
via the mapping to feature sets, the minimum set
of software components that would be required to
conform to this reference point. The same
principle can be applied between systems playing
different business roles within a business
administrative domain, i.e. at intra-domain
reference points. This mechanism therefore
provides a ready mapping from relationships in
an abstract business model to the set of TINA
software components needed to implement
systems that provide the required TINA
conformant interface functionality. In addition,
TINA allows for the run-time negotiation of the
feature sets to be used between two parties.

Currently, however, there is no publicly available
mapping of initial TINA reference point segments
to feature set definitions. When available, this
will only cover the service independent session
control and management functions specified in
the Service Architecture. The intention is to
expand this collection of mappings with further
service-specific feature sets as they are defined by
designers of specific TINA services. TINA’s
approach mapping business level relationships to
component capabilities is considered further in
section 5.

4.3 Mapping TM Forum Business Processes to
TINA Business Roles

Though TINA defines a fairly restrictive
architecture, it has been demonstrated that certain

service control and management concepts can be
applied to other frameworks, e.g. Internet services
[25]. Mapping the more flexible TM Forum
business model onto the TINA one may therefore
enable us to determine where specific TINA
management solutions can be more widely
applied. Such a mapping also provides us with an
example of how the TM Forum’s business model
can be used in the analysis of other management
frameworks.

Before examining such a mapping however, the
core differences between the two models must be
appreciated. Firstly, the TM Forum’s Operations
Map defines general business processes in
existing service providers. These may be human
based processes or automated ones. Part of the
intention of the Operations Map is to identify and
prioritise which processes they wish to automate,
and therefore which inter-process interactions
would benefit from industry agreements. The
TINA model restricts itself only to reference
points that will yield automated interfaces. Also,
the TM Forum’s Operations Map is concerned
only with service and network management
processes, while the TINA reference points
additionally cover issues of service and network
control. TINA also assumes its Distributed
Processing Environment (essentially CORBA)
will be used to implement reference point
interactions, while the TM Forum’s Operations
Map makes no assumptions about implementation
technology (this is addresses in the TM Forum’s
Technology Integration Map as discussed in
section 2.3). Functionally, TINA management is
aimed specifically at managing TINA services
(multimedia, multiparty, multi-way, mobile) and
network resources (connection oriented,
broadband), while the TM Forum model is less
specific, but is derived from the management of
more contemporary services and networks, i.e.
POTS, Frame Rely etc. TINA also specifically
covers information services, while these have not
influenced the initial TM Forum Operations Map
to a large extent. Finally, the TM Forum’s
Operation Map prioritises issues of process
interaction and information flow between
processes, while the TINA business model and
reference points are focused on the development
of detailed reference point specifications, based
on other ODP-based TINA specifications, with
little attention directed at business process
information flows.

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

The approach taken in mapping the TM Forum’s
Operations Map to the TINA business model and
reference points is to identify which TM Forum
processes operate in which TINA Business Roles.
Note that some TM Forum processes may be
present in more than one TINA Business Role.
An initial mapping of the TM Forum business
processes onto TINA business roles is given in
the figure 4.

The principal assumptions behind this mapping
are as follows:
• The TINA Retailer role is the one that

embodies the TM Forum Customer Care
Processes. If an organisation operating in the
Retailer role has to communicate with
another organisation playing the
Connectivity Provider role or the 3pty
Service Provider role, then these other
organisations will also have to also play the
Retailer role so that any Customer Care
process-related interactions are performed via
the RtR business relationship.

• The TINA Retailer is not concerned with any
Network and System Management Processes.

• The Connectivity Provider role is only
concerned with Network and System
Management Processes.

• The 3pty Service Provider is only concerned
with Network and System Management
Processes related to the provision of service
content, i.e. Network Provisioning, Network
Inventory Management and Network Data
Management..

• The Broker will be effected by Sales, Order
Handling and Rating and Discounting
processes in other business roles, so these
process are mapped onto this role to indicate
this. This is not intended to cover the
application of these processes to the Broker’s
own services (i.e. broker services), which
should be addressed by an organisation in the
Broker role also taking on the Retailer role.

Consumer
Customer

Retailer

Service Planning/
Development

Service
Configuration

Service Problem
Resolution

Service Quality
Management

Rating and
Discounting

Order Handling Problem Handling Customer QoS
Management

Invoicing/
Collection

Sales

Broker
Sales Order Handling

Rating and
Discounting

Bkr

Bkr

Bkr

Bkr

Bkr

Ret

TCon TCon TConConS

ConS

3Pty

3Pty

RtR

CSLN LNFed

Connectivity Provider
Network Planning/

Development
Network

Provisioning
Network Inventory

Management
Network Maintenance

& Restoration
Network Data
Management

3rd Party Service Provider
Service Planning/

Development
Service

Configuration
Service Problem

Resolution
Service Quality
Management

Rating and
Discounting

Network
Provisioning

Network Inventory
Management

Network Data
Management

Figure 4: Mapping of NMF Business Processes onto TINA Business Roles

This mapping is currently being considered as a
basis for future TM Forum/TINA-C liaison. The
subsequent steps to reconciling the results from
these two bodies depend on the relative maturity

of the TM Forum inter-process links and the
TINA business relationships. Full TM Forum
business process specifications are given in TM
Forum Solution Sets, while agreements on TINA

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

business relationships are defined as reference
point specifications. However, both these sets of
standards are under development, so there is an
opportunity to use the mapping between the two
business models to determine where TM Forum
solutions sets can influence TINA reference
points specifications and vice versa. Given the
possibility of merging the TM Forum and TINA
models, one pressing issue is to align the notation
and process used in defining both TM Forum
solution sets and TINA reference points. Though
both aim to define open interfaces between
business roles, the TM Forum approach is based
on analysing business process information flows,
while the TINA approach involved integrating
component interfaces into suitably modular
segments. A suitable methodological approach
that could be applied in concert with the
integrated TINA/TM Forum business model is
addressed in the next section.

5. DEVELOPMENT METHODOLOGY

The guidelines presented here for the
framework’s development methodology are based
on the assumption that the development process
consists of the following major activities:
• Requirements Capture: This is the activity

where the requirements of the system
customer and users are elicited and recorded
as a set of use cases and non-functional
requirements. The output of this activity is a
Requirements Statement.

• Requirements Analysis: This is the activity
where the Requirements Statement is
analysed and models are generated that;
breakdown the system requirements into
different functional blocks, identify the
informational requirements of the systems
and identify the interfaces to the system. The
output of this activity is the Analysis Model

• Design: This is the activity where the
Analysis Model is made more detailed and
modified to support non-functional
considerations and other implementation

related aspects. The output of this activity is
the Design Model.

• Implementation: This is the activity where
the Design Model is translated into software
code.

• Testing: This is the activity where the
implemented software is tested against its
functional and non-functional requirements.

Each activity is capable of being the source of
changes to the system, either to correct an error or
an oversight in the output from a preceding
activity, or due to factors that only become
apparent at the level of detail encountered in the
current activity. As a result all activities in the
chain may have an impact on the output of
preceding activities.

The activities tend to be started in the order given
above, but they will necessarily overlap in time as
later development activities impact on the
activities that started earlier. Typically the output
of each activity is mapped from and builds upon
the model from the previous one. The
management of change in the development
process therefore requires traceability between the
models. The more comprehensive the traceability
between elements in one model and elements of
the models from the subsequent activities, the
easier it is to propagate the effect of changes
across the models. For instance if objects in the
design model are individually traced back to
objects in the analysis model, then the impact of a
change in the design model and can be readily
reflected in the analysis model. This overall
development process is depicted in a highly
simplified form in figure 5. Obviously, the later in
the development process an error detected or a
change is made the wider the ramifications for
the different models used in the development
process, and therefore the more difficult and
expensive the change becomes.

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

Requirements
Capture

Requirements
Analysis

Design

Implementation

Testing

Requirements
model

Analysis
model

Software

Design
model

Deploy

problems
detected?

problems
detected?

problems
detected?

problems
detected?

problem detected in
analysis model?

problem detected in
design model?

problem detected in
software?

problem detected in
testing procedure?

[Y]
[N]

[N]

[N]

[N]
[N]

[N]

[N]

[Y]

[Y]

[Y]

[Y]

[Y]

[Y]

[Y]

[N]

trace

trace

trace

Figure 5: Model of Development Process Activities

Experience from the Prospect project suggests
that the application of use cases is useful in
developing management systems. Use cases
provide a powerful mechanism for ensuring each
stage of development is kept focussed on the
overall systems requirements. Unlike
telecommunication control systems, the design
goals of management systems tend to focus on the
delivery of management information to human
operators, a strength of use cases, while the
modelling of real-time and concurrent behaviour,
a weakness of use cases, is not so relevant.

Jacobsen’s Object Oriented Software Engineering
(OOSE) methodology [26] provides the required
mechanism for mapping requirements expressed
in use cases to an analysis model. Use cases are
text descriptions of an interaction the user has
with a system from which he or she gains benefit.
Analysis modelling involves analysing the user’s
requirements as represented by use cases, in order
to define the high-level type structure of the
system. The analysis model concentrates on
trying to define the static types of the system,

their groupings and their relationships to each
other. The aim of the analysis model is to build
robustness into the design of the system at an
early stage, principally by careful modelling of
the high-level structure in a way that minimises
dependencies between different model
components and maximises the opportunity for
reuse. Analysis modelling does not concern itself
with considerations such as data base
management systems, distribution mechanisms,
programming languages, existing products or
performance. These are deferred to the design
activity.

The analysis model refines the use case model by
linking use cases to analysis objects. OOSE
specifies three general class stereotypes for
analysis objects, following the model-view-
controller paradigm. These are designed to aid
the robust structuring of the system. These
stereotypes are:
• Entity Objects: These are long-lived objects

that represent the information content of the

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

system. Typically they may be involved in
several use cases instances.

• Boundary objects: These handle the
communication between the system and its
surroundings.

• Control Objects: These perform use case
specific behaviour that is not specific to
boundary or entity objects.

The UML representation of these stereotype
classes is suggested in [27] and recently proposed
to the OMG as an UML extension in [28]. A
slightly different representation available with the
Paradigm Plus CASE tools is shown in figure 6.

a control
class

a boundary
class

an entity
class

Figure 6: Analysis model stereotypes

In mapping use cases to an analysis model; entity
objects will be typically derived from noun
phrases that occurs in one or more use cases.

Boundary objects are identified by any
interactions between the users and the system.
Control objects can initially be allocated per use
case, and consolidated as functional
commonalties are identified between use cases.
Figure 7 is an example of a use case diagrams
showing the analysis objects related to a couple of
use cases for a subscription management
component developed in the Prospect project.
Interaction diagrams are often required at this
stage to detail the lifecycle of objects and dynamic
aspects of the relationships between them.

The analysis model is refined into a design
model. This takes into account design level
issues, such as scalability, load-balancing,
platform dependencies, database schemes etc.
Again strong tracing between objects in the
analysis model and the design model is required.
The experiences reviewed in section 2 show that
UML class diagrams, sequence diagrams,
collaboration diagrams and component diagrams
all play an important role in developing design
models.

Provider
Administrator

Create a
customer
account

Terminate a
customer
account

PA if account
mgmt

customer

*

1..*
Customer

Administrator

Accounting
Management

CA if

accounting if

*

*

Figure 7: Use case diagrams showing analysis objects

5.1 Business Process Modelling

While OOSE provides good traceability through
the development cycle of a system, at the analysis
stage use cases only help us analyse the
interactions between a system and the actors that

use it at the system boundary. Use cases are not
good at describing the internal operation of a
system. Even if sub-systems are identified, and
use cases for each subsystem generated, these use
cases may only interact with external roles, or
subsystems modelled as roles. There is no well-
understood mechanism for tracing the

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

interactions between different use cases in
different subsystems. Use cases in different
subsystems may be related by generalisation
relationships, e.g. “uses” or “extends”, but these
do not define details of the interactions, only that
they are related. Use case text can include details
of interactions with different subsystems, but this
quickly becomes unwieldy, generating in effect a
textual description of the system’s internal
functionality.

The identification of interactions between
subsystems however, is typically the kind of
analysis that is performed in business process
reengineering activities. Here, businesses aim to
define the major processes they provide to their
customers, which at a high level can be
adequately captured with use cases. However, the
aim of business process reengineering is to
analyse the internal processes of an organisation
to understand how they interact to provide value
to customers, and how the structure of these
processes and their interactions can be changed to
improve customer services and reduce costs. This
problem is complicated for service management
systems by the interactions often required with
processes in other organisations. The
framework’s development methodology must
therefore address the problem of analysing the
requirements for a management task that must be
performed by interactions between management
processes in different domains, some of which
will support automated interactions and some of
which will not.

The TM Forum’s Operations Map provides us
with a model of suitable business processes which
we are fairly confident reflects the typical
operations of a service provider. This can
therefore provide us with a starting point for the
analysis and design of common solutions to
management problems, e.g. the solution sets
produced by the TM Forum. It may also, however,
help us to analyse a service provider’s business
processes in order to identify where existing
solutions, available as reusable components can
be applied. Analysis of business processes is
typically performed by identifying discrete
activities and the events that propagate the
control of execution of a task between activities.
This may involve different events being triggered

under different conditions and thus different
sequences of activities being followed in the
execution of a task. Such an analysis may
represent parallel activities, the conditions for
their completion and the synchronisation of
control. Specific activities may also be broken
down hierarchically into finer grained activities.

A common representation of such control flow is
event-driven process chains, a graphical
modelling technique that allows activities to be
associated with organisational roles and with
objects representing business information. As
described in [29] the inclusion of activity
diagrams allows UML to support a similar type of
modelling diagram. The analysis of a
management task in a specific business scenario
can be initially described in terms of a use case
giving the interactions of the system with the
human roles involved in the task. The use case
may not necessarily mention the internal business
processes. These processes therefore need to be
analysed using activity diagrams. The activities
can be placed within swim-lanes representing TM
Forum business processes, possibly residing in
different administrative domains. This will ease
the identification of which existing TM Forum
business agreements match the requirements of
the task at hand. An example of a UML activity
diagram taken from the FlowThru project is
shown in figure 8. It represents the activities
involved in subscribing a new customer to an
ATM service.

5.2 Modelling for Component Reuse

Reusable components are typically presented to
system developers as sets of libraries, i.e. as a set
of software modules and the definition of the
individual operations they provide. In terms of the
above development process the component is
therefore presented in terms of its design model
and the software. This may cause problems in the
development process, since changes required to
accommodated the reuse of components are only
likely to become apparent during the design
process, therefore possibly countering aspects of
the analysis model.

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

Order
Handling

Accept Order for ATM
Service

Create Customer
Account

[Credit check OK]

[Credit check fail]

Order Failed

Determine Location of
Customer Site(s)

Activate Network
Access Points

Network Planning and
Development

Network
Provisioning

Determine CoS to be
used at each site

Determine the users to
use each CoS at each

site

Service
Configuration

Place Order

Authorise users to use
service

Update network usage
predictions

Update network
topology

Reconfigure VP network
[physical network

capacity
adequate]

[VP network capacity inadequate]

Order Complete

Customer Interface
Management

Network Inventory
Management

Locate NAP

Determine available
CoS

Install NE hardware
and lines to NAP

[network access point in place]

[network access point not in place]

Install trunk NE
hardware and lines

[physical network
capacity

adequate]

Activate CoS user
groups

Figure 8: Example of UML activity diagram showing subscription to an ATM service

Often the component may be part of a framework.
The framework may be general, e.g. CORBA
Services, or aimed at a particular problem
domain, e.g. the TINA Service Architecture. In
either case the framework will provide some high
level architectural and technological guidance on
how components can be integrated together and
how they can support the development of a
system. Such frameworks are often therefore
considered at the analysis stage in order that the
system’s analysis model is structured in a way
that will accommodate the inclusion of the
framework’s components in the design stage.
This situation is depicted in figure 9a. However,
frameworks typically only give general guidance
on the use of components. The suitability or
otherwise of individual components in satisfying
requirements still needs to be considered in the
design activity.

For telecommunication management systems
development, such a typical component reuse
situation is difficult to standardise because, as
described in section 3, there is no commonly
accepted framework that supports a suitably wide
range of components. The development
guidelines for component reuse presented here are
motivated by the absence of such a framework. As
such, it attempts to provide guidance on how
components can be specified in a more self-
contained manner that is easily understood by
those performing the analysis of the system. In
this way, decisions about reuse can be made based
on the suitability of individual components rather
than on a wider assessment of the suitability of an
entire framework. The approach is aimed also at
making decision based on architectural and
functional aspects of a component rather than its
technology. A component’s technology is treated
as an orthogonal issue, with heterogeneity

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

handled primarily through the employment of
suitable gateways.

The approach is derived from that described in
[27]. The basis of the approach is that
components are not presented just as units of
design and of software. Instead, they should be
packaged together with the analysis model of the
component, rather than being strongly integrated
into a specific component framework. If the
modelling techniques used for the analysis model
of the component are similar to those used for

modelling the system in which it might be
included, then it becomes much easier for the
analyst to assess whether the component is
suitable for use in the system. In addition the
system’s analysis model can directly use the
analysis abstractions of the various components it
reuses, easing the task of requirements analysis
and ensuring, at an early stage, compatibility
between components and the system
requirements. This analysis model-based reuse
approach is depicted in figure 9b.

trace

Deploy

Requirements
Capture

Requirements
Analysis

Design

Implementation

Testing

Requirements
model

Analysis
model

Software

Design
model

trace

Component
framework

Component

i/fDesign
model

Software i/f

exports

exports

trace

trace

part of

a) Conventional (design model level) component reuse

Requirements
Capture

Requirements
Analysis

Design

Implementation

Testing

Requirements
model

Analysis
model

Software

Design
model

trace

Component

Software i/f

i/fDesign
model

exports

exports

trace

Deploy

i/fAnalysis
model

exports

i/fUse case
model

exports

facade

b) Analysis model level component reuse

Figure 9: Different approaches to component reuse

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

The presentation of a component for reuse is
known as a facade. A facade presents the re-user
of a component only with the information needed
to effectively reuse the component, while at the
same time hiding from the re-user unnecessary
design and implementation details about the
component. In the analysis model based reuse
approach the facade consists not just of reusable
code and the design model, but also the analysis
model relevant to the design model part of the
facade.

A component may present several different
facades, possibly aimed at different types of re-
users, e.g. black-box or white-box re-users. A
component may have various releases of a facade
to reflect the evolution of the component. The
usefulness of the facade is strengthened if there is
clear traceability between the different models, so
that within the facade re-users can easily
determine which parts are useful to them by
matching facade use cases and analysis objects to
their requirements.

Obviously, the construction of a facade from the
internal development models of a component will
be greatly eased if the same type of modelling
approach was used for this development. Strong
traceability between the component’s internal
models will ease the selection of parts of the
model for inclusion in the facade based, for
instance, on a set of use cases. However, it is not
a requirement for the component to have been
originally developed and documented using a
OOSE-like process, and part of the benefit of
facades should be that it can hide the internal
model if necessary. For instance if a component
has been developed and documented using ODP
viewpoints the following mappings may be used
to reverse engineering the ODP model into the
facade format.
• Roles in the enterprise viewpoint map onto

actors in the use case modelled in the facade.
• Computational objects from the

computational viewpoint may map onto
control objects in the analysis model.

• Computational object interfaces may map or
be grouped into boundary objects in the
analysis model.

• Information object may map to entity objects
in the facade’s analysis model.

• If some sequence diagrams have been used
the clarify the interactions between

computational and information objects, then
these might form the basis for reverse
engineering use cases, otherwise use cases
should be based on and be consistent with the
component's requirements.

One of the main challenges facing the developers
of reusable components is the selection of
granularity of components. Typically the
component must represent a useful level of
functionality to the re-user. By packaging the
component with its analysis model, this level of
functionality is clearly expressed by the set of use
cases from which the facade’s analysis model is
derived. A component should only have loose
coupling with other components, with
consideration given to merging tightly coupled
components into one. Commercial consideration
may obviously play a role here, with component
vendors being tempted to design components that
encourage the user to buy others in a family due
to close coupling.

If components are designed to satisfy the
requirements of complex management
information flows, they will necessarily have
interactions with several external actors, possibly
other components, preferable through open
interfaces. Where this is the case, a use case
description involving several external actors may
not be sufficient to help analyse the inclusion of
the component into a wider, system level
information flow. In such a situation, the facade
may be supplemented with activity diagrams that
represent more clearly the component’s behaviour
when interacting with multiple external actors.
These actors would be modelled as external
activities, possibly mapped to activities in the
framework’s TM Forum based business model.
This would make the component’s role in a wider
information flow more apparent. The input and
output event triggers and associated information
in a façade would therefore enable the component
to be more easily integrated in a business process
re-engineering activity.

The flexibility of a component is also key to it
reusability. This can be captured using a variety
of variability mechanisms. Typical variability
mechanisms that can be used in a façade are class
inheritance, use case generalisation, extensions to
existing use cases or objects (at both analysis and
design models) and parameterisation using
templates, frames or macros. An obvious avenue

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

of further research is to examine how the
JavaBeans and CORBA Components model
variability mechanisms, and how these can be
clearly represented in UML facades.

6. CONCLUSIONS

The need to develop telecommunications
management systems rapidly and at increasingly
lower cost provides a compelling argument for
the wider use of open systems, where openness is
applied to platforms, inter-domain interfaces and
components. To develop and fully exploit such
open systems, a domain-specific development
framework is proposed. This framework is
comprised of a system architecture, a business
model and a development methodology for the
development and reuse of open service
management systems.

The range of standards and technologies that are
applicable to open service management system
development point to the adoption of a fairly
loose system architecture. This will provide
minimal functional structuring, while supporting
technological heterogeneity and the emergence of
a market in reusable components. Such an
approach reflects the direction of the OMG’s
Object Management Architecture, the TM
Forum’s Technology Integration Map and the
proposed component architectures for CORBA
and JavaBeans. It is expected that revisions to
TMN may also follow this approach.

Similarly, the fast changing structure of the
telecommunication market precludes a long-lived

business model based on pre-defined business
roles. Instead a business model is adopted that is
based on the definition of business processes and
their interactions as proposed in the TM Forums
Telecommunications Operations Map. This
approach can be flexilby mapped to different
business role models and demonstrated by the
mapping given to the TINA business model.

A suitable development methodology is one area
where a common approach can be of great benefit
to open management system developers. Adoption
of UML will ease the communications between
different stakeholders in the development of open
management systems and the components they
reuse. The proposed methodology emphasises the
iterative nature of the development process and
the pre-eminent place of component definition
within it. Representing components at an analysis
level as well as at a design level enables
component reuse to become much more central to
the analysis process and to become directly
relevant to the business process reengineering
activity.

Though this development framework is based on
existing standardisation efforts and application
experience from recent research projects, further
work is required to fully validate these concepts.
The ACTS project FlowThru is applying the
development methodology guidelines directly by
integrating several existing management
components into a number of different
management scenarios.

ACKNOWLEDGEMENTS

The work presented in the paper was conducted with partial funding of the European Commission under
the FlowThru project (AC335). The views expressed here are not necessarily those of the FlowThru
consortium.

REFERENCES

[1] Adams, E.; Willetts, K.; The Lean Communications Provider: Surviving the Shakeout though
Service Management Excellence; McGraw-Hill; 1996.

[2] TOSCA Deliverable 6: Service Creation: the TOSCA Paradigm and Framework Approach-
AC237/BT/DS/P/019/B1; 1997.

[3] Efremidis, S.; Prevedourou, D.; Demounem, L.; Milsted, K.; Zuidweg, H.; TINA-oriented
Service Engineering Support to Composition and Federation, Proceeding of 5th International
conference on Intelligence in Service and Networks; Antwerp; Belgium; Springer-Verlag; 1998.

[4] Principles for a Telecommunications management network; ITU-T Recommendation M.3010;
1996.

A DEVELOPMENT FRAMEWORK FOR OPEN SERVICE MANAGEMENT SYSTEMS

[5] TMN Interface Specification Methodology; ITU_T Draft Revised Recommendation M.3020;
1994.

[6] Generic Network Information Model; ITU-T Recommendation M.3100; 1992.
[7] Inter-Domain Management Specifications: Specification Translation; X/Open Preliminary

Specification; X/Open; Reading; Draft of April 17, 1995.
[8] Vincent, A.; Hall, C.; Modelling/Design Methodology and Template; NMF Internal Document;

Draft 4; 18th October 1997.
[9] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.; Object-Oriented Modelling

and Design; Prentice-Hall; Englewood Cliffs; N.J.; 1991.
[10] Chapman, M.; Montesi, S.; Overall Concepts and Principles of TINA; TINA Baseline

Document TB_MDC.018_1.0_94; December 1994.
[11] Information Technology- Open Distributed Processing- Reference Model- part 1: Overview;

ITU-T Draft Recommendation X.901/ ISO/IEC Draft International Standard 10746-1; 1995.
[12] Reference Points and Business Model; TINA-C; Version 3; June 1996.
[13] Service Architecture; ed. Kristiansen, L.; TINA-C; version 5.0; 1997.
[14] Natarajan, N.; Dupuy, F.; Singer, N.; Christensen, H.; Computational Modelling Concepts;

TINA Baseline Document; TB_A2.HC.012_1.2_94; February 1994.
[15] Nesbitt, F.; Counihan, T.; Hickie, J.; The EURESCOM P.610 Project: Providing a Framework,

Architecture and Methodology for Multimedia Service Management; Proceeding of 5th
International conference on Intelligence in Service and Networks; Antwerp; Belgium; Springer-
Verlag; 1998.

[16] Booch, G.; Rumbaugh, J.; Jacobson, I.; UML Documentation Set 1.1; Rational Rose; 1997.
[17] Kande, M.; Mazaher, S.; Prnjat, O.; Sacks, L.; Wittig, M.; Applying UML to Design an Inter-

Domain Service Management Application; Proceeding of UML’98; Mulhouse; France; June
1998.

[18] Wade, V.; Lewis, D.; Donnelly, W.; Ranc, D.; Karatzas, N.; A Design Process for the
Development of Multi Domain Service Management Systems; Guidelines for ATM deployment
and interoperability; S. Rao (editor); pages 88-103; Baltzer Science Publishers; 1998.

[19] NMF Technology Map; Draft NMF GB909; July 1998.
[20] Graubmann, P.; Mercouroff, N.; Engineering Modelling Concepts (DPE Architecture); TINA

Baseline Document; TB_NS.005_2.0_94; December 1994.
[21] CORBA Components: Joint Initial Submission. OMG TC Document orbos/97-11-24; Draft;

November 1997.
[22] Englander, R..; Developing Java Beans; O’Reilly; 1997.
[23] Thomas, A.; Enterprise JavaBeans: Server Component Model for Java; White paper;

http://java.sun.com; December 1997.
[24] NMF Telecoms Operations Map; NMF GB910; Stable Draft 0.2b; April 1998.
[25] Lewis, D.; Tiropanis, T.; Integrating TINA into an Internet-based Services Market, Proceeding

of 5th International conference on Intelligence in Service and Networks; Antwerp; Belgium;
Springer-Verlag; 1998.

[26] Jacobsen, I.; Christerson M.; Jonsson P.; Overgaard G.; Objected-oriented Software
Engineering: A Use Case Driven Approach; Addison-Wesley; 1992.

[27] Jacobson, I.; Griss, M.; Jonsson. P.; Software Reuse: Architecture, Process and Organisation for
Business Success; ACM Press Addison Wesley Longman; 1997.

[28] UML Extension for Objectory Process for Software Engineering; version 1.1; OMG; September
1997.

[29] Allweyer, T.; Loos, P.; Process Orientation in UML through Integration of Event-Driven
Process Chains; Proceedings of UML’98; Mulhouse; France; June 1998.

