Computer Science News

UCL Computer Science secures £1.5 million EPSRC Global Challenges Research Funding to Tackle Malaria Diagnosis in sub-Saharan Africa using robotics, computer vision and machine learning

A multidisciplinary team led by Delmiro Fernandez-Reyes, Reader in Digital Health & Intelligent Systems at UCL Computer Science, in equal collaboration with the College of Medicine of the University of Ibadan (COMUI), Nigeria, has been carrying out research to produce a novel fast robotic-automated computational system capable of reliably diagnosing malaria in sub-Saharan West-Africa.

The team, comprising Delmiro Fernandez-Reyes, Mandayam A. Srinivasan and John Shawe-Taylor (UCL Department of Computer Science) and Biobele J. Brown, Ikeoluwa Lagunju and Olugbemiro Sodeinde (COMUI Department of Paediatrics), has now been awarded a £1.5 million EPSRC Global Challenges Research Fund (GCRF) grant. The funding will be used to carry-out engineering (robotics), computational research (computer vision and machine learning) and digital health clinical research (paediatrics infectious diseases) to design, implement, deploy and test a fully automated system capable of tackling the challenges posed by human-operated light-microscopy currently used in the diagnosis of malaria.

Access to effective malaria diagnosis is a challenge faced by all developing countries where malaria is endemic. Human-microscopic examination of blood smears remains the ‘gold standard’ for malaria diagnosis and despite its major drawbacks, other non-microscopic methodologies have not been able to outperform it. Presumptive treatment for malaria –i.e. without microscopic confirmation of the disease – is wasteful of drugs; ineffective if the diagnosis was wrong; a drain on limited healthcare resources and fuels antimalarial resistance. This scenario has prompted Global Health organisations to emphasise the urgent need for tools to overcome the deficiencies of human-operated optical-microscopy malaria diagnosis and other non-microscopic tests.

The funded research aims to overcome these diagnostic challenges by replacing human-expert optical-microscopy with a robotic automated computer-expert system that assesses similar digital-optical-microscopy representations of the disease. The Fast, Accurate and Scalable Malaria (FASt-Mal) diagnosis system harnesses the power of state-of-the-art machine learning approaches to support clinical decision making.

Biobele J. Brown comments:

In Nigeria alone, malaria is one of the most common causes of death in children below five-years of age. Rapid, reliable and accurate diagnosis of the disease, giving way to prompt, adequate treatment, is a crucial challenge for fulfilling the International Development Goals and impacting on the sub-Saharan African region and other regions of the World affected by malaria.

Delmiro Fernandez-Reyes comments:

“Our novel approach aims to translate state-of-the-art robotics and machine-learning research into a deployable benchtop prototype capable of reliably performing the tasks required for rapid malaria diagnosis.”

The FASt-Mal system will have an impact on already-stretched clinical services in the region by enabling healthcare providers to divert human and financial resources to further improve healthcare provision to those more affected by malaria: pregnant women and children. The work provides a clear example of how engineering and digital-technologies research aligned with clinical research can underpin successful and sustainable healthcare provision in the sub-Saharan region and therefore significantly improve Global Health.

UCL Computer Science is bringing together UCL’s wealth of cross discipline intellectual capital, to find innovative, workable solutions to Global Health problems. The University of Ibadan is the oldest and one the strongest academic environment in the region providing training to professionals for the whole sub-Saharan Africa region and internationally. The GCRF funding will strengthen this regional centre of excellence and with UCL’s input will facilitate knowledge transfer to other countries affected by malaria.

About Malaria:

Malaria is a mosquito-borne infectious disease affecting humans and other animals. It is caused by parasitic protozoans belonging to the Plasmodium species. Human malaria is caused by five Plasmodium species (P. falciparum or -lethal malaria-; P. vivax; P. ovale; P. malariae and P. knowlesi).

Malaria is widespread in the tropical and subtropical regions including much of Sub-Saharan Africa, Asia, and Latin America. In 2015, there were an estimated 296 million cases of malaria worldwide resulting in around a million deaths. Although current malaria control strategies have resulted in speculative estimates of a decrease on mortality rates, success on reducing the burden of disease Worldwide has remained largely elusive.

Life-threatening Plasmodium falciparum malaria is still a major cause of mortality in sub-Saharan Africa, and together with Tuberculosis and HIV, remains a primary Global Health Challenge in the region. Up to eighty-five percent of the cases worldwide occur in sub-Saharan Africa with about 90% mortality in the under five years–of-age group due to severe malaria syndromes. Large all-year-round lethal malaria morbidity and mortality burden has severely hindered the wellbeing and the socioeconomic development of the West sub-Saharan geopolitical region.


Posted 24 Apr 17 14:11
  • 2019: 5 items
  • 2018: 44 items
  • 2017: 69 items
  • 2016: 65 items
  • 2015: 49 items
  • 2014: 43 items