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Abstract

An ordered monoid is a structure with an identity element (1′), a
binary composition operator (;) and an antisymmetric partial order (≤),
satisfying certain axioms. A representation of an ordered monoid is a 1-1
map which maps elements of an ordered monoid to binary relations in
such a way that 1′ is mapped to the identity relation, ; corresponds to
composition of binary relations and ≤ corresponds to inclusion of binary
relations.

We devize a two player game that tests the representability of an
ordered monoid n times and show that these games characterise repre-
sentability. From this we obtain a recursively enumerable, universal ax-
iomatisation of the class of all representable ordered monoids.

For each n < ω we construct an unrepresentable ordered monoid An

and show that the second player has a winning strategy in a game of length
n. Hence we prove that the class of all representable ordered monoids is
not finitely axiomatisable.

Relation Algebras are badly behaved in a number of ways. The class of rep-
resentable relation algebras cannot be defined by finitely many axioms [Mon64],
nor by any set of equations using a finite number of variables [Jón91], nor by
any Sahlqvist theory [Ven97], the equational theory of relation algebras and the
equational theory of representable relation algebras is undecidable [Tar41], the
problem of determining whether a finite relation algebra is representable or not
is itself undecidable [HH01].

An important line of research is to consider reducts of relation algebras, by
dropping some of the operators from the signature. We aim to find out exactly
what causes this “bad behaviour” and how it can be avoided. Mikulás has
surveyed much of this research [Mik03].

In the current paper we consider algebras in the reduced signature {≤, 1′, ; }.
Such an algebra is representable if its elements can be interpretted as binary
relations over some domain in such a way that ≤ is represented as inclusion of
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binary relations, 1′ is the identity over the domain and ; is composition of binary
relations. These algebras have better behaviour, in some ways at least: the class
of representable algebras is defined by a universal, recursively enumerable theory
(see below) and the equational theory of this class is decidable [And90]; in a
subsequent paper we will show that any finite, representable algebra in this class
has a finite representation. But in this paper we will show that there can be no
finite axiomatisation of the representable algebras in this signature. Oddly, it
seems that the representation class for the signature {≤, 1′,^ , ; }, with converse
also included, is finitely axiomatisable, as we shall show in a later paper.

The signature {., 1′, ; } (sometimes called the Jerry-Fragment) is more ex-
pressive than {≤, 1′, ; }, but nevertheless the proof that the class of representable
algebras for this signature is not finitely axiomatisable seems to be more intri-
cate. Hirsch and Mikulás intend to prove this result in a subsequent paper.

Ordered monoids and representations

DEFINITION 1 An ordered monoid A = (A,≤, 1′, ; ) consists of a set A
(called the domain of A), a binary relation ≤ over A, a constant 1′ ∈ A (the
identity) and a binary operator ; (composition), satisfying

• ≤ is an antisymmetric partial order,

• ; is associative,

• 1′ is an identity for ;,

• ; is monotonic.

A representation h of an ordered monoid A is a 1-1 map h : A → ℘(D×D)
(for some set D, ℘(A) denotes the power set of the domain of A)) such that

• a ≤ b ⇐⇒ h(a) ≤ h(b),

• h(1′) = {(d, d) : d ∈ D},

• h(a; b) = h(a)|h(b),

for all a, b ∈ A, where ‘|’ denotes composition of binary relations.

Are all ordered monoids representable? Is the class of representable ordered
monoids finitely axiomatisable? No.

Networks

DEFINITION 2 Let A be an ordered monoid. A prenetwork (D,N) over A
consists of a set of nodes D and a map N : D ×D → ℘(A). If the prenetwork
(D,N) satisfies

• ∃e(e ≤ 1′ ∧ e ∈ N(x, y)) ⇐⇒ x = y,
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• if α ∈ N(x, y) and β ∈ N(y, z) then there is γ ∈ N(x, z) with γ ≤ α;β,

for all x, y, z ∈ D, then (D,N) is called a network over A.

Henceforth we will stretch the notation and allow N to denote the set of nodes,
the labelling function and the prenetwork itself and distinguish these different
meanings by context. Thus x ∈ N means that x is one of the nodes of the
prenetwork N and N(x, y) denotes the value of the labelling function on the
edge (x, y). When there is ambiguity we may write nodes(N) to denote the set
of nodes of the prenetwork N .

DEFINITION 3 A prenetwork is called finitary if it has finitely many nodes
and each edge is labelled by a finite set of elements.

For any prenetworks M,N , we write M ⊆ N , and we say that M is a
subnetwork of N , if nodes(M) ⊆ nodes(N) and for all x, y ∈ nodes(M) and all
α ∈M(x, y) there is α− ∈ N(x, y) with α− ≤ α.

We write M ≤ N , and we say that M is an induced subnetwork of N , if
nodes(M) ⊆ nodes(N) and for all x, y ∈ nodes(M) we have M(x, y) = N(x, y).
The same notation is used for networks and prenetworks.

If Nλ : λ ∈ Λ are prenetworks then N =
⋃
λ∈ΛNλ is the prenetwork satisfy-

ing

nodes(N) =
⋃
λ∈Λ

nodes(Nλ)

N(x, y) =
⋃

λ:x,y∈Nλ

Nλ(x, y)

for all x, y ∈ nodes(N). As a special case we write M ∪ N for
⋃
i∈2Ni, where

2 = {0, 1}, N0 = M and N1 = N .

Note that M ⊆ (M ∪N) and M ≤ N implies M ⊆ N .

Games and Representability

We define a two player game Gn(A) to test the representability of the ordered
monoid A n times. The players are ∀ and ∃. ∀ will demand information about
certain witnesses which ought to exist if A really is representable. ∃’s job,
essentially, is to decide whether the witnesses are distinct from each other or
not.

DEFINITION 4 Let n ≤ ω and let A be an ordered monoid. A play of the
game Gn(A) has n rounds and consists of a sequence of n finitary pre-networks.
In the initial round (round 0) ∀ picks any two elements α1, α0 ∈ A such that
α1 6≤ α0. This move for ∀ is denoted (α1, α0). ∃ has two choices for her
response: she can play N0 = I(α1) or N0 = D(α1), defined as follows. In either
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case nodes(N0) = {x0, x1} but x0 = x1 in I(α1) and x0 6= x1 in D(α1). For the
labelling,

I(α1)(x0, x0) = {1′, α1}

D(α1)(x0, x0) = D(α1)(x1, x1) = {1′}
D(α1)(x0, x1) = {α1}
D(α1)(x1, x0) = ∅

In a later round (round i, 0 < i < n) suppose the finitary prenetwork Ni−1 ⊇ N0

has just been played. Note that x0, x1 ∈ Ni−1. ∀ has the choice of two kinds of
move.

Composition Move He can pick x, y, z ∈ Ni−1 and ρ ∈ Ni−1(x, y), σ ∈
Ni−1(y, z). This move is denoted (Ni−1, x, y, z, ρ, σ). ∃ has no choice
for her response: she must play Ni ⊇ Ni−1 where Ni is identical to Ni−1

except that ρ;σ ∈ Ni(x, z) — i.e. Ni(x, z) = Ni−1(x, z) ∪ {ρ;σ} and
Ni(u, v) = Ni−1(u, v) whenever (u, v) 6= (x, z).

Witness Move Alternatively, ∀ picks any two nodes x, y ∈ Ni−1 and any ρ, σ
such that there is γ ≤ ρ;σ with γ ∈ Ni−1(x, y). This move for ∀ is
denoted (Ni−1, x, y, ρ, σ). ∃ has |nodes(Ni−1)|+1 choices for her response.
She must find a witness w for this move and she must choose whether
w ∈ Ni−1 (there are |nodes(Ni−1)| choices here) or w is a new node, not
in Ni−1 (essentially 1 choice, since the name of the new node does not
matter). If she chooses w 6∈ Ni−1 she lets w be the first unused node
name in some fixed and infinite enumeration. To define these choices, let
T = T (x, y, w, ρ, σ) be a prenetwork with nodes(T ) = {x, y, w}. We do
not assume that x, y, w are distinct. If they are distinct, the labelling is
defined by

T (w,w) = {1′}
T (x,w) = {ρ}
T (w, y) = {σ}

and otherwise, take unions — e.g. if w = x 6= y let T (x, x) = {1′, ρ}, etc.
Now define N+(Ni−1, x, y, w, ρ, σ) = Ni−1 ∪ T (see definition 3). [Note
that the definition looks different according to whether w ∈ Ni−1 or not.]
For her response, ∃ chooses a node w ∈ Ni−1 or she lets w be a new node.
Then she plays Ni = N+(Ni−1, x, y, w, ρ, σ).

∀ wins the play if there is i < n and either

• There are u 6= v ∈ Ni and e ≤ 1′ with e ∈ Ni(u, v), or

• There is α− ≤ α0 and α− ∈ Ni(x0, x1).
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Otherwise ∃ wins the play.
For any finitary prenetwork N where x0, x1 ∈ N , we define a variant Gn(N,A, α0)

of the game Gn(A). The only difference is that in the initial round, N0 = N is
played. The rules for playing in later rounds are unchanged. As before, ∀ wins
if there is i < n and α− ≤ α0 with α− ∈ Ni(x0, x1) or x 6= y ∈ Ni and e ≤ 1′

with e ∈ Ni(x, y).
A (deterministic) strategy for ∃ in a game G determines a unique next

move for her, given any possible initial segment of a play of the game. Such a
strategy is a winning strategy for ∃ if, no matter what moves ∀ makes, she will
always win a play of G when she plays according to the strategy.

PROPOSITION 5 Let A be an ordered monoid.

1. If A is representable then ∃ has a winning strategy in Gω(A).

2. If A is countable and ∃ has a winning strategy in Gω(A) then A is rep-
resentable.

3. For each n < ω there is a first-order formula σn in the signature of ordered
monoids such that ∃ has a winning strategy in Gn(A) iff A |= σn.

4. If, for each n < ω, there is an unrepresentable ordered monoid An where
∃ has a winning strategy in Gn(An) then the class of representable ordered
monoids cannot be defined by finitely many axioms.

PROOF SKETCH:

1. Let h be a representation of A over the domain D. Let ∀ play
(α1, α0) where α1 6≤ α0 in the initial round. To win the game
∃ maintains an embedding ′ : nodes(N) → D, where N is any
network played, such that (x′0, x

′
1) ∈ h(α1) \ h(α0) and for all

x, y ∈ nodes(N) and all α ∈ N(x, y) we have (x′, y′) ∈ h(α).

2. Take any α1, α0 with α1 6≤ α0. Consider a play of the game
in which ∀ plays (α1, α0) in the initial round and then plays
(N, x, y, z, ρ, σ) for all networks N occurring in the play, all
x, y, z ∈ N and all ρ ∈ N(x, y), σ ∈ N(y, z), and ∀ also
plays (N, x, y, ρ, σ) for all networks N occurring in the play,
all x, y, z ∈ N and all ρ, σ such that there is γ ≤ ρ;σ with
γ ∈ N(x, y). Since A is countable, there is a way of scheduling
all these moves in a play of the game. Let

N0 ⊆ N1 ⊆ . . .

be a play of such a game in which ∃ uses her winning strat-
egy. Let N∗(α1, α0) =

⋃
i∈ω Ni (see definition 3). Since ∀

makes all possible composition moves (definition 4) whenever
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σ ∈ N∗(x, y) and τ ∈ N∗(y, z) we have σ; τ ∈ N∗(x, z). Wit-
ness moves ensure that if γ ∈ N∗(x, y) and γ ≤ σ; τ then there
is z ∈ N∗ such that σ ∈ N∗(x, z) and τ ∈ N∗(z, y).

By construction of the prenetworks, we have 1′ ∈ N(x, x) for
all prenetworks played and for all x ∈ N . Since ∃ wins the
play we see that there is e ≤ 1′ with e ∈ N∗(x, y) iff x = y.
Hence N∗ is a network, though not necessarily a finitary one.
Furthermore, since ∃ wins the play, there is no α− ≤ α0 with
α− ∈ N∗(x0, x1).

By renaming, we can arrange that the nodes of N∗(α1, α0) are
disjoint from the nodes of N∗(α′1, α

′
0) if (α1, α0) 6= (α′1, α

′
0).

Let
N =

⋃
α1 6≤α0

N∗(α1, α0)

Since this is a disjoint union of networks, it is clearly a network.
Also, if α1 6≤ α0 then there are x, y ∈ N∗(α1, α0) ≤ N such that
α1 ∈ N(x, y) but there is no α− ≤ α0 with α− ∈ N(x, y). Now
define a representation h of A with domain nodes(N):

h(ρ) = {(x, y) : ∃ρ− ≤ ρ, ρ− ∈ N(x, y)}.

3. See [HH02, theorem 9.28]. First we need some syntax. A term
is anything of the form s0; s1; . . . ; sk (some k ∈ N) where si
is either a variable or the identity 1′, for i ≤ k. T denotes
the set of all terms. A term network N consists of a finite set
of nodes, nodes(N), and a labelling function (also denoted N)
N : nodes(N) × nodes(N) → ℘(T ), where N(x, y) is a finite
set of terms, for all x, y ∈ nodes(N). If A is any assignment
of variables to elements of the ordered monoid A and N is any
term network, then NA denotes the finitary prenetwork with
the same nodes as N and with labelling NA(x, y) = {τA : τ ∈
N(x, y)}, where τA ∈ A denotes the value of the term τ under
the variable assignment A. If M,N are term networks, M ∪N
denotes the term network with nodes nodes(M)∪nodes(N) and
with labelling defined as in definition 3.

Let N be a term network. We define two extensions.

• If x, y ∈ N and σ is a term we let N1(N, x, y, σ) de-
note the term network where nodes(N1) = nodes(N) and
N1(x, y) = N(x, y) ∪ {σ} and N1(u, v) = N(u, v) for all
u, v ∈ N with (u, v) 6= (x, y).

• For any x, y ∈ N , any node z (both z ∈ N and z 6∈ N
are allowed) and any terms σ, τ , let T (x, y, z, σ, τ) be the
term network where nodes(T ) = {x, y, z} with labelling
T (z, z) = {1′}, T (x, z) = {σ} and T (z, y) = {τ} and
T (u, v) = ∅ whenever (u, v) 6= (z, z), (x, z) or (z, y). [Strictly,
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as before, we have just defined T in the case where x, y, z
are distinct. For other cases, we take unions, e.g. if x = z 6=
y then T (x, x) = {1′, σ}, etc.] Now letN2(N, x, y, z, σ, τ) =
N ∪ T .

For any term network N containing the nodes x0, x1, and any
k ∈ N we define a formula ρk(N, v0) such that for any variable
assignment A,

∃ has a w.s. in Gk(NA,A, A(v0)) ⇐⇒ A, A |= ρk(N, v0)
(1)

The formulas are defined recursively. ρ0(N, v0) =∧
x 6=y∈N, τ∈N(x,y)

¬(τ ≤ 1′) ∧
∧

τ∈N(x0,x1)

¬(τ ≤ v0)

ρ0 merely states, in first-order logic, the winning conditions
for G0(N,A, α0) — more precisely (1) holds with k = 0. Now
suppose ρk(M,v0) is defined (some k ≥ 0), for all term networks
M , and (1) holds for this value of k. We define ρk+1.

ρk+1(N, v0) =
∧

x,y,z∈N, σ∈N(x,y), τ∈N(y,z)

ρk(N1(N, x, z, σ; τ), v0)∧

∧
x,y∈N,τ∈N(x,y)

∀α∀β[α;β ≥ τ → (
∨

w∈nodes(N)∪{z}

ρk(N2(N, x, y, w, α, β), v0)

where z is any node not in N , in the last line. ρk+1 translates,
roughly, to the statement ‘for any composition move by ∀, ρk
holds on the resulting prenetwork, and for any witness move by
∀ at least one of the ∃ moves leads to a prenetwork where ρk
holds’. Thus (1) holds.

Finally, for any variable v1, let I(v1) denote the term network
with a single node x0 = x1 labelled I(v1)(x0, x0) = {1′, v1}
and let D(v1) denote the term network with two distinct nodes
x0, x1 with labelling

D(v1)(x0, x0) = D(v1)(x1, x1) = {1′}
D(v1)(x0, x1) = {v1}
D(v1)(x1, x0) = ∅

Let

σk = ∀v0∀v1[¬(v1 ≤ v0)→ (ρk(I(v1), v0) ∨ ρk(D(v1), v0)

4. Let B = ΠDAn, where D is a non-principal ultrafilter over ω.
We are given that ∃ has a winning strategy in Gn(An) hence
she has a winning strategy in Gn(Am) whenever m ≥ n. By the
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previous part, An |= σm whenever m ≥ n. By  Loś’ theorem,
B |= σn and hence ∃ has a winning strategy in Gn(B), for each
n < ω. Now, as in [HH02, theorem 10.12, proposition 10.13],
there is a countable B′ elementarily equivalent to B such that ∃
has a winning strategy in Gω(B′). By part 2 of this proposition,
B′ is representable.

Now suppose for contradiction that a single formula θ defines
the class of representable ordered monoids, i.e. for any struc-
ture A of the type of ordered monoids we have A |= θ iff A
is a representable ordered monoid. Since B′ is representable,
B′ |= θ. By elementary equivalence, B |= θ. By  Loś’ theorem
the set S of all n < ω for which An |= θ should be large, i.e.
in the ultrafilter. But by theorem 12, for each n < ω we have
An 6|= θ and so there are no values of n for which An |= θ.
Hence S = ∅, a contradiction.

2

Thus, to prove that the class of representable ordered monoids cannot be defined
by finitely many axioms, it remains to define an unrepresentable ordered monoid
An, for each n < ω, such that ∃ has a winning strategy in Gn(An).

THEOREM 6 An ordered monoid A (whether countable or not) is repre-
sentable if and only if A |= σn for all n < ω, where σn is defined in the proof
sketch of the previous proposition. Further, each σn is equivalent to a universal
sentence.

PROOF:

Show that the class of representable ordered monoids is a pseudo-
universal class (just define a two sorted language with one sort for the
elements of an ordered monoid and the other sort for points in the
domain of a representation of it). Then use [HH02, theorem 9.28].
For universality, just bring all the universal quantifiers to the front
in the definition of σn. 2

An unrepresentable ordered monoid

DEFINITION 7

1. Define an alphabet Σ = {b, f, g, f , g} and define a binary relation ≺ over
Σ∗ as follows.

Λ ≺ ff

Λ ≺ gg

Λ ≺ ff ≺ gg ≺ Λ

b ≺ (fg)n

where Λ is the empty string.
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2. For arbitrary s, t ∈ Σ∗ we let s ≤1 t iff there are s0, s1, t0, t1, u, v such that
s = s0us1, t = t0vt1 and u ≺ v.

3. Let ≤ be the reflexive transitive closure of ≤1. So s ≤ t iff there is a finite
chain s = s0, s1, . . . , sk = t (some k ∈ N) where for each i < k we have
si ≤1 si+1.

4. We write s ≡ t iff s ≤ t and t ≤ s and we write s < t if s ≤ t but t 6≤ s.

5. For any s ∈ {f, g, f , g}∗, s denotes the string obtained by reversing the
order of s and replacing each occurrence of f, g, f , g by f, g, f, g respec-
tively.

DEFINITION 8 Let x ∈ Σ∗. Define x̂ from x by repeatedly deleting any
substrings ff or gg until no further deletions are possible.

Let An = {x̂ : x ∈ Σ∗} ⊂ Σ∗.

It is easy to check that the definition of x̂ does not depend on the order chosen
to do the deletions.

LEMMA 9 Let x̂ = x and let φ ∈ {f, g, f , g}. Either x̂φ = xφ, or x̂φ φ = x

and φφ ≡ 1′. Either φ̂x = φx, or φ φ̂x = x and φφ ≡ 1′.

LEMMA 10 The following are equivalent.

• x̂ = ŷ

• x ≡ y.

DEFINITION 11 Let n ≥ 1. We define the structure An = (An,≤, 1′, ; ),
where An is defined in definition 8, ≤ is defined in definition 7, 1′ is the empty
string and ; is defined by string concatenation i.e. x; y =def x̂y.

THEOREM 12 Let n ≥ 1. An is not a representable ordered monoid.

PROOF:

Suppose for contradiction that h is a representation of An over
some domain D.

Note that if x, y ∈ D and (x, y) ∈ h(f) then since (x, x) ∈ h(1′) ⊆
h(ff), there is z ∈ D such that (x, z) ∈ h(f) and (z, x) ∈ h(f). But

then (z, y) ∈ h(f)|h(f) = h(f̂f) = h(1′) and therefore z = y. So if
(x, y) ∈ h(f) then (y, x) ∈ h(f). Similarly, for any φ ∈ {f, g, f , g},
if (x, y) ∈ h(φ) then (y, x) ∈ h(φ).

Observe that b(gf)nb 6≥ b. So there are x, y ∈ D with (x, y) ∈
h(b) \ h(b(gf)nb). But then, since b ≤ (fg)n and since h respects
the composition operator, there are z0, z1, . . . , z2n ∈ D such that
x = z0, y = z2n, (zi, zi+1) ∈ h(f) for even i < 2n and (zi, zi+1) ∈
h(g) for odd i < 2n. For even i < 2n, (zi, zi+1) ∈ h(f) so, by
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the previous paragraph, (zi+1, zi) ∈ h(f). Similarly, for odd i < 2n
we have (zi+1, zi) ∈ h(g). Since (x, y) ∈ {(x, y)}|{(y, x)}|{(x, y)} it
follows that (x, y) ∈ h(b(gf)nb), contrary to assumption.

2

DEFINITION 13 Let k ∈ N. A string α ∈ {f, f , g, g}∗ is said to be k-short if
α̂ = A0B0A1B1 . . . Ak−1Bk−1 for some Ai ∈ {f, g}∗, Bi ∈ {f, g}∗ (each i < k).

LEMMA 14 Let k > 0, α ∈ An and φ ∈ {f, g, f , g}.

1. If αφ is k-short then so is α.

2. If φα is k-short then so is α.

3. If α is k-short and φ ∈ {f, g} then αφ and φα are also k-short.

PROOF:

1. Suppose αφ is k-short, so α̂ = A0B0 . . . Ak−1Bk−1 for some

Ai ∈ {f, g}∗, Bi ∈ {f, g}∗, for i < k. Either α̂φ = α̂ φ or

α̂φ φ = α̂ (by lemma 9). With the first alternative, α̂ is a

substring of α̂φ = A0B0 . . . Bk−1, so clearly α is k-short. With
the second alternative, α̂ = A0 . . . Ak−1Bk−1φ, and φφ ≡ 1′

implies φ ∈ {f, g}. So Bk−1φ ∈ {f, g}∗ and hence α is k-short.

2. Similar.

3. Let α̂ = A0 . . . Bk−1 be k-short and φ ∈ {f, g}. Since Bk−1φ ∈
{f, g}∗ and α̂φ = A0 . . . Ak−1; (B̂k−1φ), we see that αφ is also
k-short. Similarly φα is also k-short.

2

Game Strategy

Let n ≥ 1 and m > 2n. We define a strategy for ∃ in the game Gn(Am). Recall
from definition 4 that ∃ is required to play a sequence of finitary prenetworks
N0 ⊆ N1 ⊆ . . . ⊆ Nm−1 in a play of this game. To help her play the game, ∃
will calculate a sequence of networks N ′0 ≤ N ′1 ≤ . . . ≤ N ′m−1 where Ni ⊆ N ′i
for i < m. These networks N ′i will satisfy certain other properties.

DEFINITION 15 Let N be a prenetwork and let k ∈ N. We say that N is
k-good if

I. N is a finitary network.

II. If st is k-short and st ∈ N(x, y) then (st) ∈ N(y, x) and there is z ∈ N
such that s ∈ N(x, z) and t ∈ N(z, y).
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LEMMA 16 Let k ≥ 1, let N be k-good, let x ∈ N , let ψ ∈ {f, g, f , g} and
suppose there is no node w ∈ N such that N(x,w) = ψ. Define a network
N∗ ≥ N with exactly one extra node, z, and labelling of edges incident with z
defined by,

N∗(z, z) = {1′}
N∗(u, z) = {ρ;ψ : ρ ∈ N(u, x)}
N∗(z, u) = {ψ;λ : λ ∈ N(x, u)}

where u ∈ N is arbitrary. Then N∗ is also k-good.

PROOF:

First we must check that N∗ is a finitary network. It is clearly
finitary. To show that N∗ is a network, since N is known to be a
network, we need only check the consistency of triangles and edges
incident with the extra node z. By definition, 1′ ∈ N∗(z, z). We
show that 1′ 6∈ N∗(u, z), N∗(z, u) for any u ∈ N . If 1′ ∈ N∗(u, z)
then 1′ = ρ;ψ = ρ̂ψ for some ρ ∈ N(u, x). Hence ρ = ψ (and ψψ ≡
1′), and by condition II for N , ψ ∈ N(x, u). But this contradicts the
assumption in the lemma. Similarly, 1′ 6∈ N∗(z, u). Observe that 1′

is minimal with respect to <, so N∗ satisfies the first condition in
definition 2.

Now we check that N∗ is consistent with respect to composition.
Let u, v ∈ N . If α ∈ N∗(u, z) and β ∈ N∗(z, v) we require an
element in N∗(u, v) below α;β. Well, since α ∈ N∗(u, z) we have

α = ρ;ψ = ρ̂ψ for some ρ ∈ N(u, x) and similarly β = ψ̂λ for
some λ ∈ N(x, v). By consistency of N , there is δ ∈ N(u, v) with
δ ≤ ρ;λ. Hence δ ≤ ρ;λ ≤ ρψ;ψλ ≡ α;β, as required. Similarly, if
α ∈ N∗(u, v) and β ∈ N∗(v, z) then there is δ ∈ N∗(u, z) with δ ≤
α;β, and if α ∈ N∗(z, u) and β ∈ N∗(u, v) then there is δ ∈ N∗(z, v)
with δ ≤ α;β. This proves that N∗ is a network.

Finally, we check condition II. Suppose st ∈ N∗(u, z) is k-short.

Then st = ρ̂ψ for some ρ ∈ N(u, x). By lemma 14, ρ is also k-short.

By condition II for N , ρ ∈ N(x, u) and so ψ̂ρ = ρψ ∈ N∗(z, u).
We seek a witness w ∈ N∗ with s ∈ N∗(u,w) and t ∈ N∗(w, z). If
t = 1′ then trivially the required witness is w = z. Suppose t 6= 1′.
By lemma 9, either st = ρψ or ρ = st ψ. In the former case, since
t 6= 1′, we must have t = t′ψ for some t′ and ρ = st′ ∈ N(u, x). By
condition II for N there is w ∈ N with s ∈ N(u,w) and t′ ∈ N(w, x).
Therefore t = t′ψ ∈ N∗(w, z), so w is the required witness in N∗.
In the latter case stψ ∈ N(u, x) so, inductively, there is w ∈ N with

N(u,w) = s and N(w, x) = tψ and so t = t̂ψψ ∈ N∗(w, z) and w
is the required witness in N∗. Thus N∗ satisfies condition II and is
k-good.

2
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LEMMA 17 Let k ≥ 1, let N be a k-good network and let x, y ∈ N . Let
φ ∈ {f, g, f̄ , ḡ}, suppose β ∈ Am is not k-short and suppose there is γ ∈ N(x, y)
with γ ≤ φ;β. Also suppose that there is no node w ∈ N and β− ≤ β such that
φ ∈ N(x,w) and β− ∈ N(w, y).

Define N∗ ≥ N with exactly one extra node, z say, and let the edges incident
with z be labelled,

N∗(z, z) = {1′}
N∗(u, z) = {ρ;φ : ρ ∈ N(u, x)}
N∗(z, u) = {φ;µ : µ ∈ N(x, u)} ∪ {β;λ : λ ∈ N(y, u)}

where u ∈ N is arbitrary. Then N∗ is also k-good, and φ ∈ N∗(x, z), β ∈
N∗(z, y).

PROOF:

We check that N∗ is a network. Since N is consistent we need
only check the consistency of edges and triangles involving the new
node z. We check the rule for the identity first. We’ll show that
1′ 6∈ N∗(u, z). For this, suppose instead that 1′ ∈ N∗(u, z) = {ρ;φ :

ρ ∈ N(u, x)}. Then 1′ = ρ;φ = ρ̂φ for some ρ ∈ N(u, x) so ρ = φ
and φ;φ ≡ 1′. By condition II of definition 15 for N , φ ∈ N(x, u).
By consistency of N (condition I) there is β− ∈ N(u, y) with β− ≤
φ; γ ≤ φ;φ;β ≡ β. But this contradicts the assumption in the
lemma, that no witness node w exists in N .

Similarly, suppose 1′ ∈ N∗(z, u). 1′ ∈ {β;µ : µ ∈ N(y, u)} is
impossible since, by lemma 14, βµ is not k-short, for any µ. If
1′ ∈ {φ;λ : λ ∈ N(x, u)} then, as above, we derive a contradiction
to our assumption that there is no witness node in N .

Now we check the rule of composition for N∗. Let u, v ∈ N be
arbitrary and let σ ∈ N∗(u, z), τ ∈ N∗(z, v). We seek an element
below σ; τ in N∗(u, v). Since σ ∈ N∗(u, z) we have σ = ρ;φ for some
ρ ∈ N(u, x). Since τ ∈ N∗(z, v) we have either τ = φ;µ for some
µ ∈ N(x, v) or τ = β;λ for some λ ∈ N(y, v). Since N is known to

be a network, either σ; τ = ρ̂φφµ ≥ ρµ ≥ δ for some δ ∈ N(u, v), or

σ; τ = ρ̂φβλ ≥ ργλ ≥ δ, for some δ ∈ N(u, v), where γ ∈ N(x, y).
Similarly, we can check that if σ ∈ N∗(z, u) and ρ ∈ N∗(u, v) then
there is something below σ; ρ in N∗(z, v), and if σ ∈ N∗(u, v) and
ρ ∈ N∗(v, z) then there is something below σ; ρ in N∗(u, z). This
proves condition I — N∗ is a network.

Now we check condition II. Suppose st ∈ N∗(u, z) is k-short.

Then st = ρ̂φ for some ρ ∈ N(u, x). By lemma 14 ρ is k-short so by

condition II for N ρ ∈ N(x, u). Therefore φ̂ ρ = st ∈ N∗(z, u).
We also seek a witness w ∈ N∗ with s ∈ N∗(u,w) and t ∈

N∗(w, z). If t = 1′ then the required witness is w = z. Suppose

12



t 6= 1′. By definition of Am, λ̂ = λ. Either st = λ̂φ = λφ, or λ = st φ
and φφ ≡ 1′, by lemma 9. In the former case we have st = λφ and
since t 6= 1′ we have t = t′φ (some t′) and st′ = λ. By condition II
for N , there is w ∈ N with s ∈ N(u,w) and t′ ∈ N(w, x). Hence

t = t̂′φ ∈ N∗(w, z) so w is the required witness in N∗ in this case.
In the latter case, we have φ ∈ {f, g} and by lemma 14, stφ is also
k-short, so there is w ∈ N with s ∈ N(u,w) and tφ ∈ N(w, x).
Therefore tφ;φ = t ∈ N∗(w, z), so w is the required witness in N∗.

The case where st ∈ N∗(z, u) is k-short is handled similarly,
bearing in mind that no element of the form β;µ can be k-short, by
lemma 14.

Since N is a network and 1′ is minimal with respect to <, 1′ ∈
N(x, x) and 1′ ∈ N(y, y), so φ ∈ N∗(x, z) and β ∈ N∗(z, y).

2

Similarly,

LEMMA 18 Let k ≥ 1, N be k-good, x, y ∈ N , φ ∈ {f, g, f , g} and α ∈ Am
and suppose (a) α is not k-short, (b) there is γ ∈ N(x, y) with γ ≤ α;φ and (c)
there is no witness w ∈ N and α− ≤ α such that α− ∈ N(x,w) and φ ∈ N(w, y).

Then there is a k-good network N∗ ≥ N with a node z such that α ∈ N∗(x, z)
and φ ∈ N∗(z, y).

THEOREM 19 Let n ≥ 1 and m > 2n. Player ∃ has a winning strategy in
Gn(Am).

Notation: If α = a0a1 . . . a|α|−1 is a string and i ≤ j < |α| then α[i, j] denotes
the substring aiai+1 . . . aj−1.

PROOF:

Recall that a play of Gn(Am) is a sequence of prenetworks N0 ⊆
N1 ⊆ . . . ⊆ Nm−1. To help her play this game, ∃ will calculate a
sequence N ′0 ≤ N ′1 ≤ . . . ≤ N ′m−1 of networks satisfying

• Ni ⊆ N ′i ,
• N ′i is 2n−i-good,

for i ≤ m.
In round zero let ∀ play (α1, α0) where α1 6≤ α0. If α1 is not

2n-short then N0 = N ′0 = D(α1) has exactly two nodes, x0 and x1,
as defined in definition 4. Otherwise, let α1 be 2n-short. In this case
N ′0 has |α1|+ 1 nodes, x0, x1, . . . , x|α1| and every edge is labelled by
a singleton. To define this labelling, let N ′0(xi, xj) = {α1[i, j]} when
i ≤ j ≤ |α1| and N ′0(xi, xj) = {α1[j, i]} when j < i ≤ |α1|. It can
easily be checked that N ′0 is 2n-good. Also there are x0, x1 ∈ N ′0 with
N ′0(x0, x1) = {α1} (if α1 is 2n short let x0 = x0 and x1 = x|α1|). If
x0 = x1 (this happens iff α1 = 1′) then N0 = I(α1) else N0 = D(α1).
Either way, N0 ⊆ N ′0 and N ′0(x0, x1) = {α1}.

13



Now let 0 < i < n and consider round i. Let r = n − i be
the number of rounds left in the play of the game. Let the last
prenetwork played in the game be Ni−1 and suppose ∃ has cal-
culated a 2r+1-good network N ′i−1 ⊇ Ni−1 and N ′i−1 ≥ N ′0. If ∀
plays (Ni−1, x, y, z, ρ, σ) (where x, y, z ∈ Ni−1, ρ ∈ Ni−1(x, y), σ ∈
Ni−1(y, z)) then, by the rules of the game, ∃ must let Ni be iden-
tical to Ni−1 except that Ni(x, z) = Ni−1(x, z) ∪ {ρ;σ}. She lets
N ′i = N ′i−1. Since N ′i is a network it follows that Ni ⊆ N ′i and
trivially N ′i−1 ≤ N ′i .

Now suppose ∀ picks x, y ∈ Ni−1 and α+, β+ such that there is
γ ≤ α+;β+ with γ ∈ Ni−1. In short, ∀ plays (Ni−1, x, y, α

+, β+).
First, ∃ finds minimal α, β ∈ Am such that α ≤ α+, β ≤ β+ and
α;β ≥ γ. By ‘minimal’ we mean that if α− ≤ α, β− ≤ β and
α−;β− ≥ γ then α− = α, β− = β. Such minimal elements exist in
Am, since ≤ is clearly well-founded in Am.

Then ∃ will construct a 2r-good network N ′i ≥ N ′i−1 containing
a node z such that α ∈ N ′i(x, z) and β ∈ N ′i(z, y). The remainder of
this proof shows how she can find such a network N ′i . Having done
that she lets Ni = N+(Ni−1, x, y, z, α

+, β+), defined in definition 4.
Since N ′i−1 ≤ N ′i , α ≤ α+ and β ≤ β+ it follows that Ni ⊆ N ′i .
Since N ′i is a network it follows that there cannot be u 6= v ∈ Ni and
τ ∈ Ni(u, v) such that τ ≤ 1′. Also, since N ′0 ≤ N ′i and N ′0(x0, x1) =
{α1} there cannot be α− ≤ α0 with α− ∈ Ni(x0, x1). This will show
that ∀ does not win round i.

Thus it suffices to find a 2r-good N ′i ≥ N ′i−1 with a node z such
that α ∈ N ′i(x, z) and β ∈ N ′i(z, y). There are four cases to consider.

α, β both long If neither α nor β is 2r-short then ∃ lets N ′i ≥ Ni−1

extend N ′i−1 with a single node, z say. For the labelling of edges
incident with z,

N ′i(z, z) = {1′}
N ′i(u, z) = {ρ;α : ρ ∈ N ′i−1(u, x)}
N ′i(z, u) = {β;λ : λ ∈ N ′i−1(y, u)}

where u ∈ N ′i−1 is arbitrary. Note, by lemma 14, that no
element of N ′i(u, z) or N ′i(z, u) is 2r-short. So it is easy to
check that N ′i is 2r-good.

α is short, β is long Let α = a1a2 . . . aj , for some j ∈ N and some
characters ai : i ≤ j. By lemma 17 there is a 2r+1-good N1 ≥
N ′i with a node z1 such that a1 ∈ N1(x, z1) and a2 . . . ajβ ∈
N1(z1, y). Iterating this process, there is a 2r+1-good N∗ with
a node zj such that a1 ∈ N∗(x, z1), a2 ∈ N∗(z1, z2), . . . , aj ∈
N∗(zj−1, zj) and β ∈ N∗(zj , y). SinceN∗ is a network it follows
that there is α− ≤ a1a2 . . . aj = α ∈ N∗(x, zj). By minimality,
α− = α. ∃ lets N ′i = N∗ and z = zj . Since N ′i is 2r+1-good it
is certainly 2r-good.
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α is long, β is short The case where β is 2r-short but α is not, is
proved similarly.

α, β both short If both α and β are 2r-short then γ ≤ α;β is 2r+1-
short. In this case ∃ can actually find a 2r+1-good network N ′i
satisfying the required conditions. Since a 2r+1-good network
is certainly 2r-good, the inductive conditions are maintained.

By minimality of α, β, either γ = αβ or α = α′ψ, β = ψβ′ and
α′;β′ ≥ γ (some ψ ∈ {f, f , g, g}, some α′, β′). In the former
case, since N ′i−1 is 2r+1-good, there is already a node z ∈ N ′i−1

such that α ∈ N ′i−1(x, z), β ∈ N ′i−1(z, y), so ∃ can let N ′i = Ni.
In the latter case, by a suitable induction on |α|+ |β|, there is
a 2r+1-good network N1 ≥ N ′i−1 with a node w ∈ N1 such
that α− ∈ N1(x,w) and β− ∈ N1(w, y) for some α− ≤ α′ and
β− ≤ β′. By lemma 16 there is a 2r+1-good N ′i ≥ N1 with a
node z such that ψ ∈ N ′i(w, z) and ψ ∈ N ′i(z, w). Then, since
N ′i is a network, there is α∗ ≤ α−;ψ and β∗ ≤ ψ;β− with
α∗ ∈ N ′i(x, z) and β∗ ∈ N ′i(z, y). By minimality, α∗ = α and
β∗ = β.

2

PROBLEM 1 We have been somewhat wasteful in the way we constructed a
winning strategy for ∃ in Gn(A2n+1). A rough calculation shows that a winning
strategy for ∀ in Gn(Am) along the lines of theorem 12 would take at least 6m
rounds. Show that ∃ has a winning strategy in Gn(An), for n ≥ 1.

THEOREM 20 There class of representable ordered monoids cannot be de-
fined by finitely many axioms.

PROOF:

By proposition 5, theorem 12 and theorem 19. 2
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