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Abstract

Applications of optimal transport have recently received remarkable attention thanks to the
computational advantages of entropic regularization. However, in most situations the Sinkhorn
approximation of the Wasserstein distance is replaced by a regularized version that is less
accurate but easy to differentiate. In this work we characterize the differential properties of
the original Sinkhorn distance, proving that it enjoys the same smoothness as its regularized
version and we explicitly provide an efficient algorithm to compute its gradient. We show that
this result benefits both theory and applications: on one hand, high order smoothness confers
statistical guarantees to learning with Wasserstein approximations. On the other hand, the
gradient formula allows us to efficiently solve learning and optimization problems in practice.

1. BACKGROUND: Entropic regularizations of Wasserstein distance

Optimal transport theory investigates how to compare probability measures over a metric space X .

Discrete Setting: discrete probability measures of the form µ = ∑n
i=1 aiδxi with (xi)ni=1 and the vec-

tor weight a = (a1, . . . , an)> ∈ ∆n in the n-dimensional simplex ∆n =
{
p ∈ Rn

+

∣∣∣ p>1n = 1
}

.
Given µ = ∑n

i=1 aiδxi and ν = ∑m
j=1 bjδyj, the Wasserstein distance between µ and ν is defined as

Wp
p(µ, ν) = min

T∈Π(a,b)
〈T,M〉 (1)

where M ∈ Rn×m is the cost matrix with entries Mij = d(xi, yj)p and Π(a, b) denotes the
transportation polytope

Π(a, b) = {T ∈ Rn×m
+

∣∣∣∣ T 1m = a, T>1n = b
}
.

Regularization of Wasserstein distance
Set h(T ) := −∑n,m

i,j=1 Tij(log Tij − 1) and Tλ = argminT∈Π(a,b) 〈T,M〉 − 1
λh(T )

Definition Given µ and ν as above, entropic regularizations of the Wasserstein distance, referred
to as Sinkhorn distances [2] are defined as

S̃λ(a, b) = 〈Tλ,M〉 −
1
λ
h(Tλ) and Sλ = 〈Tλ,M〉 . (2)

Proposition Let λ > 0. For any pair of discrete measures µ, ν ∈ P(X) with respective weights
a ∈ ∆n and b ∈ ∆m, we have∣∣∣ Sλ(µ, ν)−W(µ, ν)

∣∣∣ ≤ c1 e−λ
∣∣∣ S̃λ(µ, ν)−W(µ, ν)

∣∣∣ ≤ c2 λ
−1,

where c1, c2 are constants independent of λ, depending on the support of µ and ν.

Question: Is Sλ a more natural approximation of the Wasserstein distance W?
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Figure: Comparison of the sharp (Blue) and regularized (Orange) barycenters of two Dirac’s deltas (Black) centered
in 0 and 20 for different values of λ.

2. DIFFERENTIAL PROPERTIES

Sinkhorn maps are C∞ smooth in the interior of ∆n.
The results are obtained leveraging the Implicit Function Theorem via a proof technique analogous
to that in [3].

Theorem For any λ > 0, the Sinkhorn distances S̃λ and Sλ : ∆n×∆n→ R are C∞ in the interior
of their domain.

Sketch of the proof. Step 1: since Sλ and S̃λ are smooth as functions of T λ, it is enough to show
that T λ is a smooth function of a, b.
Step 2: by Sinkhorn’s scaling theorem, T λ = diag(eλαλ)e−λMdiag(eλβλ). Then, T λ is smooth if
(αλ, βλ) is smooth as a function of (a, b).
Step 3: let us set

L(a, b;α, β) = α> a + β> b− 1
λ

n,m∑
i,j=1

e−λ(Mij−αi−βj) (3)

and recall that (αλ, βλ) = argmaxα,βL(a, b;α, β). The smoothness of (αλ, βλ) is proved using the
Implicit Function theorem and follows from the smoothness and strong convexity in α, β of the
function L.

The Implicit Function Theorem also provides a formula for the gradient of Sλ:

Input: a ∈ ∆n, b ∈ ∆m, cost matrix M ∈ Rn,m
+ , λ > 0.

T =SINKHORN(a, b,M, λ), T̄ = T1:n,1:(m−1)
L = T �M , L̄ = L1:n,1:(m−1)
D1 = diag(T 1m), D2 = diag(T̄>1n)−1

H = D1 − T̄D2T̄
>, f = −L1m + T̄D2L̄

>
1n,

g = H−1 f

Return: g− 1n( g>1n)
Algorithm 1: Gradient of Sλ

The routine for the gradient is used to implement optimization problems with Sλ as loss. While
solutions of optimization with S̃λ are often ‘blurry’, Sλ preserves the sharpness of the data.

In the following, the barycenters computed with Sλ and S̃λ constitute an example of how Sλ is not
affected by the same oversmoothing effect as S̃λ.

Figure: Barycenter of Nested Ellipses: (Left) Sample input data. (Middle) Barycenter with S̃λ. (Right)
Barycenter with Sλ.

3. LEARNING WITH SINKHORN LOSS: SETTING

Problem Setting: X input space, Y = ∆n a set of histograms (output space).
Goal: approximate a minimizer of the expected risk

min
f :X→Y

E(f ), E(f ) =
∫
X×Y
S(f (x), y) dρ(x, y) (4)

given a finite number of training points (xi, yi)`i=1 independently sampled from the unknown
distribution ρ on X × Y . The loss function S : Y × Y → R measures prediction errors and in
our setting corresponds to either Sλ or S̃λ.

Structured Prediction Estimator. Given a training set (xi, yi)`i=1, we consider f̂ : X → Y the
structured prediction estimator proposed in [1], defined as

f̂ (x) = argmin
y∈Y

∑̀
i=1

αi(x) S(y, yi) (5)

for any x ∈ X .

The weights αi(x) are learned from the data and can be interpreted as scores suggesting the
candidate output distribution y to be close to a specific output distribution yi observed in training
according to the metric S.

α are obtained via a kernel-based approach: given a positive definite kernel k : X × X → R, we
have

α(x) = (α1(x), . . . , α(x))> = (K + γ`I)−1Kx (6)

where γ > 0 is a regularization parameter while K ∈ R`×` and Kx ∈ Rn are respectively
the empirical kernel matrix with entries Kij = k(xi, xj) and the evaluation vector with entries
(Kx)i = k(x, xi), for any i, j = 1, . . . , `.

4. LEARNING WITH SINKHORN LOSS: STATISTICAL ANALYSIS

Thanks to the smoothness of Sλ we can prove consistency and learning rates of the estimator.
Thanks to the gradient we can solve the problem in practice!

Theorem[Universal Consistency] Let Y = ∆ε
n, λ > 0 and S be either S̃λ or Sλ. Let k be a bounded

continuous universal kernel on X . For any ` ∈ N and any distribution ρ on X ×Y let f̂` : X → Y
be the estimator in (5) trained with (xi, yi)`i=1 points independently sampled from ρ and γ` = `−1/4.
Then

lim
`→∞
E(f̂`) = min

f :X→Y
E(f ) with probability 1. (7)

Theorem[Learning Rates](informal) Let Y = ∆ε
n, λ > 0 and S be either S̃λ or Sλ. Under suitable

regularity assumption on ρ, the estimator f̂` : X → Y with ` training points independently
sampled from ρ and with γ = `−1/2

E(f )− min
f :X→Y

E(f ) = O(`−1/4) (8)

holds with high probability with respect to the sampling of training data.

Role of the smoothness in the statistical analysis: the proof is technical but a key role is played
by the smoothness of Sinkhorn maps shown before. This is the first universal consistency result
for learning with Sinkhorn loss!

5. EXPERIMENTS

We evaluated the Sinkhorn distances with the estimator (5) in an image reconstruction problem:
given an image depicting a drawing, the goal is to learn how to reconstruct the lower half of the
image (output) given the upper half (input).

Reconstruction Error on QuickDraw (%)
# Classes Sλ S̃λ Hell KDE

2 3.7± 0.6 4.9± 0.9 8.0± 2.4 12.0± 4.1
4 22.2± 0.9 31.8± 1.1 29.2± 0.8 40.8± 4.2

10 38.9± 0.9 44.9± 2.5 48.3± 2.4 64.9± 1.4

Figure: Average reconstruction errors of the Sinkhorn, Hellinger, and KDE estimators on the Google QuickDraw
reconstruction problem. On the right, example of reconstruction on MNIST.
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