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Abstract Let S be a signature of operations and relations definable in relation al-
gebra (e.g. converse, composition, containment, union, identity, etc.), let R(S) be
the class of all S-structures isomorphic to concrete algebras of binary relations with
concrete interpretations for symbols in S, and let F(S) be the class of S-structures
isomorphic to concrete algebras of binary relations over a finite base. To prove that
membership of R(S) or F(S) for finite S-structures is undecidable, we reduce from
a known undecidable problem — here we use the tiling problem, the partial group
embedding problem and the partial group finite embedding problem to prove unde-
cidability of finite membership of R(S) or F(S) for various signatures S. It follows
that the equational theory of R(S) is undecidable whenever S includes the boolean
operators and composition. We give an exposition of the reduction from the tiling
problem and the reduction from the group embedding problem, and summarize what
we know about the undecidability of finite membership of R(S) and of F(S) for dif-
ferent signatures S.

Introduction

It has been known for some time that various problems involving binary relations
are undecidable: for example Tarski proved that the set of equations valid over all
representable relation algebras is undecidable. Here, a representation of a relation
algebra is an isomorphism to an algebra of binary relations, and the isomorphism
must respect all relation algebra operations. If we weaken the notion of represen-
tation so that only a specified set of relation algebra operations must be preserved,
it might be that the equational theory becomes decidable (for example, if just the
booleans must be preserved, or if just identity, composition and inclusion must be
preserved, then the equational theory is decidable). So where is the boundary? How
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much of the signature of relation algebra is needed in order to prove undecidability?
How far can Tarski’s result be extended?

In order to prove that a decision problem is undecidable, the obvious way is to
reduce a known undecidable problem to it. For known undecidable problems, there
are many to choose from: Turing machines, Minsky machines, Post’s correspon-
dence problem, tiling problems and so on. We make no claim to survey all the work
on undecidability of binary relation problems, but in broadest outline, the first batch
of results to do with undecidability of binary relations were based on the undecid-
ability of parts of set theory, the second main collection of results were based on the
undecidability of the word problem for semigroups, and the third and fourth sets of
cases are studied in more detail here and are based on the tiling problem and the
partial group embedding problem, respectively.

The undecidability results are of two related types: the first kind is where we
prove the undecidability of some logical theory (e.g. the set of equations valid over
relation algebra); the second kind is where we prove the undecidability of some
embedding problems, between certain classes of relation algebras and their reducts
(e.g. the set of finite, representable relation algebras). The undecidability of an em-
bedding problem normally entails the undecidability of a related logical theory. We
study some of the key constructions, proofs and results.

Definitions

Definition 1. A relation algebra A = (A,+,−,0,1,1′,^, ;) consists of a boolean
algebra (A,+,−,0,1) together with additive, normal operators 1′, ^, ;, respec-
tively 0-ary, 1-ary and 2-ary, such that (A,1′, ;) is a monoid, ^ is an involution
(i.e. (a^)^ = a and (a;b)^ = b^;a^), satisfying a;b · c = 0 ⇐⇒ c;b^ ·a = 0. A
relation algebra A is a set relation algebra, or a proper relation algebra, if there is a
base set X say, an equivalence relation U over X , and each element of A is a subset
of U and the operators are set union, complement in U , empty set, U , the identity
over X , the converse and composition operators over binary relations, respectively.
A representation is an isomorphism from a relation algebra to a proper relation al-
gebra. A finite representation is a representation to a proper relation algebra on a
finite base.

An atom of a relation algebra is an atom of the boolean reduct, i.e. a minimal non-
zero element, and a relation algebra is atomic if every non-zero element is above
some atom. A unit is an atom below the identity.

A relation algebra term is built from variables and constants 0,1,1′ using op-
erators +,−,^, ;. An equation has the form s = t, for two relation algebra terms
s, t, and a quasi-equation has the form (e1∧e2∧ . . .∧ek)→ e, where e,ei (i≤ k) are
equations. For any class K of relation algebras, the equational theory Eq(K ) is the
set of all equations valid on each relation algebra in K , and the quasi-equational
theory of K is the set of quasi-equations valid over K .

By additivity and the identity law, if a is an atom of a relation algebra A then
there are unique units st(a),end(a) such that a = st(a);a;end(a) [22, theorem 3.5].
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Other relations and operators are definable: for example, the set inclusion relation
is definable by a≤ b ⇐⇒ a+b = b, and a ·b =−(−a+−b), dom(a) = 1′ · (a;1),
and rng(a) = dom(a^). A signature S is any subset of {0,1,≤, ·,+,−,1′,dom, rng,
^, ;}. The additional relations and operators play a significant role when they are
included in S, but not all the symbols used in their definition are included in S, for
example consider a signature including the relation ≤ but not including + or ·. An
S-structure consists of a set with an interpretation of relations and functions in S,
it is proper if it consists of binary relations on some base set X , and symbols in S
have natural set-theoretically defined interpretations, i.e. non-negative booleans are
interpreted as /0, U, ⊆, ∩, ∪ for some maximal binary relation U ⊆ X×X , negation
is complement in U , and

1′ = {(x,x) : x ∈ X} a^ = {(y,x) : (x,y) ∈ a}
dom(a) = {(x,x) : ∃y (x,y) ∈ a} rng(a) = {(y,y) : ∃x (x,y) ∈ a}

a;b = {(x,y) : ∃z ((x,z) ∈ a∧ (z,y)) ∈ b}.

An S-representation is an isomorphism from an S-structure to a proper S-structure.
The class of all S-representable S-structures is denoted R(S). A symmetric S-
representation is a representation in which the maximal relation U is symmetric. Let
R↔(S) be the class of S-structures with symmetric S-representations. If converse is
included in S then clearly R↔(S) = R(S), but also for the signature S = {−,+,1′, ;}
it is known [15, lemma 1.1] that A ∈ R({−,+,1′, ;}) ⇐⇒ A ∈ R↔({−,+,1′, ;})
for any S-structure A provided it satisfies the normality laws D(x);x = x = x;R(x)
where D(x) = 1′ · x;1 and R(x) = 1′ · 1;x. The class of all S-structures with an S-
representation on a finite base is denoted F(S). An instance of the S-representation
problem is a finite S-structure A : it is a yes-instance if it has an S-representation
(i.e. it belongs to R(S)), it is a no-instance otherwise. An instance of the finite S-
representation problem is also an arbitrary finite S-structure A : it is a yes-instance if
it has an S-representation on a finite base (i.e. it belongs to F(S)), it is a no-instance
otherwise. Given any class K of S-structures, the equational theory Eq(K ) is the
set of equations s = t valid over K , where s, t are terms built from variables, con-
stants and functions in S and the quasi-equational theory is the set of implications
(e1∧ e2∧ . . .∧ ek)→ e valid over K, where e,ei (i≤ k) are equations.

Main Results

Theorem 2. For any relation algebra signature S where S⊇{·,+, ;} or S⊇{·,^, ;},
it is undecidable whether A ∈ R(S) for arbitrary finite S-structures A . If ^ 6∈ S ⊇
{≤,−, ;} then it is undecidable whether A ∈ R↔(S), for finite S-structures A .

If converse is not in S and S contains {·,+, ;} or {−,≤, ;} then for an arbitrary
finite S-structure A it is undecidable whether A ∈ F(S), and undecidable whether
A is the S-reduct of a finite relation algebra.
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Corollary 3. The quasi-equational theory of R(S), R↔(S) or F(S), as appropriate,
is undecidable for any of the signatures S mentioned in the previous theorem.

The equational theory of R(S) is undecidable when S⊇ {+,−, ;}, the equational
theory of F(S) is undecidable when ^ 6∈ S⊇ {+,−, ;}.

Some earlier results

The first approach to undecidability was based on set theory. In their formalisation
of set theory without variables, Tarski and Givant consider proper relation algebras
P containing some designated element ε . See [30, 8, 9] for the details; we sketch
the briefest outline. They define an equational language L × of equations between

binary predicates. The basic predicates are
◦
1,E, and compound predicate terms are

built from these using relation algebra operators. The equations of the language are
equations between predicate terms. Each term may be interpreted in P by mapping
◦
1 to the identity element of P , mapping E to ε , and extending to compound terms
using the (concrete) operators of P . An equation holds in P if and only if the two
terms denote the same binary relation. Tarski and Givant also define a finite schema
of equations and write `× A = B if the equation A = B follows from instances of
these axioms by the rule of replacement. The theory of consequences of the empty
set axiom together with a sentence that requires a set x∪{y}, given any sets x,y, is
known to be undecidable [31, Statements 1.6, 6.1]. By a translation into L × they
deduce that both the set of equations valid in proper relation algebras and the set of
`×-deducible equations are undecidable. From the former result they deduce that
the equational theory of all representable relation algebras is undecidable, and from
the latter that the equational theory of the axiomatically defined class of all relation
algebras is also undecidable.

Let Σ be a finite alphabet. Observe that Σ ∗ with concatenation forms a semi-
group. An instance of the word problem for semigroups is a finite set E of equations
between elements of Σ ∗ and a single equation s = t. It is a yes instance if there is a
finite sequence of substitutions u0u1u2 7→ u0v1u2 where (u1,v1) ∈ E starting from s
and reaching t; it is a no instance otherwise. This problem was proved undecidable
in [26]. Maddux used this problem to prove the undecidability of the equational
theory of the classes of three-dimensional cylindric algebras and three-dimensional
diagonal-free algebras [21]. These undecidability results were also proved, via the
undecidability of first-order logic, in [24, 4]. From the undecidability of the word
problem for semigroups, [1] were able to prove the undecidability of the equational
theory of any class of relation algebras containing for each n ∈ ω either (i) an al-
gebra with at least n elements below the identity, (ii) a group relation algebra on a
symmetric group with at least n elements, or (iii) a group relation algebra on the
group reduct of a vector space with at least n dimensions.
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Tiling

The previously mentioned approaches prove the undecidability of various equa-
tional theories but do not consider the problem of determining representability or
finite representability of relation algebras, or of their reducts to weaker signatures.
Our main focus here will be on extending these results to cover these representa-
tion problems. First we use the undecidability of the tiling problem to prove that
membership of R(S) is undecidable even for weak signatures, but this leaves open
the decidability of F(S) for such signatures. Then we use the undecidability of the
partial group embedding property for an alternative proof of the undecidability of
membership of R(S), and also the undecidability of membership of F(S), provided
converse is excluded.

The problem of whether representability of finite relation algebras is decidable
was discussed by Roger Maddux and Ralph McKenzie in the early 1980s, Maddux
suggesting a solution by tiling. It was raised again by McKenzie at a conference on
universal algebra and lattice theory in Szeged in 1996. The problem is listed in [3,
page 730, open problem 3] (credited to Maddux) and [23, problem 14, page 463].

Theorem 4. It is undecidable whether a finite relation algebra is representable.

Proof. For a full rigorous proof see [14, chapter 18]. We will take a brisk look at
some of the issues involved in the proof.

We start from the beginning. We want to show that there is no algorithm to de-
termine whether a finite relation algebra is representable, and we aim to do it by
reducing a known undecidable problem to the representability problem for relation
algebras. The undecidable problem that we select here is the tiling problem, as Mad-
dux suggested: given a finite set τ of square tiles, each of whose edges is coloured,
can the integer plane Z×Z be tiled with copies of tiles from τ in such a way that
adjacent tiles have the same colours on the edges where they touch? Formally, τ is
a yes-instance of the tiling problem iff there is a ‘tiling’ map f : Z×Z→ τ such
that for every x,y ∈ Z, the colour of the right-hand (respectively, top) edge of the
tile f (x,y) is the same as the colour of the left-hand (respectively, bottom) edge of
the tile f (x+1,y) (respectively, f (x,y+1)). This problem, and many variants of it,1

are known to be undecidable [5].
So given a finite set τ of tiles, we would like to construct a finite relation algebra

RA(τ) that is representable just when τ can tile the plane. Note that the algebra
RA(τ) cannot be constructed from a tiling of the plane by tiles from τ , because there
may not be such a tiling! Instead, the algebra should directly encode the tiles and
their colours in some way, so that we can read off a tiling from any representation,
and conversely, if there is a tiling then we can somehow construct a representation.

The tiling problem is appropriate because of the obvious (as it seems to us) re-
semblance of a tiling to a representation of a relation algebra. In a tiling f : Z×Z→
1 One such variant is when (i) the instances are restricted to those τ that contain a special tile whose
four sides all have a fixed ‘white’ colour that occurs only on this one tile, and (ii) τ is a yes-instance
iff each tile in τ occurs in some tiling of the plane. This is the variant actually used in the proof,
but these extra particulars will not concern us in this outline.
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τ , each tile t ∈ τ ‘is’ already a binary relation on Z, namely {(x,y) ∈ Z×Z :
f (x,y) = t}. This is a relation between the ‘x-axis’ and the ‘y-axis’ of the plane,
and it will clarify things if we separate out the two axes — make them disjoint.
Viewing f in this way, the tiles run between the axes, as shown in figure 1. A line

x-axis y-axist

t′ t′′

0

1

2

-1

-2 -2

-1

0

1

2

Fig. 1 A tiling of the plane Z×Z with x- and y-axes made disjoint

from x to y represents the location (x,y) and is ‘labelled’ by the tile f (x,y). In the
figure, we have supposed that f (0,0) = t, f (1,0) = t ′, and f (0,1) = t ′′.

Figure 1 starts to suggest a possible design of RA(τ). It looks so far like a non-
integral2 relation algebra with two subidentity atoms: e1 for x-axis points and e2
for y-axis points. The base of any representation will be partitioned into the set of
points x1 of sort 1 (the ‘x-axis’ — those points x1 with (x1,x1) ∈ e1) and the points
y2 of sort 2 (the ‘y-axis’ — those y2 with (y2,y2)∈ e2). We use indices−1 and−2 to
indicate the sorts of points in representations. Similarly, we write atoms in the form
ai j, indicating that the atom relates points of sort i to points of sort j. (Formally,
ei′ ;ai j ;e j′ 6= 0 iff i = i′ and j = j′.) We write aii simply as ai, as with e1,e2.

For each tile t ∈ τ , we will include an atom t12 of RA(τ), relating points of sort 1
to points of sort 2. We also add its converse, t21. Hoping to recover the Z-structure
of the axes, we add an atom +11 relating points on the x-axis, with intended inter-
pretation {(x1,x1 +1) : x1 ∈ x-axis}, and a similar atom +12 for the y-axis. We also
add their converses, −11 and −12. For tiles t, t ′ ∈ τ , we will define composition in
RA(τ) so that t12 ; t ′21 ≥+11 just when the colours of the right of t and the left of t ′

are the same, so we could put t ′ directly to the right of t in a tiling. Similarly, we will
define t21 ; t ′′12 ≥ +12 when the top of t and the bottom of t ′′ have the same colour.
See figure 2. (Sometimes we leave indices of atoms in diagrams to be determined
by context.)

Let us now have a closer look at the atoms a1 relating points of sort 1. These
atoms, currently e1, +11 and −11, should form the atoms of a finite representable
relation algebra. The 1-sort of a representation of RA(τ) will be a representation of

2 A relation algebra is integral if its identity element 1′ is an atom.
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t t′

t′′

t

t′ t′′

+11 +12

Fig. 2 Matching of colours of tile edges reflected in relation algebra composition

this algebra. So a representation of it should contain a copy of Z, or something like
it, for our x-axis.

What kind of relation algebra could it be? One danger is that +11 ;+11 might
be a new atom, say +21, relating a point x1 to ‘x1 + 2’; then +11 ;+21 = +31,
another new atom; and so on — we end up with infinitely many atoms, whereas
RA(τ) should be finite. But there is a well-known solution here: add a flexible (self-
converse) atom w1 with w1 ≤ a1 ;b1 for all non-identity atoms a1,b1 of sort 1. So
the sort-1 atoms will be e1, +11, −11, and w1. It is well known through work of
Comer and Maddux [6, 22] that every finite relation algebra with a flexible atom
is representable. And starting at any point p0 in (the base of) a representation of
this algebra, we can find a point p1 related to it by +11, because (p0, p0) ∈ e1 ≤
+11 ;−11. We can then find a point p2 related to p1 by +11 in the same way. And
because (p0, p0) ∈ e1 ≤ −11 ;+11, we can find a point p−1 related by +11 to p0.
Continuing this ‘in both directions’, we can find points px for x ∈ Z with (px, px+1)

related by +11 for each x. We expect that (px, px′) will be related by w1 when |x−
x′|> 1. The points px might not all be distinct, and there will be other points around
as well, but this won’t matter, because the overall structure of RA(τ) should allow
us to read off a tiling from a representation, anyway.

Now, in any representation of RA(τ), the sort-1 points will form a representation
of the relation algebra discussed above. And if we include a similar flexible atom w2
of sort 2 in RA(τ), then the sort-2 points will form a representation of the relation
algebra with atoms e2,+12,−12,w2. So we can find points px

1 (x ∈ Z) of sort 1, and
similarly, points qy

2 (y ∈ Z) of sort 2. Each pair (px
1,q

y
2) will lie in a unique tile atom

f (x,y)12, say, and the resulting map f : Z×Z→ τ will be a tiling. So we can read
off a tiling from any representation of our algebra.

For the converse, we need to construct a representation of RA(τ) from a tiling of
the plane by τ . We intend to do it by a ‘step-by-step’ construction, or by a two-player
game. But there are all kinds of problems.

Here is one. When building our representation, suppose we have constructed
points p1,q1 of sort 1 and related by w1. We will put w1 ≤ t12 ; t ′21 for any tiles
t, t ′, since our idea is that w1 will relate all points x,x′ that lie far apart on the x-
axis, and the tiling could in principle place any tiles at all at (x,y), (x′,y). Also,
w1 ≤ +11 ;−11 since it is flexible. These compositions will force the existence of
points s2,r1 in the representation as shown in figure 3.

Now r1 is of sort 1 and s2 of sort 2, so (r1,s2) will be related by a tile atom, say t∗12.
But then, the triangles p1s2r1 and q1s2r1 entail that +11 ≤ t12 ; t∗21 and +11 ≤ t ′12 ; t∗21,



8 Robin Hirsch, Ian Hodkinson and Marcel Jackson

b

b

b

b

r1

s2p1

q1

t∗

t

t′w1

+11

+11

Fig. 3 First problem

so t∗ fits to the right of both t, t ′ — and there is no reason why such a t∗ should exist
for arbitrary tiles t, t ′, even if τ can tile the plane.

Related instances of the same problem arise when some or all of the +11 atoms
in figure 3 are replaced by −11. They raise no new issues and we will skip over
them, here and below.

It seems that we need another flexible atom w12, to relate r1 to s2 in cases like
this. It certainly solves the ‘figure 3 problem’, and we do add such an atom, and its
converse w21.

But of course we have now created a second problem. When we try to read off
a tiling from a representation of RA(τ), we may find w12 atoms where we expected
tile atoms. We will fail to construct the tiling.

The key to getting out of this difficulty is to realise that r1 in figure 3 arises
as part of a triangle with base p1q1. The point r1 witnessed the composition
(p1,q1) ∈ w1 ≤ +11 ;−11, and p1,q1 are distinct. When reading off a tiling from
a representation, as above, we used only points p0, p1, . . . that each arose essen-
tially from a single preceding point. For example, p6 witnessed the composition
(p5, p5) ∈ e1 ≤+11 ;−11 and so arises from the single point p5. Points ‘generated’
by a single point do need to be related to sort-2 points by tiles, so that we can read
off a tiling; but points like r1 ‘generated’ by pairs of points need not be.

This prompts a radical redesign of our algebra RA(τ). We introduce a third sort
of points: sort 0. There will now be three subidentity atoms, e0,e1,e2. We introduce
a ‘green’ atom g01 from sort 0 to sort 1, a similar green atom g02 from sort 0 to
sort 2, and their converses g10,g20. We stipulate that w12 6≤ g10 ;g02 — so w12 is
no longer completely flexible. Now, if p1,q2 are sort 1 and 2 points connected by a
‘green path’ — there is some ‘source’ sort 0 point s0 related to p1 and q2 by green
atoms — then (p1,q2) cannot be in w12, so must lie in a tile atom.

Now, in figure 3, the fact that r1 witnesses the composition (p1,q1) ∈ w1 ≤
+11 ;−11 does not mean that there has to be a green path from r1 to s2. In relation
algebra representations built step by step, we cannot in general demand existence of
a point with specified relations to three other points (−11 to p1 and q1, and green to
some third point). And if there isn’t a green path, then (r1,s2) could be in w12 and
not in any tile atom t∗12 at all. The figure 3 problem is solved, at least potentially (to
show it conclusively, see the full proof).
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The second problem is also solved, because we can still read off a tiling from a
representation of RA(τ) as before, by ensuring that the px

1 and qy
2 are all related by

green to a fixed source point s0. Given px
1 such that (s0, px

1) ∈ g01, we ensure that
g01 ≤ g01 ;−11, and if px+1

1 witnesses this composition then not only (px
1, px+1

1 ) ∈
+11 but also (s0, px+1

1 ) ∈ g01, so we can continue. Similarly for the qy
2. Now there is

a green path via s0 from every px
1 to every qy

2, so they must be related by tile atoms
f (x,y)12 as desired. See figure 4.
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Fig. 4 Reading off a tiling from a representation of RA(τ)

To fill out the design, we add more flexible atoms wi j so that we have one for
every pair of sorts i, j. (The converse of wi j is w ji. We had w1,w2,w12,w21 already.)
Our atoms are now e0,e1,e2 (subidentity) and the wi j, plus the new green atoms gi j
for {i, j} ∈ {{0,1},{0,2}}, the ±1 atoms, and the tile atoms t12, t21.

We assure despondent readers that we are genuinely making good progress. Un-
fortunately, the figure 3 problem reappears in a more subtle form. Consider figure 5.
The left-hand diagram in figure 5 is similar to figure 3, but we now have a source
point s0 for p1,q1 (so (s0, p1) and (s0,q1) are green). These points p1,q1 are related
by w1 and there is a chain of points connecting them, related successively by +11,
just as we would expect to see in a copy of Z. Each point in the chain is related by
green to s0. The point r1 appears much as before, as a witness to the composition
(p1,q1) ∈ w1 ≤−11 ;−11.

Now by our recent innovations, r1 should be related to s0 by w10, not by g10.
So the old problem of figure 3 seems to have gone away. But for any tile t∗, we
have (r1,s0) ∈ w10 ≤ t∗12 ;g20, and on the right-hand side of figure 5 we have added
a witness u2 to this demonic composition. There is a green path (via s0) from u2 to
p1,q1 and all the points in between. So all these points must be related to u2 by tile
atoms, shown as t1, . . . , t6 in figure 5. Unlike the earlier situation, these tile atoms
are not specified in advance, but there is a fixed number of them (here, six, but it
can be arbitrarily large) and they all lie in triangles whose third side is +11, so they
must fit with t∗ and each other as shown in figure 6. Whether τ can tile the plane or
not, there is no reason whatever to suppose that, for arbitrary t∗, tiles t1, . . . , t6 with
these properties exist.

There is also a kind of dual or mirror image of this problem, where the tiles arise
before the±1s, and it is shown in figure 7. On the left-hand side of figure 7, the point
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Fig. 5 First problem (subtle form)
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Fig. 6 Required tile pattern
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Fig. 7 Mirror image problem

r2 witnesses the composition (p1,q1) ∈ w1 ≤ t12 ; t ′21, as in figure 3, and once again
the tiles t, t ′ are arbitrary. Then (s0,r2) will lie in w02, so there need be no green
path to r2 from the points between p1 and q1, and no need for tile atoms to relate
them. But (s0,r2) ∈ w02 ≤ g02 ;+12, and on the right of figure 7 we see a witness,
u2, to this composition. There is a green path to u2 (via s0) from p1,q1, and all points
between, so all the resulting pairs will lie in tile atoms, again say t1

12, . . . , t
6
12. And

the triangles with a +11 or +12 edge force that t, t ′, t1, . . . , t6 can be arranged as in
figure 8. Again, for arbitrary t, t ′ there is no reason at all to suppose that suitable
tiles t1, . . . , t6 ∈ τ can be found.

These are critical problems and they demand action. At the heart of them is the
need to witness the compositions (r1,s0) ∈ w10 ≤ t∗12 ;g20 in figure 5 and (s0,r2) ∈
w02 ≤ g02 ;+12 in figure 7. So during the construction of a representation of RA(τ),
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t1 t2 t3 t4 t5 t6

t t′

Fig. 8 Required tile pattern in mirror image problem

we arrange that whenever a configuration like the left-hand diagram in figure 5
appears, (r1,s0) does not lie in w10 but in a special new ‘blocking atom’ called
u10. We require that for every tile t we have u10 6≤ t12 ;g20. A dual atom u20 for
similar configurations involving sort 2 is also added, plus of course the converses
u01, u02 of these atoms. Blocking atoms like these are distinctive features of rainbow
constructions, introduced in [12] and developed in several later theorems, including
this one.

Now, in the left-hand diagram in figure 5, we will have (r1,s0)∈ u10. This means
that the right-hand configuration will not occur, because no witness u2 to the com-
position (r1,s0) ∈ u10 ≤ t∗12 ;g20 is required or indeed possible, since u10 6≤ t∗12 ;g20.

For the mirror image problem of figure 7, we introduce similar new blocking
atoms v02, v01, and their converses, with v01 6≤ g01 ;+11 and v01 6≤ g01 ;−11 (and
dually for v02). We arrange that whenever a configuration as on the left of figure 7
arises, then (s0,r2) ∈ v02. Then, on the right of the figure, no witness u2 to the
composition (s0,r2) ∈ v02 ≤ g02 ;+12 is required or possible, since v02 6≤ g02 ;+12.

Here is a full list of the atoms that we have introduced. If τ is a tiling instance
with k tiles t0, . . . , tk−1 then RA(τ) has 2k+28 atoms. They are

start end atoms
0 0 e0,w0
0 1 g01,u01,v01,w01
0 2 g02,u02,v02,w02
1 1 e1,+11,−11,w1
2 2 e2,+12,−12,w2
1 2 t i

12 (i < k), w12

plus the converses of the (0− 1),(0− 2) and (1− 2) atoms (g10, etc., as described
above).

Perhaps faintly surprisingly, it turns out that there are no more problems, and
from now on everything goes extremely well. We can read off a tiling in the way we
explained from any representation of the relation algebra RA(τ) that we have now
built. Conversely, if τ tiles the plane, we can construct a representation of RA(τ),
carefully using the tiling to pick the correct atom to relate points of sorts 1 and 2
connected by a green path, and ensuring that the atoms u,v are used as prescribed to
prevent the problems we saw in figures 5 and 7. Used in this way, they ensure that
every edge labelled by a tile atom is associated with a tiling f of the plane and a pair
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of coordinates (x,y) such that the atom labelling the edge is f (x,y)12. For the full,
delicate details see [14, chapter 18].

We should mention that RA(τ) might not be a relation algebra for certain no-
instances τ of the tiling problem (because composition might not be associative).
But clearly it always will be for yes-instances, and being a relation algebra is a de-
cidable property. So the map ρ given by ρ(τ) =RA(τ) if RA(τ) is a relation algebra,
and any fixed finite non-representable relation algebra, otherwise, is a computable
reduction of the tiling problem to representability of finite relation algebras.

We also mention that although RA(τ) is not integral (it has three subidentity
atoms), it is simple, and so the problem of determining representability of finite
simple relation algebras is also undecidable. ut

Later we will use a version of the tiling problem to extend this undecidability
result to weaker subsignatures, however since the representations we constructed for
our tiling algebras have infinite bases, the undecidability of finite representability for
finite algebras is not addressed by this.

Partial Group Embedding

For converse-free signatures there is a completely distinct approach [15], and the
issue of decidability of finite representability can be resolved—negatively for many
signatures. The starting point for this second approach lies in problems of em-
bedding compositional objects into objects with converse-like structure, which has
played a prominent role in embedding problems in the world of semigroup theory.
The idea stems originally from the efforts of Evans [7], who showed that the de-
cidability of the uniform word problem in a class of algebras is equivalent to the
problem of extending a partial algebra to a complete algebra in the class. The un-
decidability of the uniform word problem for groups and for finite groups [29] then
imply that it is undecidable to determine if a finite partial Cayley table extends to a
full group table, or to a finite group table. It was Kublanovsky who first saw how to
successfully encode partial groups (as instances of the partial group extension prob-
lem) into semigroups, with totally defined operations. This was fully implemented
in [11], where it was shown that the class of finite subsemigroups (i.e. finite subsets,
closed under the semigroup operation) of some of the most familiar (and ostensibly
well-behaved) families of structured semigroups (such as Brandt semigroups and
completely 0-simple semigroups) were nonrecursive. Other undecidability results
followed, including the embeddability of semigroup amalgams into semigroups and
of ring amalgams into rings [17], as well as other problems associated with the em-
beddability of semigroups into larger semigroups [16, 20, 28].

How does this relate to binary relations? One of the most tightly structured forms
of semigroups are the so-called Brandt semigroups, which posses a natural represen-
tation as injective functions, and the embeddability of finite semigroups in these is
one of the problems shown undecidable in [11] (note that a relatively minor error in
the argument led to a global fault in the proof of this fact; see [18] for correct state-
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ment and proof). A concrete description of a Brandt semigroup is to take a group G ,
a non-empty set K and define a multiplication on the set {gi, j | i, j ∈K, g∈ G }∪{0}
by setting gi, j ; h j,k := (gh)i,k and letting all other products be 0. This construction,
which we denote by Br0K(G ), obviously embeds the group G as a subsemigroup (via
g 7→ gii, any fixed i ∈ K). The underlying Brandt groupoid (category with inverse)
BrK(G ) is obtained by deleting zero and letting zero products in Br0K(G ) be unde-
fined, and the complex algebra of this Brandt groupoid is always a representable re-
lation algebra with |K| sub-identity atoms. It may be represented over a base K×G ,
by representing a typical singleton {gi, j} as the bijection {((i, f ),( j, f g) : f ∈ G }
from the sub-identity domain i×G to the sub-identity domain j×G . Jónsson and
Tarski showed that a relation algebra is representable if and only if it is a subal-
gebra of the complex algebra of a Brandt groupoid [19, Theorem 5.8]. A Brandt
groupoid may be defined equivalently as the atom structure of a relation algebra in
which every atom a satisfies a;a^+a^a≤ 1′. (There are generalisations of Brandt
groupoids encompassing a broader range of atom structures: see, e.g., [10, 2].) The
goal is to modify the semigroups used to show undecidability of embedding into
Brandt semigroups, modelled on how they would appear as sub boolean monoids of
the complex algebra of the target Brandt groupoid.

Consider Br03(G ) (that is, with K = {0,1,2}) and then restrict to the set {gi, j |
i < j < 3, g ∈ G }∪{0}. Now we have kept some shadow of the group G , but only
that part that was “stretched” across the three indices. Indeed, the only remaining
non-zero products are those of the form g0,1 ; h1,2 = (gh)0,2: we cannot input this
output into any further non-zero product, and there is no obvious remnant of the
group inverse operation. We can make this shadow fainter still by replacing the full
group G by any subset P⊆ G and restricting to the set

P0,1∪P1,2∪ (P ; P)0,2∪{0}.

Now on this subsemigroup of Br03(G ) (call it S(P)) we have found something ap-
proaching a genuinely partial group (namely that part of G on the arbitrary subset P),
albeit stretched across the indices 0,1,2 and with an added zero element to make the
operation ; total. Perhaps too much has been discarded? After all, any partial Cayley
table on a set P (not necessarily restricting a group, and not necessarily even asso-
ciative) will produce a totally defined semigroup S(P) via this construction. Perhaps
surprisingly, it turns out that with only a little more care, there is enough of the rem-
nant shadow of group structure to guarantee that embeddability of this construction
(or at least a small variation of it) into a Brandt semigroup is equivalent to extend-
ability of the partial Cayley table P to a group.

To make this into a representability problem, we need to turn the S(P) construc-
tion into a boolean monoid (the converse-free fragment of relation algebra). We
have already seen that the complex algebra of a full Brandt groupoid Br3(G ) is a
representable relation algebra, whose converse-free reduct is a boolean monoid. As-
suming that P is a small enough subset of the group G , then it is relatively straight-
forward to describe the structure of the sub boolean monoid generated by S(P). This
structure can then be used as a template for the case of an arbitrary partial group P.
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When P embeds into a group G, the generated structure is easily represented as bi-
nary relations over 3×G. Conversely, given any {−,+,1′, ;}-representation of this
structure, the base of the representation is partitioned into three parts and the set of
permutations of one of these parts forms a group into which P embeds.

Now let us give proper details. A partial group ∗ : P×P→ A is a binary, total,
surjective function. (The set P is described in the discussion above, while A is the set
of products of two elements from P). Let K be any class of groups. An instance of
the K-embedding problem is a finite partial group ∗ : P×P→ A: it is a yes instance
if there is G ∈ K and an injection from A into G preserving all defined products, it
is a no instance otherwise. The following is essentially due to Slobodskoiı̆ (see also
[27, §7.4.3]).

Proposition 5. If K is any class of groups containing all finite groups then the K-
embedding problem is undecidable.

We will be particularly interested in the cases where K is the class of all groups,
and where K is the class of all finite groups. We will reduce these problems to the
representation problem and the finite representation problem (respectively) for finite
boolean monoids.

Given a finite, partial group ∗ : P×P→ A let M(∗) be the finite boolean monoid
whose atoms are

{eii : i < 3}∪{wi j : i, j < 3}∪{a01,a12 : a ∈ P}∪{b02 : b ∈ A}.

The identity is 1′ = e00 +e11 +e22, converse is not defined in boolean monoids. We
define composition on atoms first, by letting a;b = ∑(a,b,c)6∈F c where F is the set of
forbidden triples of atoms, consisting of:

(xi j,y j′,k′ ,zi∗,k∗) unless i = i∗, j = j′ and k′ = k∗

(eii,xi j,yi j), (xi j,e j j,yi j) where x 6= y

(a01,b12,z02) where a,b ∈ P, z 6= (a∗b)
(a01,w12,(a∗b)02), (w01,b12,(a∗b)02) where a,b ∈ P.

Equivalently, xi j;y j′,k′ = 0 for j 6= j′ and

eii;xi j = xi j = xi je j j a01;b12 = (ab)12

a01;w12 = ∑
¬∃b∈P:ab=y

y02 w01;b12 = ∑
¬∃a∈P:ab=y

y02

ui j;v ji = wii (u 6= v) ui j;v jk = 1ik (= ∑
xi j∈M(∗)

xi j), otherwise

where a,b ∈ P, i, j,k < 3 and y02 ranges over all atoms of M(∗) with indices 0,2
other than those excluded from the sum. In the case when ∗ embeds into a group G
and i, j < 3 then the embedding carries the white atom wi j to the co-finite sum of all
atoms gi j for g ∈ G where gi j is not in M(∗).
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Let G = (G,e,◦) be a group. The three dimensional brandt groupoid Br3(G ) has
elements {gi j : g ∈ G, i, j < 3} and a partial binary operator •, only defined when
subscripts match, and where fi j •g jk = ( f ◦g)ik, for f ,g∈G, i, j,k < 3. The base of
the complex algebra Cm(Br3(G )) is the power set of Br3(G ) with boolean operators
∪,\, together with relation algebra operators

1′ = {e00,e11,e22}
a^ = {gi j : g−1

ji ∈ a}
a;b = {( f ◦g)i j : ∃k < 3, fik ∈ a∧gk j ∈ b}.

Lemma 6. For any group G , Cm(Br3(G )) is a relation algebra, with a representa-
tion on the base 3×G defined by

gθ
i j = {((i, f ),( j, f ◦g)) : f ∈ G }.

Theorem 7. Let ∗ : P×P→ A be a finite, partial group. The following are equiva-
lent.

1. ∗ embeds into a group,
2. M(∗) embeds into a relation algebra,
3. M(∗) embeds into a representable relation algebra,
4. M(∗) is a representable boolean monoid.

Furthermore, if we replace ‘group’ by ‘finite group’ in the first, and ‘relation alge-
bra’ by ‘relation algebra with a representation on a finite base’ in the second and
‘representable’ by ‘finitely representable’ in the third and fourth, we get another
quartet of equivalent statements.

Proof. (1)⇒ (3). Suppose ∗ : P×P→ A embeds into a group G = (G,e,◦), with-
out loss A ⊆ G. By replacing G by G ×G ×G (if necessary) we may assume that
|G | > 2|A|. Define a map φ : M(A)→ Cm(Br3(G)) by letting xφ = {x} for any
atom x /∈ {wi j : i, j < 3}, w

φ

i j = {gi j : g ∈ G} \ {ai j : a ∈ A, ai j is defined}, and
extending to non-atomic elements of M(∗) by taking unions. φ is clearly an in-
jection and can be shown to be an embedding of M(∗) into Cm(Br3(G )). When
checking that composition is preserved, one slightly tricky case is to show that
(wi j;w jk)

φ =w
φ

i j;w
φ

jk. For this case, since (wi j,w jk,zik) is never forbidden (any atom
zik ≤ 1ik of M(∗)) we have wi j;w jk = 1ik, for i, j,k < 3. Since |G | > 2|A| we know
that |{g ∈ G : gi j ∈ w

φ

i j}|, |{g−1 ∗ f : g jk ∈ w
φ

jk}| > 1
2 |G | (for any f ∈ G ), so there

are g,g′ ∈ G such that gi j ∈ w
φ

i j ∧g′jk ∈ w
φ

jk ∧g = g′−1 ∗ f , hence w
φ

i j;w
φ

jk ≥ f φ

ik , for

all f ∈ G , so w
φ

i j;w
φ

jk = 1φ

ik, as required.
(3)⇒ (2) is trivial.
For (2) ⇒ (1), suppose M(∗) embeds in a relation algebra R, without loss the

embedding is the inclusion map. Let G⊆R be defined by

G = {a ∈R : e00;a = a;e00 = a∧a;0′ ·a = 0′;a ·a = 0}. (1)
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[We are not assuming that R is representable, but it may help the understanding of
(1) and some of its consequences to observe for any representation θ over a base
X say, that since 1′ = e00 + e11 + e22 we may partition the base into three parts
X = X0 ∪X1 ∪X2 where x ∈ Xi ⇐⇒ (x,x) ∈ eθ

ii , for i < 3. (1) ensures that each
element of G is represented as a permutation of X0.] Regardless of whether R is
representable or not, G includes e00 and is closed under converse and composition,
hence G = (G,e00, ;) is a group. Since ei j;e jk = eik in M(∗) for i≤ j ≤ k, it follows
by the triangle law that ei j = eik;e^jk and e jk = e^i j ;eik in R. Let φ : A→ G be
defined by aφ = a02;(e02)

^ (it is not hard to check that aφ ∈ G). We claim that φ is
an embedding of ∗ into G . To prove the claim, let a,b ∈ P. Then

(a∗b)φ = (a∗b)02;e^02

= (a01;b12);e^02

= a01;e11;b12;e^02

= a01;(e12;e^02;e01);b12;e^02

= (a02;e^02);(b02;e^02)

= aφ ;bφ

(3)⇒ (4) is trivial. For the converse implication (4)⇒ (3), suppose M(∗) has a
boolean monoid representation θ over some base set X . The representation of the
unit 1θ must be a reflexive, transitive relation, but need not be symmetric, creating a
problem if we are to embed M(∗) in a representable relation algebra. However, M(∗)
happens to be a normal boolean monoid since it satisfies dom(x);x= x= x; rngx. We
may restrict the boolean monoid representation of a normal boolean monoid to the
symmetric interior 1θ ∩(1θ )^ of the unit to obtain a boolean monoid representation
θ ◦ where the unit 1θ◦ is an equivalence relation over some base X [15, lemma 2.1].
But then M(∗) embeds into the proper relation algebra of all subsets of 1θ◦ , proving
(3).

This proof of the equivalence of (1)–(4) goes through with only minor alterations
to prove the equivalence of the second quartet of statements (concerning finite rep-
resentation and finite groups). ut

Extending the results

We now extend these results to weaker signatures. In [13] the reduction of the tiling
problem to the representation problem for relation algebras was extended to cover
all relation algebra signatures S with S ⊇ {·,+, ;}. When S ⊇ {·,^, ;} a version of
the deterministic tiling problem, where an instance consists of a set τ of tiles with
adjacencies and a specified start tile t0 ∈ τ , was shown to be undecidable and used
to prove the undecidability of membership of R(S) for finite S-structures [15].

Theorem 8. Let S be a relation algebra signature containing {·,+, ;}. τ is a yes-
instance of the tiling problem if and only if RA(τ) is S-representable. If instead
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S ⊇ {·,^, ;} then (τ, t0) is a yes-instance of the deterministic tiling problem if and
only if RA(τ, t0) is S-representable.

See [13, lemma 12] and [15, theorem 8.6] for the definitions and proofs.
By a different method, [25] used the results on partial group embeddings and

extended them to weaker signatures.

Lemma 9. Let A be a finite, simple boolean monoid (so the signature of A is the
whole relation algebra signature minus the converse operator), let {·,+, ;}⊆ S, ^ 6∈
S be a subsignature of relation algebra. If θ is an S-representation of the S-reduct
of A over a finite base X then A has a boolean monoid representation over a finite
base.

Proof. We need to modify θ so that boolean negation and the identity are correctly
represented. Since S contains the lattice operators, whenever (x,y) ∈ 1θ \0θ there is
a unique atom a of A such that (x,y) ∈ aθ and by faithfulness of θ , pairs (x,y) ∈
(1′)θ \ 0θ exist. Since 1′ = 1′;1′ there is z0 with (x,z0),(z0,y) ∈ (1′)θ and since
0;1′ = 1′;0 = 0 we have (x,z0),(z0,y) 6∈ 0θ . We can iterate that to obtain an infinite
sequence z0,z1, . . . where (zi,zi+1) ∈ (1′)θ \0θ . Since X is finite we have zi = z j for
some i < j and (zi,zi) ∈ (1′)θ \0θ . So suppose (x,x) ∈ (1′)θ \0θ . Now let Y = {y ∈
X : (x,y),(y,x),(y,y) ∈ 1θ \0θ}. By simplicity of A , the restriction of θ to the base
Y is still an S-representation of the S-reduct of A , but now we have 1θ�Y =Y ×Y , a
square S-representation on a finite base Y ⊆ X , moreover θ�Y also respects negation
since θ respects the lattice operators and 0θ ∩ (Y ×Y ) = /0. It remains to fix the
identity, but this is straightforward as the relation (1′)θ�Y is a congruence relation
∼ over Y , and θ�Y induces a finite representation θ̂ : A →℘(Y/ ∼ ×Y/ ∼), now
respecting also the identity. ut

By proposition 5, theorem 7 and lemma 9,

Lemma 10. Membership of F(S) is undecidable for S⊇ {·,+, ;} where ^ 6∈ S.

We also consider signatures without lattice operators but with boolean ordering
and negation. Such a signature S might omit the boolean unit 1, but even so, in
any S-representation θ of A over a base X there is a binary relation U defined
by (x,y) ∈ U ⇐⇒ ∃a ∈ A , (x,y) ∈ aθ . For the next result we need to assume
that U is symmetric. This result is from [25] where other restrictions on U are also
considered.

Lemma 11. Let S ⊇ {−,≤, ;}, ^ 6∈ S, let ∗ : P×P→ A be a partial group. If θ

is a S-representation of the S-reduct of M(∗) over a base X where 1θ is symmetric
then ∗ is a yes-instance of the partial group embedding problem, moreover if X is
finite then ∗ is a yes-instance of the group finite embedding problem, for an arbitrary
representation θ .

Proof. 0 may not be in the signature S, but there is an element 0 ∈M(∗) and since
0 ≤ −0 ∈ M(∗) we know that 0θ = /0. Although 1 may not be in the signature S,
the element 1 ∈ M(∗) is maximal with respect to ≤ and satisfies 1;1 = 1 so must
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be represented as a transitive relation, by assumption it is symmetric. For i < 3,
by faithfulness of θ , eθ

i is non-empty and eθ
i is transitive, since ei;ei = ei. Since

1θ is symmetric, if (x,y) ∈ eθ
i then either (y,x) ∈ eθ

i or (y,x) ∈ (−ei)
θ . The latter

case yields a contradiction (x,y) ∈ (ei;(−ei);ei)
θ ⊆ (−ei)

θ , so (y,x) ∈ eθ
i and eθ

i
is symmetric, hence reflexive over its domain. It follows from the faithfulness of θ

that X0 = {x ∈ X : (x,x) ∈ eθ
0 } ⊆ X is non-empty. If (x,y) ∈ eθ

i then (y,z) ∈ aθ ↔
(x,z) ∈ aθ .

Let Y be the set of maximal non-empty cliques of (1′)θ . Let θ̂ : M(∗)→℘(Y×Y )
be defined by aθ̂ = {([x], [y]) ∈ Y ×Y : (x,y) ∈ aθ}, where [x] is the (1′)θ -clique
of x ∈ X (undefined if (x,x) 6∈ (1′)θ ). Since 1′;a;1′ = a is valid in M(∗), θ̂ is
still an S-representation of M(∗). Observe that θ̂ also respects the identity, (1′)θ̂ =
{(y,y) : y∈Y}. Hence, if a∈M(∗) satisfies a;(−1′)≤−a and (−1′);a≤−a then θ̂

represents a as a partial injective function. Although converse is not in the signature,
(aθ̂ )^ is concretely defined as the inverse of the partial injection aθ̂ , clearly a partial
injection.

Then aθ̂
02|(eθ̂

02)
^ is a permutation of X0 so the map that sends a to aθ̂

02|(eθ̂
02)

^ is
an embedding of A into the group of all permutations of X0, so ∗ is a yes-instance.
Clearly, if X is finite then the group of permutations of X0 is also finite. ut

We can now prove theorem 2.

Proof. For the part concerning the undecidability of R(S) for finite S-structures,
both cases S⊇{·,+,}, S⊇{·,^, ;} are covered by theorem 8, for the part concern-
ing the undecidability of R↔(S) the case ^ 6∈ S ⊇ {−,≤, ;} follows from propo-
sition 5, lemma 11. For the part concerning F(S), the case ^ 6∈ S ⊇ {·,+, ;} is
lemma 10 and the case ^ 6∈ S ⊇ {−,≤, ;} follows from proposition 5, theorem 7
and lemma 11. ut

To prove corollary 3 let X be R or F and consider the representation class X(S).
We reduce membership of X(S) for finite S-structures to the quai-equational the-
ory of X(S). The diagram ∆(A ) of a finite S-structure A is the conjunction of all
true equations Ω(ā) = b or negations of false equations Ω(ā) 6= b where Ω is an
n-ary operator in S, ā is an n-tuple over A and b ∈A . Then A ∈ X(S) if and only
if ¬∆(A ) is not valid over X(S). Since ¬∆(A ) is equivalent to a quasi-equation
we have a reduction from finite membership of X(S) to non-validity over X(S). If
S includes the booleans +,− then a quasi-equation is equivalent to a formula built
from equations using only negation and conjunction. Each equation s = t may be re-
placed by the equivalent (s ·−t+−s ·t) = 0. A conjunction of equations s= 0∧t = 0
is equivalent to s+ t = 0. Since 1;x;1 is a discriminator term, a negated equation
¬s = 0 is equivalent to the equation 1− (1;x;1) = 0., hence the quasi-equation
equivalent to ¬∆(A ) can effectively be replaced by an equivalent equation.
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