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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

The GISMO Backus-Naur Form BNF grammar based Genetic Improvement (GI) system
demonstration shows artificial evolutionary computation reducing run time of blue.cpp, a
noddy C program to count how many blue pixels there are in an image.
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/opencv gp.tar.gz

Keywords genetic algorithms, genetic programming, genetic improvement, search based soft-
ware engineering, SBSE

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/opencv_gp.tar.gz


7 990 272 pixels 2 760 641 blue pixels

Figure 1: blue.cpp simply counts the number of blue pixels in the image. The demo shows using BNF
grammar based genetic improvement to reduce elapsed run time. blue.cpp is deliberately inefficient.

1 Evolving Code
Genetic programming [1; 2; 3] has recently been applied to existing human written code rather than
starting from primordial ooze. The use of search based engineering techniques [4], principally ge-
netic programming, to existing software is known as genetic improvement [5; 6; 7; 8; 9; 10; 11; 12;
13; 14; 15; 16; 17]. GI has been used to automatically fix coding bugs [18; 19]. Whilst still an
active research topic (e.g. there were multiple technical sessions on Software Repair at 40th Interna-
tional Conference on Automatic Software Engineering, ICSE-2018) automatic program repair (APR)
is now in industrially use1. As well as bug fixing, GI has been used to improve the performance of
programs, often by reducing run time [20; 21; 22] or multi-objective run time tradeoffs [23; 24; 25;
26; 27] but also better energy consumption [28; 12; 29], particularly for mobile computing (e.g. smart
phone) applications [30; 31], improving memory efficiency [32] and indeed porting to new hardware,
typically for auto-parallelisation or improved parallel performance [33; 34; 35; 36; 37; 38; 39; 40;
41]. As in many cases, we will be concerned with applying artificial evolution to human written source
code, but GI has also been applied to assembler [42], byte code [43] and indeed machine code [44;
45]. Mostly, so far, GI has been applied to C/C++ or Java but [46] evolves Python and [47] Scala.

Almost all genetic improvement work so far has been empirical, however there show been some theoretical
investigations: [48; 49; 50].

Essentially the GISMOE system represents the program source code as a sequence of lines of code. The
idea being programmers care about the layout of their code. In particular a “line of source code” has a
meaning to them. Perhaps there is something in “line of code” which will apply to automated changes to
the program? GISMO represents the source code as a sequence of BNF grammar rules. Note it is a very
specific grammar. It represents just the program. Not, for example, every program that could be written
in C. GISMOE defines several ways to make changes (i.e. mutate) the grammar. Each evolved individual is
simply an ordered variable length list of such mutations. There are also crossover operations for combining
(parts of) variable lists from different individuals to create children with (some of) the characteristics of
their (two) parents.

The GISMOE chromosomes are interpreted in left right order and applied to the original grammar. The new
grammar is then expanded into source code to give a child program, which we attempt to compile and run
(Figure 2). Notice we work on text files, and so (in principle) the program can be written in any languages,
whereas other tools (e.g. GIN [51] and PyGGI [52]) are specific to a given programming language (Java
and Python, respectively).

1In 2018 Facebook announce that they were routinely using their SapFix tool on their own code.
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Figure 2: Evolutionary Computation cycle adapted for Genetic Improvement (GI) of manually written C
code (left). The grammar tries to ensure many mutants compile, run, and terminate. For blue, fitness is
given by comparing with the original code’s answer on a random image (see Figure 3) and run time.

The GISMO framework has been repeatedly used [21; 53; 54; 55; 56; 57; 34; 35; 38; 39; 37; 58; 38; 40;
59; 60]. The plan was to use the most recent version which did not require specialise hardware, i.e. not
CUDA or SSE instructions. This was optimising OpenCV [58]. However OpenCV is huge and installing
it is a task in its own right. Hence a noddy graphics program was devised, which does not require special
hardware. This is blue.cpp, which counts blue pixels in an image. To keep it simple almost all OpenCV
dependency and input and output were striped out.

In Figure 1 one of the blue sky images used to validate the GI version of OpenCV’s SEEDS image segmen-
tation algorithm [58] is used to demonstrate blue.cpp counting blue pixels. Non-blue pixels are replaced
by black pixels.

The following sections run trough installing the system under Linux and an example of running it. After
the references, some common error messages and how to put them right are given Appendix A.

2 Installing

GISMOE does not need system privileges. It can be installed and run with a standard Unix user account.

First, download and unpack the compressed tar ball: http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-
code/opencv gp.tar.gz. It is perhaps best to use a new empty directory. (To reduce measurement noise,
for blue.cpp, you might want to put GISMOE on a local disk with minimal non-GISMOE load.)

gunzip -c opencv_gp.tar.gz | tar xvf

opencv gp.tar refers to the whole of the OpenCV experiment [58] however part of the README.txt file
refers specifically to blue.cpp

opencv gp.tar contains the code used to create the BNF grammar but, for simplicity, we will just use the
grammar, blue.bnf (see tcsh and gawk scripts in sub-directory create bnf for details of how to create the
BNF file).
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3 Running Evolution

The GISMO framework is essentially a collection of Linux tcsh and gawk scripts. It defines a directory
hierarchy. It is best to stick with this tree structure. Changing it will probably mean changes to many parts
of the framework.

Most of the scripts lie at the top of the directory tree. The sources subdirectory contains files used during
evolution but not modified by it. On the other hand, the sources xxx subdirectory is updated during each
evolutionary run. You might like to use a new “xxx” for each run. Although it is possible to run multiple
GISMOE times in parallel by giving them each their own “xxx”, in the case of blue.cpp, parallel runs may
interfere with accurate measurement of run time.

4 RE gp.bat

RE gp.bat is the top level tcsh batch file. It invokes many other tcsh and gawk scripts. Its parameters are
described by comments at the top of RE gp.bat (Details vary between the different versions of GISMOE
but follow the same trend. Next we describe the system specifically for blue.cpp)

Before starting create a suitable sources xxx sub-directory. E.g.
mkdir sources_blue

Then (on a quiet system) start GISMOE. E.g.:
./RE_gp.bat 142605 100 10 blue 11 blue.bnf

These parameters are:

1. $1 seed. The fitness function includes real elapse time, since this is noisy, it is impossible to re-run
evolution and get exactly the same output. Nevertheless argument $1 allows you to control all the
pseudo random seeds used. It should not be zero or too big. In practice a six digit number, e.g. the
current time2 can be used.

2. $2 number of individuals in the population. The length of time evolution takes is roughly proportional
to popsize × generations. With modern machines, it is often possible to set $2 to a huge number.
Your computer can probably cope, but it does not ensure the evolution is better than with a smaller
population but will usually take longer.
100 seems to be ok for the blue.cpp demo

3. $3 generations. Again you can experiment, but a small number of generations (i.e. ten) seems to be
ok for blue.cpp (Exceeding 999 will probably cause something to fail...)

4. $4 sources blue. Note RE gp.bat requires the active sub-directory name to start with sources so you
only supply the training part of the name.

5. $5 fitness repeats. Parameters five and six are specific to the blue.cpp version of GISMO. Run time
is a very noisy measure. Also it is asymmetric, with many cases of long tails. To get a reliable way of
comparing fitness measures, well follow Affymtrix’ practice and take an average of a large number
of elapse time measurements using use a robust median rather than the mean. Effectively we discard
measurements from the longest half of the runs and then take the median of the shorter half.
Increasing the number of repeats will increase the accuracy of the fitness measure. Also initially,
given overhead elsewhere, increasing $5 makes little difference to how long evolution takes. How-
ever there does not seem to be a big benefit to getting increasing accuracy. For blue.cpp something
in the range 10 to 100 seems to be ok.
Although the “median of the lower half” calculation should be robust, perhaps help it by choosing
an odd number for $5.

6. $6 grammar. This should be blue.bnf

2142605 corresponds to about half past two in the afternoon.
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RE gp.bat starts by creating the initial random population. At the end of each generation it will display the
best individual in that generation before moving on to create the next generation.

In addition to aborting RE gp.bat in the usual ways, e.g. via the command line, evolution can be stopped
by creating a file called STOP either in the top directory or the active sub-directory. (Remember to remove
STOP before trying to use RE gp.bat again.)

5 Files in the active sub-directory

It can be instructive to watch evolution taking place. Whilst your RE gp.bat is active, in another terminal
window, move into the active sub-directory and look at the contents of the current pop.nnn.fit as it is
generated. E.g.

cd sources_blue
tail -f pop.000.fit

All the output from the current generation (e.g. generation 000, Table 1) is appended to each pop.nnn.fit
file. This includes using blue.bnf to create each mutated version of blue.cpp and the output of the gcc C
compiler (including compilation error messages). It also includes the output generated by blue.cpp when it
is run. The code is instrumented to display both the number of blue pixels (see Figure 3) and the times it
took to run.

Once everyone in the current generation has been evaluated, RE gp1.bat analyses pop.nnn.fit looking for
successfully run mutants. It creates a second file pop.nnn.fit2 which is formally structured, with a line for
each mutant. Each line contains the mutants fitness score.

RE gp1.bat then takes the pop.nnn.fit2 it has just generated and sorts it by fitness to give pop.nnn.fit3

Finally it takes the top half of pop.nnn.fit3 and extracts just the mutant itself (i.e. remove fitness etc.) to
create pop.nnn select

RE gp1.bat is also responsible for showing the best of each generation onto the screen.

6 Fitness Function: gip fit1.bat

The tcsh script gip fit1.bat is invoked by RE gp1.bat to create each blue mutant and attempt to compile it.
If it compiles without errors, gip fit1.bat attempts to run it.

As mentioned above (page 3), in order to get a robust estimate of the mutant code’s speed, the C code runs
the function to count the number of blue pixels in a small fixed image (Figure 3) multiple times. The time
taken by each is recorded at the maximum clock resolution (nanoseconds, i.e. 1 gigahertz precision). The
code prints out both the blue pixel count and the time taken to a file (pop.nnn.fit) for analysis by RE gp1.bat
(see Section 5).

Table 1: Files in sources blue/ Each generation five files are created. “nnn” is a three digit generation
number. The initial generation is 000. Even though they are not needed after evolution proceeds to the next
generation, to ease debugging and post-evolution analysis, these files are not automatically deleted. (You
can of course delete them manually.)

Population pop.nnn
Raw output pop.nnn.fit
Extract fitness pop.nnn.fit2
Sort by fitness pop.nnn.fit3
Parents of next generation pop.nnn select
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Figure 3: Fixed random training image. Since it will be scanned many times during fitness calculation, the
training image is deliberately small.

7 RE next.bat

Once RE gp1.bat has evaluated the current generation, RE gp.bat either (if we have reached the re-
quired number of generations) stops or passes RE gp1.bat’s output (i.e. pop.nnn select) to RE next.bat
RE next.bat creates the next generation (nnn+1) by mutating each line in pop.nnn select and then crossing
each each member with another member. In principle, this doubles the number of lines. However, if the
number of lines output is less than the population size, additional individuals are created by mutation.

Note by standard genetic programming terms, the selection pressure [61] is quite low (2). If an individual
is lucky enough to get into the top half of the population, that is good enough, the best in the population
gets no explicit additional benefit above the average guy.

8 Result

At the end of the run, RE gp.bat will display the best individual as a list of mutations and its fitness.

As part of its usual processing gip fit1.bat (Section 6), compares the mutated code with the original (in
sub-directory sources). In other words it converts the list of mutations into C source code and displays the
changes in pop.nnn.fit Given the information printed by RE gp.bat at the end of the run, it is straightfor-
ward to find the fitness evaluation of the best individuals in the last sources blue/pop.nnn.fit created.

From pop.nnn.fit, it should be possible for you to check that the mutant code did indeed pass all tests and
how fast it is.

8.1 Example Blue Mutant: Best in Generation Ten

Best generation 010 0 11 641165 SEEDS Revision: 1.4 ./GP.exe 010 88 ...24
by 32 fake image PROG < blue.cpp 98>+< blue.cpp 100>
< blue.cpp 91>x< blue.cpp 92> < blue.cpp 89>x< blue.cpp 95> < blue.cpp 92>
< blue.cpp 113>+< blue.cpp 98> < blue.cpp 93>x< blue.cpp 94>
< blue.cpp 95>+< blue.cpp 82> < blue.cpp 90>x< blue.cpp 82>
< blue.cpp 72>< blue.cpp 80> <for1 blue.cpp 25><for1 blue.cpp 26>
< blue.cpp 75>
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Points to note:

• 0 (after “Best generation 010”) means your run was successful, since 0 means that the blue pixel
count returned by the mutant code, every time it was run, was exactly the same as the true answer.

• 11 is the number of repeats

• 641165 is the average time taken (nanoseconds, see section 6). That is, the mutant is 74% faster than
the best random mutant in generation zero (1 115045).

• 010 is the generation

• 88 is the identifier of the best mutant in generation 010. You can use id 88 to locate it in pop.010.fit
(see previous section).

• Everything after PROG is the actual individual. You can see it is a list of individual changes. E.g.:

< blue.cpp 92> means delete line 92 in file blue.cpp

< blue.cpp 72>< blue.cpp 80> means replace line 72 with a copy of line 80.

< blue.cpp 98>+< blue.cpp 100> means insert a copy of line 100 before line 98.

< blue.cpp 91>x< blue.cpp 92> means swap lines 91 and 92.

8.2 Example Blue Mutant

The expansion of the mutant from the list of instructions into their impact on the blue.cpp source code is
shown in the last pop.nnn.fit file.

gip_fit1.bat Revision: 1.65 eden.cs.ucl.ac.uk 010 88
diff ./blue.cpp ../sources/blue.cpp

The best mutant in the last generation (as is typically the case) makes many changes. The unix diff utility
shows all the changes made by mutation. These including deleting duplicate setting of red, green, blue
arrays (i.e. removing duplicate calls to GP R2, GP G2 and GP B2). Removing unnecessary code is why
this mutant runs faster.

> GP_R2(width, height, input_image, red);
> GP_G2(width, height, input_image, green);
> GP_B2(width, height, input_image, blue);

Typically the evolved individual contains many changes some of which are ineffective. I.e. they may not
change the source code, or even if they do change the source code, the change is syntactic only and the
semantics of the change are identical to the original. You may beatify the mutant code before presenting it
to the user. You might want to remove ineffective changes.

There is an optional tcsh script HC1.bat which removes the changes one at a time to help you decide which
are really needed.

Evolution is good at finding weak spots. You may want to check that the code changes found by evolution
are correct. For example, ensure that the mutated code will work on other images.
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Figure 4: Charles Darwin (1809-1882) lived for a while (1838–1842) in a house on Gower Street. The site
is now occupied by the UCL Biology department. Whilst CREST is in a modern tower block approximately
where his garden would have been. From 2000 to 2018 his portrait was on the English ten pound note.

9 Conclusions

Based on presentation given at TAROT 2018 (14th Training And Research On Testing Summer School
on Software Testing, Verification & Validation) 5th July 2018 in Computer Science, University College,
London.

The example code is deliberately simple minded. Commonly Darwinian evolution, in the form of GISMOE,
is able to optimise it.

Please report any errors to W.Langdon@cs.ucl.ac.uk

Acknowledgements
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A Some Possible Errors

• Remember GISMOE assumes use of the “Tea Shell” tcsh. If you use bash, RE gp.bat will fail.

• mkdir: cannot create directory
sources_blue: File exists

You can use existing directory created by tar (in which case you do not need to use mkdir to create
it) or use another name, which must begin sources (see page 3).

• ./RE_gp.bat 142605 100 10 blue
No BNF given

Not enough parameters for RE gp.bat (see page 3).

• Gen 000 ok 0 Zero!

Examine pop.000.fit to see why everyone in generation 000 failed.
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