Maximum Product of Non-Negative Numbers 1

RN/01/14

W. B. Langdon W.Langdon@cs.ucl.ac.uk Computer Science, University College, London, Gower Street, London, WC1E 6BT, UK

14 January 2001
Suppose we wish to maximise

$$
\begin{equation*}
\prod_{i=1}^{T} P_{i} \tag{1}
\end{equation*}
$$

subject to the conditions $T>0, P_{i} \geq 0, \sum_{i=1}^{T} P_{i}=C$ and $C \geq 0$.

Since logarithm is a monotonically increasing function for the range of P of interest we can maximise (1) by maximising its logarithm. We do this by differentiating w.r.t. P_{i} for $1<i<T$ subject to the constraints. The maximum value of (1) occurs when each of the partial derivatives is zero.

$$
\begin{aligned}
& \log \left(\prod_{i=1}^{T} P_{i}\right)=\log \left(C-\sum_{i=2}^{T} P_{i}\right)+\sum_{i=2}^{T} \log P_{i} \\
& \begin{array}{l}
\partial \log \prod_{i=1}^{T} P_{i} \\
\partial P_{i}
\end{array}=-\frac{1}{\left(C-\sum_{i=2}^{T} P_{i}\right)}+\frac{1}{P_{i}}
\end{aligned}
$$

Setting each partial derivative to zero (and noting $P_{i} \neq 0$) yields

$$
-\frac{1}{\left(C-\sum_{i=2}^{T} P_{i}\right)}+\frac{1}{P_{i}}=0
$$

$$
\begin{aligned}
-\left(C-\sum_{i=2}^{T} P_{i}\right)+P_{i} & =0 \\
-P_{1}+P_{i} & =0 \\
P_{i} & =P_{1}
\end{aligned}
$$

That is the P_{i} when (1) is maximal are all equal. Since they still have to sum to C every $P_{i}=1 / C$.
W. B. Langdon

2001-01-14 (2 April 2001)

