

Building user-centred rehabilitation technologies

Assoc. Professor Lynne Baillie Director Interactive and Trustworthy Technologies Research Group

Talk structure

- 1. Introduction to how we approached designing technology for rehabilitation
- 2. Design of the technology
- 3. Testing of the technology in the lab and the home
- 4. Trials of the technology in the home
- 5. Results of the trials

Our work on the project

- envisage was a research project concerned with promoting independence by involving users in their rehabilitation through the use of visual methods
- We needed to design and develop a rehabilitation technology for patients who were recovering from a fall and knee replacement surgery that would:
 - provide patients with suitable technological hardware that can track their exercises in the home
 - provide rehabilitation software that would provide feedback that was suitable for knee replacement and falls.

Team

Falls software, Dr Stephen Uzor

> Knee Replacement software, Dr Mobolaji Ayoade

Sensors, Dr Lee Morton

Knee Rehabilitation

- In Britain, 1 in every 20 persons over the age of 65 is affected by knee osteoarthritis
- This number is set to increase by up to 25% in a couple of decades
- Knee replacement is an effective surgical intervention for severe knee osteoarthritis (characterised by excessive pain and stiffness of the knee)
- Over 35,000 TKRs are performed each year in the UK
- An important part of the treatment is rehabilitation following knee replacement surgery.
- Research has shown that the long term success of knee replacement is highly dependent on the quantity and quality of rehabilitation received

Rehabilitation Tool Design Objectives

> To encourage correct performance

> To improve adherence

> To objectively track progress

Falls

- Falls are one of the leading causes of disability in the elderly costing £2B in UK \$34B USA.
- Muscle strength and balance decline with age, leading to an increased risk of falling
- Rehabilitation can improve muscle strength and balance in the lower body, thereby reducing fall risk

However, adherence to home rehabilitation is low over long term

Motivation: How can we use technology to encourage long term adherence to home exercise?

Project Timeline

Falls

Visualisation

Games

Research Questions

- Will the use of games and visual feedback for home rehabilitation show improvements in functional recovery and quality of life when compared to current standard care?
- 2. What impacts will games and visual feedback have on the understanding of rehabilitation, motivation to exercise and adherence to exercise program?
- 3. Would the system be effective and easy to use in the home unaided for the predominantly older user
- 4. Can an effective video call check-up be provided to physiotherapists and patients who have undergone total knee replacement?

Project Timeline

Designing Technology for Home Rehabilitation

- Part of the work was to figure out what were the essential elements of motion capture systems used in laboratories that we would need in the home
- Then using this knowledge & with the input of the users, make a system that would work in the home environment

Interviews with Medical Experts about Current Care

KINECT for XBOX 360.

- > Occlusion
- Free space
- > Comfort

Design Workshop: Phase 1

	Focus	Methods	
Phase 1	Investigate current	Current tools and	
	situation with users	interactions	
Phase 2	1 st demo of prototype	Critiquing demo prototype	
	system		
Phase 3	Suggestions for new	Design & Redesign	
	system		

Phase 1: Investigate Current Situation

- Booklets feel passive to use
- Using the booklet is not motivating
- No feedback on performance from the video

Possible Solution: motivate users through the use of well designed interactive tools that give feedback

Design Workshop: Phase 2

	Focus	Methods	
Phase 1	Investigate current	Current tools and	
	situation	interactions	
Phase 2	1 st demo of prototype system (hardware and software)	Critiquing demo prototype	
Phase 3	Suggestions for new system	Design & Redesign	

Phase 2: Hardware

- The sensor needs to be smaller than this (quite small)
- The user should not have to wear special clothing to use the sensors
- The sensors should be easy to put on and take off
- It should be easy to see when the sensors are on
- Want to be able to use the system anywhere in the home
- The System should be easy to interact with and learn

Phase 2: Visualisation

Negative

- Not sure of minimum and maximum movement
- ➢ No repetition count
- ➢ No progress shown

<u>Positive</u>

- Can see my own movement
- Can adjust my movement when I see the visual mannequin doing something different

Design Workshop: Phase 3

	Focus	Methods	
Preparatory Session	Planning & collecting data	Interviews, literature review, current tools	
Phase 1	Investigate current situation	Current tools, technologies, interactions	
Phase 2	1 st demo of prototype system	Critiquing demo prototype	
Phase 3	Suggestions for new system design	Design & Redesign	

Phase 3: Suggestions for New Visualisation & Games

Software Development : Design 1

Visualisation

Design 1: Hardware Development

Project Timeline

Usability Studies Procedure

4 exercises using the booklet

Sensors were put on using on-screen instructions

4 exercises using the visualization tool or games

- ✓ 12 Participants (6 lab and 6 home), average age: 74
- Time to complete each repetition was recorded
- ✓ We investigated the usability and acceptance of the technologies

Set up

Laboratory studies

Controlled environment

Ample space

Home studies

Intended environment

Limited space

Project Timeline

Wirless Motion Capture

Laboratory Motion Capture Technology

Home Motion Capture Technology

Final Design: Visualisation

Project Timeline

Study Design: Knee

Participant Demographics

Variable	Control	Experimental
Median Age (Range)	71(47 - 85)	69 (50 - 78)
Female	5	6
Male	5	5
Novice PC user	5	2
Occasional PC user	2	4
Experienced PC user	3	5

The Home Rehabilitation Session

Locations: Bedroom, living room ...

Key Findings Knee - User Experience

Enjoyment

"She was excited getting into deep green, you could hear her screaming with joy" – (spouse of P3).

Key Findings - Improved Adherence

Key Findings - Rehabilitation Outcomes

40

Key Findings - Therapist-Patient Communication

Conclusions: Knee

<u>Results</u>

- The system was acceptable and easy to use
- The system improved adherence and quality of home rehabilitation
- The system improved rehabilitation outcomes
- The system improved patient-therapist communication

Key Elements

- Promotes correct performance in real-time
- Provides feedback on each exercise repetition
- Tracks progress in terms of quantity and quality of performance

Falls Research studies – purpose, setup and hypotheses

	STUDY 1	STUDY 2	STUDY 3
STUDY DESIGN	Randomised Controlled Trial (2 groups)	Randomised Controlled Trial (2 groups)	Randomised Controlled Trial (3 groups)
STUDY GROUPS	Recov-R groupControl group	Recov-R groupControl group	Recov-R groupControl groupNintendo Wii group
DURATION	12 Weeks	8 Weeks	8 Weeks
KEY HYPOTHESES	 Recov-R system improves adherence and reduces fall risk 	 Recov-R system improves adherence and reduces fall risk 	 Recov-R system improves adherence and reduces fall risk
	 Recov-R system can be used independently in the home 	 Recov-R system can be used independently in the community housing 	 Recov-R system can be used independently in community housing in the UK and USA
PURPOSE	Pilot study of the system in seniors' homes	Larger study to confirm results of Study 1 – with focus on community housing.	 Test Recov-R system against standard care and Nintendo Wii Test Recov-R system in

Research studies – statistics/ demographics

	STUDY 1	STUDY 2	STUDY 3
REGION (RECRUITMENT PARTNERS)	Glasgow (NHS and Glasgow Housing Association)	Glasgow (NHS and North Glasgow Homes)	Edinburgh/ West Virginia (Various associations in Lothian regions and Institute for GeriOlympics and Active Aging, WV, USA)
MALES	4	14	6
FEMALES	13	24	33
PARTICIPANTS	17	38	39
RECOV-R GAME GROUP	8	16	20
CONTROL GROUP	9	22	19
AGE RANGE (MEDIAN AGE)	65 – 84 years (75.5 years)	65 – 99 years (76 years)	55 – 94 years (77.5 years)

Adherence – number of exercises done

The system encouraged the older adults to exercise regularly, compared to the standard care group, where there was a steady decline in adherence to exercise

The findings on adherence are statistically significant using a comparative T-Test (p = 5 e-11) with a significance value of p = 0.05

Improvement in mobility (clinical outcome)

12/ 16, participants in the Game group (75%) improved in average walking speed compared to a corresponding 8/22 participants in the Control group (36%). This suggests that the system encouraged better quality of movement during exercise – leading to a reduced risk of falling

The findings on walking speed are statistically significant using a T-Test (p = 0.047) with a significance value of p = 0.05

Improvement in balance (timed up and go test)

There were <u>significantly more</u> seniors who improved in balance, after using the Recov-R system (75%), versus those in the control group who used standard care (41%). This demonstrates the system's capability to improve physical function in terms of balance (necessary for reducing risk of falling)

Improvement in fall concern (Falls efficacy scale - FES)

There were significantly more seniors who were less concerned about falling, after using the Recov-R system (62%), versus those who used standard care (27%). This demonstrates the system's capability to improve confidence and reduce fear of falling (and consequently reduce risk of falling)

IMI Scale – Interest & Enjoyment

The scale goes from 1. Not at all interesting/Enjoyable to 7 Very interesting/Enjoyable.

The high values on the 'Enjoyment' scale indicate that the games were very enjoyable to the seniors, and that they were primary motivator for exercise

The high values on the 'Value/ Usefulness' scale indicate that the seniors attach high value and usefulness to the Recov-R system for the purpose of physical rehabilitation

Thank You For Your Attention Any Questions

Contact Details:

I.baillie@hw.ac.uk (http://www.ittgroup.org)

Publications associated with research talk:

Uzor, S. & **L. Baillie**. Investigating the Long-Term Use of Exergames in the Home with Elderly Fallers. In proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), 2014.

Ayoade, M. and **Baillie, L**. (2014). A Novel Knee Rehabilitation System for the Home. In proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI), 2014.