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Abstract

We outline a simple approach to axiomatising the class of representable
relation algebras, using games. We discuss generalisations of the method
to cylindric algebras, homogeneous and complete representations, and
atom structures of relation algebras.

1 Introduction

Relation algebras are to binary relations what boolean algebras are to unary
ones. They are used in artificial intelligence, where, for example, the Allen–
Koomen temporal planning system checks the consistency of given relations
between time intervals. In mathematics, they form a part of algebraic logic. The
history of this goes back to the nineteenth century, the early workers including
Boole, de Morgan, Peirce, and Schröder; it was studied intensively by Tarski’s
group (including, at various times, Chin, Givant, Henkin, Jónsson, Lyndon,
Maddux, Monk, Németi) from around the 1950s, and currently we know of
active groups in Amsterdam, Budapest, Rio de Janeiro, South Africa, and the
U.S., among other places.

Abstract relation algebras have the boolean operations on binary relations
(regarded as sets of pairs), and also composition, converse, and a constant for
identity (equality). Their basic theory is more intricate than that of boolean
algebras, as no finite set of axioms picks out the relation algebras that are iso-
morphic to genuine fields of binary relations. In fact, a central problem of the
area (for ‘cylindric algebras’, due to Henkin, Monk, and Tarski) is to find a ‘sim-
ple intrinsic characterization’ for these ‘representable’ relation algebras. (There
do exist intrinsic characterisations, in the form of first-order axiomatisations —
see [L2,Mo2,HMT], for example.)
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SERC Advanced Fellowship B/ITF/266. Hodkinson warmly thanks the organisers, especially
Ruy de Queiroz, for inviting him to the WOLLIC ’95 workshop in Recife. The authors
also owe their thanks to Hajnal Andréka and Yde Venema for valuable conversations and
communications, and to the editors for their patience in dealing with late changes to the
article.
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We approach this problem using model-theoretic forcing by games. It at-
tempts to construct a field of binary relations for a given relation algebra. The
conditions for success can be easily expressed by first-order axioms, and so we
obtain our characterisation.

There are certainly antecedents of this approach. It can be seen as a variation
on the argument of Lyndon [L1]. In so far as the game construction is a ‘step-
by-step’ argument, it has affinities with the work of many authors, such as
Andréka, Burgess, Henkin, Maddux (notably [Ma1, page 159], for example),
Reynolds, Robinson, Venema: see [HH1] for a short survey. The method of
games is well-known in model theory: see [Hodg1, Hodg2], for example. For the
topological connections, via the Banach–Mazur theorem, see [Ox]. There are
also precedents, such as [E,K,Sc,Sv,V] (to take just a few), for axiomatising the
conditions for success in a game, still more sophisticated instances of which can
be found in descriptive set theory.

The advantage of using this approach to characterise the representable rela-
tion algebras is that, in our view, the proofs are much simpler than those used
in previous characterisations. Perhaps more importantly, it is easy to generalise
the method. For example, the class of representable cylindric algebras (n-ary
relations) can be axiomatised. Moreover, higher-order properties can be dealt
with, such as homogeneity and completeness of representations; in the latter
case, we obtain the negative result that the class of algebras of fields of bi-
nary (or n-ary) relations respecting arbitrary unions is not elementary. We may
also study the atom structures of atomic relation algebras using this approach.
These results will be discussed below.

The article begins with definitions of relation algebras and representations.
Some examples are given. Then, in section 5, we describe the method of games
and apply it to axiomatise the representable relation algebras. In sections 6
to 9 we discuss generalisations to algebras with homogeneous representations,
cylindric algebras, algebras with complete representations, and atom structures.

This article has some of the character of an extended abstract. The interested
reader will find fuller details of our arguments, some further work, and also some
more references, in [Hi, HH1, HH2, Hodk]. Some of these are currently available
on the world wide web at
http://www.cs.ucl.ac.uk/staff/R.Hirsch/publications.html

and at http://theory.doc.ic.ac.uk:80/tfm/papers/HodkinsonIM/

2 Relation algebras

A relation algebra is a structure A = (A,+,−,^ , ; , 0, 1, 1′), where A is a non-
empty set (the domain or universe of A), + and ; are binary functions, ^

and − are unary functions, and 0, 1, and 1′ are constants. We require that
(A,+,−, 0, 1) is a boolean algebra (so we can use · and ≤ as abbreviations),
and that the following equations hold, for all x, y, z ∈ A:

1. x; 1′ = 1′;x = x
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2. (x; y); z = x; (y; z) (associativity)

3. x^^ = x

4. (x+ y)^ = x^ + y^

5. (−x)^ = −(x^)

6. (x; y)^ = y^;x^

7. (x; y) ·z^ = 0→ (y; z) ·x^ = 0 (‘triangle axiom’). Admittedly, this is not
an equation, but it can be shown that in the presence of the other axioms
(1–6 above) it is equivalent to the equation x^;−(x; y) · y = 0.

For a shorter axiomatisation, see [JT2 part II, definition 4.1] and [CT]. We write
RA for the class of relation algebras.

A relation algebra is said to be simple if it satisfies 1; r; 1 = 1 for every
non-zero r. Any relation algebra can be decomposed into simple relation alge-
bras. So for simplicity, we will first be considering only simple relation algebras,
postponing treatment of the general case until section 5.5.

A notational point: as is common in algebra, we will often use the same
notation for a structure as for its domain. Thus, for example, we will write
a ∈ A instead of a ∈ A, where A is as above.

3 Representations

A relation algebra A is intended to be a collection of binary relations, in which
+ is union, − is complement, ‘;’ is relation composition, etc. (see example 4.1).
So let us regard A as a binary relational signature (or similarity type). That
is, each element of (the domain of) the algebra A will be regarded as a binary
relation symbol. (This will not lead to ambiguity: for r ∈ A, if we write r(x, y),
we are thinking of r as a relation symbol, but if we write simply r, we are
thinking of r as an element of A.) The following definition is now natural to
make.

Definition 3.1 A representation of A is a model of the theory TA consisting
of:

∀x, y[1′(x, y)↔ (x = y)]
∀x, y[r(x, y)↔ s(x, y) ∨ t(x, y)] for each r, s, t ∈ A with A |= r = s+ t

∀x, y[1(x, y)→ (r(x, y)↔ ¬s(x, y))] for each r, s ∈ A with A |= r = −s
∀x, y[r(x, y)↔ s(y, x)] for each r, s ∈ A with A |= r = s^

∀x, y[r(x, y)↔ ∃z(s(x, z) ∧ t(z, y))] for each r, s, t ∈ A with A |= r = s; t
∃x, y r(x, y) for each r ∈ A with A |= r 6= 0.

Remark 3.2 If A is a simple relation algebra, then the last axiom follows
from the preceding ones, and so can be dropped. Also, if A is simple, any
representation of A is the disjoint union of representations satisfying ∀xy 1(x, y).
So we can (and will) add this axiom to TA in this case.
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Definition 3.3 Two representations M,N of a relation algebra A are said to
be isomorphic if there is a model-theoretic isomorphism θ : M → N . That is,
θ must be a bijection from the domain of M to that of N , and for all x, y ∈M
and r ∈ A we must have M |= r(x, y) iff N |= r(θ(x), θ(y)). (In algebraic
logic, this notion is sometimes called ‘base isomorphism’.) An automorphism
of a representation M of A is simply an isomorphism θ : M → M — i.e., an
automorphism in the usual model-theoretic sense. These notions will be relevant
in section 4.2 below.

Definition 3.4

1. A relation algebra A is said to be representable if it has a representation
— i.e., if TA is consistent.

2. We write RRA for the class of all representable relation algebras.

The axioms given in §2 are not enough to guarantee that a relation algebra is
representable, and thus a ‘real’ collection of binary relations:

Theorem 3.5 (Jónsson & Tarski [JT1], Monk [Mo1]) The class RRA is a
variety (that is, it can be equationally axiomatised). However, it cannot be
axiomatised by any finite set of first-order sentences.

This is the chief negative result in the area. (Compare with the boolean algebra
case, where every boolean algebra is representable as a set algebra.)

4 Examples

First, some basic examples of relation algebras and representations.

Examples 4.1

1. If D 6= ∅, the algebra

P = (℘(D2),∪,∼,^ , ; , ∅, D ×D, {(d, d) : d ∈ D})

of all binary relations on D is a relation algebra, where s^ is the con-
verse relation of s (i.e., s^ = {(x, y) : (y, x) ∈ s}), and s; t is the usual
composition of relations: s; t = {(x, y) : ∃z ∈ D[(x, z) ∈ s ∧ (z, y) ∈ t]}.
P is sometimes called the ‘full relation algebra over D’. It is evidently
representable, by the structure M with domain D in which each relation
r ∈ P is interpreted as itself: M |= r(d1, d2) iff (d1, d2) ∈ r.

2. Any subalgebra of P is also a representable relation algebra.

3. If L is a first-order signature and M is an L-structure, the L-formulas
ϕ(x, y) written with three variables, x, y, z, and x, y free, modulo equiv-
alence in M , form a representable relation algebra. Composition, for ex-
ample, is defined in the obvious way: (ϕ;ψ)(x, y) = ∃z(ϕ(x, z) ∧ ψ(z, y)).
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Here, we wrote ϕ(x, z) for the formula with free variables x, z obtained
by swapping the variables y, z throughout ϕ(x, y); the formula ψ(z, y) is
defined similarly.

As a particular instance, suppose that A is a simple relation algebra, and
that M+ is a representation of A. Let L ⊆ A. (L is regarded equally as a
subset and as a sub-signature of A.) Let M = M+dL, the reduct of M+ to
the signature L. Then it is an exercise to show that the relation algebra
obtained from the three-variable L-formulas modulo M -equivalence, as
above, is isomorphic to the subalgebra of A generated by L. When the
boolean reduct of A is an atomic boolean algebra, and L is the set of
atoms of A, then this is the ‘term algebra’ over the atom structure of A,
in the terminology of section 9.

Lyndon [L1] was the first to give an example of a non-representable relation
algebra. (Later, McKenzie [Mk, p286] found the smallest possible relation alge-
bra that is not representable. It has 16 elements.) We will describe a family of
algebras discovered by Lyndon [L3], which is a rich source of examples. First,
some background information on projective planes; details can be found in the
textbooks (for example, [HP]).

4.1 Projective planes

A projective plane is an incidence system of points and lines, such that any two
distinct points lie on a unique line, and (dually) any two distinct lines meet in
a unique point. Further, the plane must contain four points, no three of which
lie on a single line.

Here is a diagram of the smallest projective plane. It has seven points and
seven lines (one of the lines being drawn as a circle).
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In a projective plane, all lines intersect the same number of points. The order
of a projective plane is defined to be one less than the number of points on a line.
The plane pictured above has order 2. For any prime p, and any m ≥ 1, there is
a projective plane of order pm. One such plane may be obtained from the three-
dimensional vector space over the finite field of order pm, its points and lines
being the one-dimensional and two-dimensional subspaces, respectively, and the
point x lying on the line l iff x ⊆ l.

There are others (non-Desarguesian ones) not obtainable like this; but all
known finite projective planes do have prime power order. By the Bruck–Ryser
theorem (1949), if there is a projective plane of order n, and n ≡ 1 or 2
(mod 4), then n must be the sum of the squares of two non-negative whole
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numbers. So, for example, there is no projective plane of order 6 or 14. The
cases n = 10, 12, 15, 18, . . . are not covered by this result. A long computation
by Lam, Swiercz and Thiel (1989) showed that there is no projective plane of
order 10; the other cases remain open.

4.2 The Lyndon algebras

We take n to be a whole number, at least 2. The Lyndon algebra An is finite,
with n+ 2 atoms, say 1′, a0, . . . , an. It is defined by:

• ai; ai = ai + 1′ if n ≥ 3, and ai; ai = 1′ if n = 2.

• ai; aj =
∑
k 6=i,j ak if i 6= j,

• (necessarily) a^i = ai,

where i, j, k ≤ n. On arbitrary elements, ‘;’ can be calculated using distributivity
over

∑
. So can ‘^’: we have r^ = r for all r ∈ An.

If there is a projective plane Pn of order n, choose a projective line l (called
‘the line at infinity’), and let Sn be the ‘affine’ plane obtained from Pn by
deleting l and all points on l. Then the set of points of Sn can be made into a
representation of An by identifying the non-1′ atoms of An with the points of l
(in any fashion), and defining, for any atom ai, and any distinct points x, y of
Sn,

ai(x, y) holds iff xy ∩ l = {ai}.

Here, xy is the unique projective line through x and y. (We can recover the
interpretation of any r ∈ An from this.)

As an example, we obtain a representation of A2 from the projective plane
pictured above, as follows:
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We chose l to be the ‘circular’ line, and identified its points with the atoms
a0, a1, a2 of A2, as shown on the left. The affine plane on the right, obtained
by deleting l and its points, gives a representation of A2, the atomic relations
holding between its points being as illustrated. For example, the top two points
are related by a1, because, on the left, the (vertical) line joining them cuts the
circular line in the point identified with the atom a1 of A2.

It can be shown that any representation of any An must arise as an affine
plane in the way described. So:
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1. Any given Lyndon algebraAn is representable iff there is a projective plane
of order n. In particular, if there is no projective plane of order n (for
example, n = 6, 10, 14) then An is not representable (Lyndon, [L3]; this is
how some of the first non-representable relation algebras were found).

It can be seen that the question of whether an arbitrary relation algebra
is representable can be deep, and is in fact unsolved in the general case.
In its starkest form, it is not known whether A12 is representable. As the
different An appear superficially very similar, this illustrates the subtlety
of the representability problem.

2. For n ≥ 4, no representation of An is homogeneous (see definition 6.1
below for the meaning of this). The reason: an automorphism of the rep-
resentation Sn must be induced by a collineation of the projective plane
Pn that fixes l pointwise. (A collineation of a projective plane is a permu-
tation of the plane that takes points to points, lines to lines, and preserves
incidence between the two.) It follows that no automorphism can fix two
points on an affine line and swap two others. Yet any two distinct points
on such a line l′ are related by the same atom — the one in l ∩ l′.

3. For large n, e.g., n = 29, there are several non-isomorphic representations
of An. (Because the group of collineations of Pn fixing l does not induce
the full symmetric group on the set of all points of l, the isomorphism
type of Sn varies with the choice of association of atoms with the points
of l.)

See [HH1] for details.

5 Axiomatising RRA

The standard reference work, [HMT] (part 1, page 461), identifies one of the
two outstanding problems of the representation theory as ‘. . . the problem of
providing a simple intrinsic characterization for all representable cylindric alge-
bras . . . ’ Characterisations do exist — for example, see [HMT], part 2, page
112, and for relation algebras, the paper [L2] — but the axioms are certainly
not simple. In this section and the next, we will find axioms for the class RRA
of representable relation algebras. Our methods seem very simple, and, as we
will see, they are easily generalised to cylindric algebras.

By theorem 3.5, RRA is an elementary class — it is axiomatised by some set
of first-order sentences. Hence, by the downward Löwenheim–Skolem theorem
(see [Hodg2]), it suffices to find axioms that hold in a countable relation algebra
if and only if it is representable. The same goes for the simple representable
relation algebras, as these also form an elementary class. As we said, we will
begin with the ‘simple’ case. The special advantage of this is that we will be
able to obtain an equational axiomatisation.1 Recall (theorem 3.5) that RRA

1Thanks to Yde Venema for pointing this out.
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is a variety, so it must have such an axiomatisation. We would therefore like
the method to provide one.

So fix a countable simple relation algebra, A.

5.1 Networks

We will use ‘forcing conditions’ called A-networks. As A is fixed, for now we will
call them simply ‘networks’. A network is an approximation to a representation
of A.

Definition 5.1

1. A pre-network is simply a complete directed finite graph with edges la-
belled by elements of A. Formally, it is a pair N = (N1, N2), where N1 is
a finite non-empty set of nodes, and N2 : N1×N1 → A is a map assigning
an element of A to each pair of nodes.

2. To free up some suffixes, we will abuse notation and write simply N for
any of N,N1, N2 above, distinguishing them by context.

3. If N,N ′ are pre-networks, we write N ⊆ N ′ if every node of N is a node
of N ′, and, for all nodes x, y of N , we have N ′(x, y) ≤ N(x, y).

4. A pre-network N is called a network if it satisfies:

(a) N(x, x) ≤ 1′A for all x ∈ N ;

(b) (N(x, y);N(y, z)) · N(x, z) 6= 0 for all x, y, z ∈ N (‘triangle consis-
tency’)

5.2 The game Gn

Let N be any pre-network. We define a game, Gn(N,A), between players ∀ and
∃, to build a chain N = N0 ⊆ N1 ⊆ · · · ⊆ Nn of pre-networks if n is finite, and
an infinite chain N = N0 ⊆ N1 ⊆ · · · if n = ω. There are n rounds, numbered
0, 1, . . . , i, . . . for i < n. In each round, i, the players move as follows.

• ∀ chooses x, y ∈ Ni, and elements r, s ∈ A:

label t
y

x

∀’s choice: r, su
u
B
BN

'

&

$

%Ni

• ∃ responds with a pre-network Ni+1 ⊇ Ni such that one of the following
holds:
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(reject) Ni+1 is the same as Ni, except that Ni+1(x, y) = Ni(x, y)·−(r; s)

(accept) The nodes of Ni+1 are those of Ni, plus a new one, z. The
labels on edges of Ni+1 are given as follows:

– Ni+1(x, z) = r

– Ni+1(z, z) = 1′

– Ni+1(z, y) = s

– Ni+1(x, y) = Ni(x, y) · (r; s)
– If x′, y′ ∈ Ni and (x′, y′) 6= (x, y) then Ni+1(x′, y′) = Ni(x

′, y′).

– All other labels in Ni+1 not yet mentioned are 1.

y u
x u
B
BBN

y u
x u
B
B
BN

Reject

Ni+1

orAccept

Ni+1

∃’s response:

'

&

$

%

'

&

$

%
t · (r; s)

XXXXz
�
���

uzr

s
t · −(r; s)

∃ wins if each pre-network N0, N1, . . . played during the game is actually a
network. Otherwise, ∀ wins.

So in each round, ∀ challenges ∃ to add a certain triangle to an edge of the
network, and ∃ must either do so, or claim instead that the relation on that
edge is disjoint from the relation on the proposed side of the triangle. She will
lose the game if, at some stage, both options lead to pre-networks violating the
third, triangle-consistency condition of the definition of ‘network’. She also loses
G0(N,A) if N is not a network, but only a pre-network.

5.3 From representations to axioms, via games

Proposition 5.2 A ∈ RRA iff ∃ has a winning strategy in Gn(I,A) for all
n < ω, where I is the one-point network consisting of a single node, 0, with
I(0, 0) = 1′A.

Proof. ⇒: If M is a representation of A, ∃ can use M to help her decide
whether to accept or reject in each round of Gn(I,A). In more detail, she
preserves the condition that for each i < n there’s a map ′ : Ni → M with
M |= [Ni(x, y)](x′, y′) for all nodes x, y of Ni. She starts by defining 0′ to be
any point of M (recall that 0 is the only node of the trivial network I). If ∀
plays x, y, r, s in round i:

1. If M |= [r; s](x′, y′), she accepts, and extends the map ′ by mapping the z
of the game definition above to any z′ ∈M with M |= r(x′, z′) ∧ s(z′, y′).

2. If M 6|= [r; s](x′, y′), she rejects. Recall from remark 3.2 that as A is
simple, M |= ∀uv 1(u, v). It follows that M |= [−(r; s)](x′, y′), so the
conditions on the map ′ are kept into the next round.
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⇐: Assume that ∃ has a winning strategy in Gn(I,A) for infinitely many
n < ω. We claim that she also has a winning strategy in Gω(I,A). This is
because in any round, i, she can apply her winning strategies in the games
Gn, for infinitely many n > i, to the current position. These strategies say
whether to accept or reject ∀’s triangle. If infinitely many of them tell her to
accept, then she accepts. If not, then infinitely many will advise rejection, and
she rejects. In either case, she arrives at the next round in a position where
infinitely many winning strategies are still running. So she can continue in
the same way, forever. As she never loses in any round, she ends up winning
Gω(I,A).

Now, in a play of Gω(I,A), let ∃ use her winning strategy, but also persuade
∀ to play at some stage x, y, r, s, for each pair x, y of nodes that arise during the
game, and for every r, s ∈ A. This is possible, as both A and the networks Ni
in the game are countable — and she is on good terms with ∀. The outcome is
(essentially) an A-structure M , defined as follows. Let N∗ be the set of nodes
of all the networks played during the game. That is, N∗ =

⋃
i<ω Ni. Define a

binary relation ∼ on N∗ by x ∼ y iff ∃i < ω (x, y ∈ Ni ∧Ni(x, y) ≤ 1′). It can
be checked that ∼ is an equivalence relation on N∗. If x ∈ N∗, we write x/∼
for the ∼-class of x; we write N∗/∼ for the set of all ∼-classes. The structure
M is then defined as having domain N∗/∼, and, for any r ∈ A, we define
M |= r(x/∼, y/∼) iff ∃i < ω (x, y ∈ Ni ∧Ni(x, y) ≤ r). As can be checked, this
is well-defined.

One can now check that all axioms but the final one of definition 3.1 hold
in M . The last axiom, ‘M |= ∃xy r(x, y) for all non-zero r ∈ A’, follows from
the others, since A is simple. Hence, M is a representation of A. �

We need a little notation.

Definition 5.3

1. A term network is a complete directed finite graph N , each of whose edges
is labelled with a term of the signature {+,−, 0, 1, 1′, ^, ; } of relation
algebras. If x, y are nodes of N , we write N(x, y) for the term labelling
the edge (x, y) of N .

2. Let N be any term network, and let ι be an assignment that maps the
variables occurring in the labels of N to elements of A. Then we obtain,
in the obvious way, a pre-network, which we will denote by N ι. Explicitly,
N ι has the same nodes as N , and for all such nodes, x, y, say, N ι(x, y) is
the value in A of the term N(x, y) under the assignment ι.

3. Let N be a term network, and x, y nodes of N . Let u, v be any rela-
tion algebra terms. We define two term networks, Acc(N, x, y, u, v) and
Rej(Ni, x, y, u, v), as follows.

• N ′ = Acc(N, x, y, u, v) has, as nodes, the nodes of N plus a new one,
z. We have N ′(x, z) = u, N ′(z, z) = 1′, N ′(z, y) = v, N ′(x, y) =
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N(x, y) · (u; v), N ′(n,m) = N(n,m) for all other pairs of nodes n,m
of N , and all other edges of N ′ are labelled by 1.

• Rej(N, x, y, u, v) = N ′′ has the same nodes as N , and the same labels,
except that N ′′(x, y) = N(x, y) · −(u; v).

It remains to prove:

Proposition 5.4 For any n, there is an axiom ρn, whose definition is indepen-
dent of A, such that A |= ρn iff ∃ has a winning strategy in Gn(I,A). Here, I
is as in proposition 5.2.

Proof. We will actually define formulas ρn(N), where N is any term network.
The free variables of ρn(N) will be the variables occurring in the terms in the
labels of N . We will require that for all assignments ι of these variables into A,
and for all n < ω,

(∗) A, ι |= ρn(N) iff ∃ has a winning strategy for Gn(N ι,A).

We let ρ0(N) be a quantifier-free formula saying that N ι is a network:∧
x,y,z∈N

(N(x, x) ≤ 1′) ∧ ((N(x, y);N(y, z)) ·N(x, z) 6= 0).

Then, inductively, we define ρn+1(N) to be:∧
x,y∈N

∀u, v
(
ρn(Acc(N, x, y, u, v)) ∨ ρn(Rej(N, x, y, u, v))

)
,

where u, v are new variables not occurring in the labels on N .
A simple induction on n now shows that (∗) holds. The inductive step

uses the evident fact that for any pre-network N ′, ∃ has a winning strategy in
Gn+1(N ′,A) iff for all x, y ∈ N and all r, s ∈ A, she has a winning strategy in
Gn(N+,A) or in Gn(N−,A), where N+, N− are, respectively, the pre-networks
created from N ′ if she accepts or rejects when ∀ plays (x, y, r, s).

We now obtain the sentences ρn as ρn(It), where It is the term network
having only a single node, 0, and with It(0, 0) = 1′. Note that Iιt = I, for any
ι. �

By propositions 5.2 and 5.4, we have proved:

Theorem 5.5 The class of simple representable relation algebras is axiomatised
by {ρn : n < ω}, together with the axioms for simple relation algebras given in
section 2. �

11



5.4 Equational axioms

Note that the ρn of proposition 5.4 are universal sentences, because ∃ never has
to choose any elements of A. We can even transform them into equations. We
first express ρn in prenex normal form, ∀x̄ψn(x̄), where ψn is quantifier free,
so a boolean combination of equations. Now we use the following well-known
lemma.

Lemma 5.6 Let ψ(x̄) be any boolean combination of equations. Then there is
an equation, of the form s = 0 for some relation algebra term s(x̄), that is
equivalent in any simple relation algebra to ψ. That is, ∀x̄(ψ(x̄)↔ (s(x̄) = 0))
is true in any simple relation algebra.

Proof. By induction on ψ. If ψ is the equation t = u, let s = (t ·−u) + (u ·−t).
Then ψ is equivalent in any relation algebra to s = 0.

Assume inductively that ψ is equivalent to t = 0, and χ to u = 0. Then:

• ¬ψ is equivalent to ¬(t = 0) and so (in simple relation algebras) to 1; t; 1 =
1, and so to (−(1; t; 1)) = 0.

• ψ ∧ χ is clearly equivalent in any relation algebra to (t+ u) = 0.

�

Using this lemma on ψn, we obtain an equation εn of the form ∀x̄(s(x̄) = 0)
for some relation algebra term s(x̄), which is equivalent in any simple relation
algebra to ρn. Doing this for each n, we obtain an equational axiomatisation
of the simple representable relation algebras, in the sense that a simple relation
algebra satisfies εn for all n < ω iff it is representable. (The simple relation
algebras themselves do not form a variety and so are not equationally axioma-
tisable.)

5.5 The non-simple case

So far, we have only considered simple relation algebras. To extend our results
to the general case, we may use games of the form Gn(J,A) for any one-point
network J , rather than simply the I of proposition 5.2. The proof of that
proposition will now be a little more complicated, as to create a representation
we will need to build structures ‘M ’ in the games Gω(J,A) for all possible J ,
and then take their ‘disjoint union’. We will also need to adjust proposition 5.4.
These complexities made us reluctant to take this approach in the exposition
above. More importantly, we used the simplicity of the algebras in obtaining an
equational axiomatisation.

There is a further reason to be reluctant: the equations obtained for the
simple case already characterise arbitrary representable relation algebras.2 To
prove this, we use the fact [JT2, part II, theorem 4.15] that any relation alge-
bra A is isomorphic to a subalgebra of a product relation algebra of the form

2We thank H. Andréka for pointing this out to us.
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∏
i∈I Ai, where each Ai is simple and a homomorphic image of A. Now by theo-

rem 3.5, RRA is a variety, so is closed under taking subalgebras, products, and
homomorphic images. Hence, A is representable iff each Ai is representable.

Let εn be an equation that is equivalent in simple relation algebras to ρn.
Then A is representable iff each Ai is; and, by the foregoing work, this holds iff

(∗) Ai |= εn for all i ∈ I, n < ω.

But equations are preserved under subalgebras and products, so (∗) implies that
A |= εn for all n. Conversely, if A |= εn for all n, then (∗) holds, as equations
are preserved under homomorphic images. Hence A is representable iff A |= εn
for all n.

6 Homogeneous representations

Homogeneity is a second-order property of a representation. It has been exten-
sively studied in model theory and permutation group theory (see [C, Hodg2],
for example).

Definition 6.1 Let A be a relation algebra, and let M be a representation of
A.

1. A local isomorphism of M is a partial map θ : M →M with finite domain,
such that

(∗) for all x, y ∈ dom(θ), and all r ∈ A, we have M |= r(x, y) ↔
r(θ(x), θ(y)).

2. M is said to be homogeneous if any local isomorphism of M extends to
an automorphism of M . (See definition 3.3.)

3. We write HRA for the class of all relation algebras that have a homoge-
neous representation.

As the Lyndon algebras show, not every relation algebra has a homogeneous
representation. However, we can use the techniques of the preceding section to
axiomatise the finite relation algebras that do.

Theorem 6.2 There are first-order sentences ηn (n < ω) which, with the basic
relation algebra axioms, axiomatise the finite algebras of HRA. That is, a finite
relation algebra has a homogeneous representation iff the axioms ηn are all true
in it.

Proof. [Sketch; see [HH1] for details.] We modify the old game Gn of sec-
tion 6.1, by giving ∀ the option of moving differently. In any round, say i, he
may move as before; but now, he may instead elect to provide ∃ with a partial
1–1 map θ : Ni → Ni. This represents a challenge to ∃ to amalgamate two
copies of Ni over the stated common part given by θ. In such an eventuality,
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1. ∃ may accept, by responding with a new network Ni+1 and a pair of
embeddings µ, ν : Ni → Ni+1 such that ν ⊇ µ · θ, Ni+1(µ(x), µ(y)) =
Ni+1(ν(x), ν(y)) ≤ Ni(x, y), for all x, y ∈ Ni, and Ni+1(z, t) = 1 for all
other z, t ∈ Ni+1.

2. Or she may reject, by playing a network Ni+1 with the same nodes as Ni,
with Ni+1(u, v) ≤ Ni(u, v) for all nodes u, v, and such that Ni+1(x, y) ·
Ni+1(θ(x), θ(y)) = 0 for some pair of nodes x, y ∈ dom(θ). (In effect, ∃
denies that θ is a local isomorphism at all.)

Call this game Hn(N,A), where N is the starting network. It can be shown
that a finite relation algebra A has a homogeneous representation iff ∃ can win
Hn(N,A) for all n < ω and all one-point networks N . This uses Fräıssé’s well-
known work on amalgamation and homogeneity (see [Hodg2, chapter 7], for
example). As before, we can write down an axiom ηn (not universal!) saying
that ∃ has a winning strategy in the game of length n. This completes the
argument. �

Interestingly, when ∃ rejects, she must choose values for Ni+1(x, y) and
Ni+1(θ(x), θ(y)) in A. This means that the axioms ηn will not be universal
sentences, though a little thought shows that equivalent ∀∃ axioms exist, and,
indeed, we can find universal axioms in a similarity type expanded by a unary
predicate picking out the atoms of the algebra. We cannot eliminate ∃’s having
to choose relations in A, because HRA is not universally axiomatisable — it
is not closed under subalgebras. For example, the Lyndon algebra A4 /∈ HRA,
but it can be extended to a relation algebra with a homogeneous representa-
tion. To see this, let D be any representation of A4. (In fact, D must be an
affine plane of order 4.) Form a relation algebra P4 with domain ℘(D × D),
as in example 4.1. Then D is a homogeneous representation of P4 (in fact it is
completely ‘rigid’ in that there are no non-trivial local isomorphisms), and A4

is isomorphic to a subalgebra of P4.

Remark. In this way, every representable relation algebra extends to a rela-
tion algebra in HRA.

Questions. What can be said about the infinite algebras in HRA? Is HRA
elementary? Is it closed under elementary equivalence?

7 Cylindric algebras

These are the analogue of relation algebras for relations of larger arity than 2.
Our techniques apply equally well to them.

Definition 7.1 • If U is a set and α an ordinal, αU denotes the set of
functions from α to U . A subset of αU is called an α-ary relation on U .
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• A cylindric set algebra of dimension α is a structure (S,∪,∼, ∅, I,Dij , Ci)i,j<α
where S is a non-empty set of α-ary relations on some domain U , and, of
the operations, ∪ is interpreted as union, ∼ as complement, I as

⋃
i
α(Ui),

where the Ui are pairwise disjoint non-empty subsets of U , the diago-
nal elements Dij as {f ∈ I : f(i) = f(j)} (for each i, j < α), and the
cylindrification operators Ci (i < α) as follows:

if X ∈ S, CiX = {f ∈ I : ∃g ∈ X ∀j < α(j 6= i⇒ g(j) = f(j))}.

• A cylindric algebra of dimension α is defined to be a structure

C = (C,+,−, 0, 1, dij , ci)i,j<α,

where + is a binary function, −, ci (i < α) are unary functions, and
0, 1, dij (i, j < α) are constants. We require that C obeys the following
axioms, for all x, y ∈ C and i, j, k < α:

1. (C,+,−, 0, 1) is a boolean algebra

2. ci0 = 0

3. x ≤ cix
4. ci(x · ciy) = cix · ciy
5. cicjx = cjcix

6. dii = 1

7. if i /∈ {j, k}, then djk = ci(dji · dik)

8. if i 6= j, then ci(dij · x) · ci(dij · −x) = 0.

These axioms are valid over cylindric set algebras.

• We write CAα for the set of equations defining α-dimensional cylindric
algebras.

• A cylindric algebra is said to be representable if it is isomorphic to a
cylindric set algebra. The class of all representable cylindric set algebras
of dimension α is denoted RCAα. It is a variety.

• A component x of a cylindric algebra C is a non-zero element such that
cix = x for all i < α. If the only component is 1, then C is said to
be simple. A cylindric algebra is simple if and only if it has no non-
trivial homomorphic images. By axioms 3–5, a cylindric algebra of finite
dimension α is simple iff c0c1 . . . cα−1r = 1 for all non-zero r. Cylindric
set algebras are simple if the universal element I is of the form αU . Any
cylindric algebra can be decomposed into simple components.
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7.1 Axiomatising RCAn for 3 ≤ n < ω

Using games, with a special argument for the non-simple case as for relation
algebras, we may find equations ψnm (n,m < ω) such that the following holds:

Theorem 7.2 For any n < ω, with n ≥ 3, an n-dimensional cylindric algebra
satisfies {ψnm : m < ω} if and only if it is representable.

The results on homogeneity carry through to cylindric algebras of finite
dimension without change. See [HH1] for details.

7.2 Axiomatising RCAα

The axiomatisation carries over to the α-dimensional representable cylindric
algebras, for any α ≥ ω. This can be easily read off from the following known
algebraic results.

Definition 7.3 For an ordinal α, let Axα consist of CAα (i.e., the axioms
defining α-dimensional cylindric algebras), together with all Lα-sentences of the
following form:

∀v1, . . . , vn(∃v0ϕ(v0, civ1, . . . , civn)→ ∃v0ϕ(civ0, civ1, . . . , civn)),

where ϕ(v0, . . . , vn) is arbitrary, and i < α is such that ci, dij , dji do not occur
in ϕ for any j < α.

Fact 7.4 (HMT, part 2, corollaries 4.1.15, 4.1.16) Let α be an ordinal,
and ε an equation of Lα. Then ε is valid in RCAα iff Axmax(α,ω) ` ε.

To exploit this, we need some notation for renaming symbols of a signature.
Write Lα for the signature of α-dimensional cylindric algebras. Let α, β be
ordinals, and let µ : α → β be any 1–1 partial map.3 For an Lα-formula ϕ, we
define ϕµ to be the Lβ-formula obtained by replacing every ci in ϕ by cµ(i), and
replacing every dij by dµ(i),µ(j). So ϕµ is only defined if µ is defined on i, j, k
for every ci, djk occurring in ϕ.

For sets Φ of formulas on which µ is defined, we define Φµ = {ϕµ : ϕ ∈ Φ}.

Lemma 7.5 Let α, β be ordinals, and µ : α→ β be a partial 1–1 map.

1. Let Φ be any set of Lα-sentences, and suppose that µ is defined on them
and also on some other Lα-sentence σ. Then Φ ` σ iff Φµ ` σµ.

2. If µ is a total map, then (CAα)µ ⊆ CAβ, and (Axα)µ ⊆ Axβ.

(Recall that CAα is the set of axioms (equations) defining α-dimensional cylin-
dric algebras.)

3Recall that an ordinal is the set of all smaller ordinals.
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Proof. One can prove (1) by applying µ or its inverse to every sentence in a
proof of σ from Φ, for example. (2) follows from the definitions. �

We use this lemma implicitly in the following corollary to theorem 7.2.

Corollary 7.6 Let α ≥ ω be an ordinal. Then RCAα is axiomatised by the
set

Σ = CAα ∪ {(ψnm)µ : m,n < ω, µ : n→ α is a 1–1 map}.

Proof. We begin with a claim.

Claim. For any Lα-equation ε, we have Axα ` ε iff Σ ` ε.
Proof of claim. For ‘⇒’, fix an Lα-equation ε such that Axα ` ε. There is
a finite set Φ ⊆ Axα such that Φ ` ε. Choose a partial, surjective 1–1 map
µ : α → ω such that εµ, ϕµ (ϕ ∈ Φ) are all defined. Then Φµ ` εµ. Examining
the definition of Ax, we see that Φµ ⊆ Axω. Thus, Axω ` εµ. By fact 7.4, εµ

is valid in RCAn for all large enough n < ω. Fix such an n. By theorem 7.2,
CAn ∪ {ψnm : m < ω} ` εµ. So (CAn)µ

−1 ∪ {(ψnm)µ
−1

: m < ω} ` ε, whence
Σ ` ε, as required.

The converse is easier. It is enough to show that any (ψnm)µ ∈ Σ is a
consequence of Axα. Well, by theorem 7.2, ψnm is an equation valid in RCAn,
so, by fact 7.4, Axω ` ψnm. Let ν : ω → α be any 1–1 extension of µ to ω. Then
(Axω)ν ` (ψnm)µ. By definition of Ax, we have (Axω)ν ⊆ Axα. So Axα ` (ψnm)µ,
as required. This proves the claim.

As RCAα is a variety, any Lα-structure C is in RCAα iff it satisfies all
equations of Lα that are valid in RCAα. By fact 7.4, an Lα-equation is valid
in RCAα iff it is a logical consequence of Axα. By the claim, this is iff it is a
logical consequence of the set Σ given in the corollary. So C is in RCAα iff it
satisfies all equational consequences of Σ. Since Σ itself consists of equations,
this is iff C |= Σ, as required. �

8 Complete representations

Given an algebraic logic — boolean algebra, relation algebra or cylindric algebra,
or indeed any structure with boolean operations — we may be interested in
infinitary unions and intersections. In an algebra A with domain A, given any
subset S ⊆ A, we can define the ‘arbitrary union’

∑
S to be the least upper

bound of S in A, if it exists; we leave it undefined otherwise. Similarly,
∏
S is

defined as the greatest lower bound of S, if it exists.
However, in a representation we have available a different notion of infinite

union. A representation M of A is of course a structure in which every r ∈ A is
interpreted as a relation rM on M . The arity of these relations will depend on
what kind of representation we have in mind — for example, if A is a boolean
algebra, the rM should be unary relations on M , if it is a relation algebra,
they should be binary relations, and if it is an α-dimensional cylindric algebra,
they should be α-ary relations. To be a representation, the interpretations of
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the elements of the algebra as relations on M should be connected to their
algebraic properties in A. Precisely what connections will be required depends
on the particular case; but we would always expect the boolean operations on the
algebra to be respected in the representation, so that in particular, if A |= r ≤ s
then rM ⊆ sM , for all algebra elements r, s. We would also expect that rM 6= ∅
for each non-zero r in the algebra.

If now S ⊆ A, then we can associate with S the set-theoretic union of the
relations sM , for s ∈ S. Because the boolean operations are respected, the least
upper bound of S in A, if it exists, will be interpreted in M as a set containing
this set-theoretic union; but the containment may be strict.

A complete representation (of boolean algebras, relation algebras, cylindric
algebras, and so on) is one in which the two notions of ‘union’ agree:

Definition 8.1

1. A representation M is said to be complete if it respects arbitrary unions
(hence also intersections) wherever they are defined. That is,

(
∑

S)M =
⋃
{sM : s ∈ S}, whenever

∑
S is defined.

2. An algebra is said to be completely representable if it has a complete
representation.

This concept can be tackled in another way. Let M be a representation of
an algebra A; it is of no concern whether A is a boolean algebra, a relation
algebra, or whatever. If x̄ ∈ M , we write fx̄ for the set {r ∈ A : M |= r(x̄)} of
elements of A. Evidently, if M |= 1(x̄) then fx̄ is an ultrafilter on A.

Definition 8.2 In this notation, M is said to be an atomic representation if,
for all x̄ ∈M with M |= 1(x̄), the ultrafilter fx̄ is principal — or, equivalently,
there is some atom α ∈ A with M |= α(x̄).

This is to say that 1M is a union of interpretations of atoms. In [L2], relation
algebras with such a representation are called strongly representable, after D.
Scott.

Proposition 8.3 A representation M of A is complete if and only if it is
atomic. If A has a complete representation, then the boolean reduct of A is
an atomic boolean algebra.

Proof. An easy exercise. See [HH1,HH2] for details. �

We may wish to know when an algebra has a complete representation. Our
results can be summarised as follows:

• A boolean algebra has a complete representation iff it is atomic.
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• The class of completely representable relation algebras is not an elemen-
tary class — it cannot be axiomatised by any set of first-order sentences.

• The class of completely representable cylindric algebras of any given finite
dimension is not elementary, either. The proof is broadly similar to that
for relation algebras.

• The same holds for infinite-dimensional cylindric algebras; the proof is a
simple cardinality argument.

In what follows, we will outline some of the arguments used here.

8.1 Boolean Algebra

Proposition 8.4 A boolean algebra B has a complete representation if and only
if it is an atomic boolean algebra.

Proof. For ‘⇒’, see proposition 8.3. For ‘⇐’, if B is atomic, then let X be the
set of atoms of B. Regard the elements of B as unary relation symbols, as usual.
Define a structure M , with domain X, by

M |= b(x) iff B |= x ≤ b, for all b ∈ B, x ∈ X.

Then M is an atomic representation of B, so, by proposition 8.3, a complete
representation. �

8.2 Relation Algebra

CRA denotes the class of completely representable relation algebras. By propo-
sition 8.3, every A ∈ CRA is atomic (as a boolean algebra). Of course, if A
is finite, any representation of A is complete. But, unlike in boolean algebra
theory, not every atomic relation algebra has a complete representation. (For
example, any finite non-representable one.) Worse, even if A is atomic and has
a representation, it still may not have a complete one. So ‘atomicity’ does not
pick out the completely representable relation algebras from the representable
ones. Indeed, no set of first-order properties does:

Theorem 8.5 [HH2] The class CRA is not elementary.

We indicate the main steps in the proof of theorem 8.5. The details, for
both relation algebras and cylindric algebras, can be found in [HH2], and, for
the relation algebra case alone, in [Hi]. Let A be an atomic relation algebra.
An A-network N is said to be atomic if every N(x, y) is an atom of A. We
define a new game, Gan(A), of length n ≤ ω. In it, the players ∀,∃ build a
chain N1 ⊆ N2 ⊆ · · · of atomic networks. In the first round, ∀ chooses for ∃ a
one-point atomic network, N1. In each later round, if Ni was the last network
to be constructed,

• ∀ chooses x, y ∈ Ni and atoms a, b ∈ A such that a; b ≥ Ni(x, y).
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• ∃ responds with an atomic network Ni+1 extending Ni (with more nodes),
with Ni(x, y) = Ni+1(x, y) for all nodes x, y of Ni, and such that there is
z ∈ Ni+1 with Ni+1(x, z) = a and Ni+1(z, y) = b.

So ∀ demands a certain triangle to be added to the network, and ∃ must comply.
∃ wins if she never gets stuck.

Lemma 8.6 Let B be the ultrapower Aω/F , where F is any non-principal ul-
trafilter over ω. Assume that ∃ has a winning strategy in Gan(A) for all n < ω.
Then she has a winning strategy in Gaω(B).

Proof. Construct a winning strategy along the ultrapower. The lemma actually
holds where B is any ω-saturated relation algebra elementarily equivalent to A.
(Recall the standard fact that the ultrapower Aω/F is ω1-saturated. See, for
example, [Hodg2].) �

Lemma 8.7 Let B be any relation algebra such that ∃ has a winning strategy
for Gaω(B). Then there is a countable elementary subalgebra C of B such that ∃
has a winning strategy in Gaω(C).

Proof. Let C0 be any countable, elementary subalgebra of B. Make a chain of
countable elementary subalgebras

C0 � C1 � · · ·

of B such that, in the game Gaω(B), if ∀’s moves are restricted to atoms in Ci
then ∃’s winning strategy chooses only networks labelled by atoms in Ci+1. The
union of this chain, C, say, is a countable elementary subalgebra of B; and by
construction, ∃ can win Gaω(C). �

Lemma 8.8 Let C be any countable atomic relation algebra (or, more generally,
one with countably many atoms). Then ∃ has a winning strategy in Gaω(C) iff C
has a complete representation.

Proof. This is much as in proposition 5.2. If M is a complete representation
of C, then ∃ can use M as a guide to her moves, and win Gaω(C). Conversely, if
she has a winning strategy for Gaω(C), she can persuade ∀ to demand all ‘atomic
triangles’ to be added everywhere possible, during the course of the game. This
is possible because C has countably many atoms. Let Me = (

⋃
i<ω Ni)/∼ be the

outcome of such a play, in which ∃ used her winning strategy, and in which ∀
began with a one-point network whose node is labelled by e ∈ A (necessarily, 0 <
e ≤ 1′). Here, ∼ is as in proposition 5.2. Then the disjoint union

⋃
0<e≤1′Me

will be a representation of B. But it will also be complete, because the Ni are
always atomic. �

Combining lemmas 8.6, 8.7, and 8.8 gives

Theorem 8.9 ∃ has a winning strategy in Gan(A) (for all n < ω) if and only if
A is elementarily equivalent to a completely representable relation algebra.
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So, by lemma 8.8 and theorem 8.9, to show that CRA is not an elementary
class, it is enough to construct a countable atomic relation algebra A such that
∃ can win Gan(A) for all finite n, but not Gaω(A). This was done in [HH2], where
it was also shown in a similar way that the completely representable cylindric
algebras of any fixed finite dimension do not form an elementary class.

Remark 8.10 For each n < ω, the statement ‘∃ has a winning strategy in
Gan(A)’ can be written as a first-order condition on A, in the manner of propo-
sition 5.4. If we do so, we essentially obtain the so-called ‘Lyndon conditions’,
given in [L1], and claimed4 there to axiomatise RRA. By theorem 8.9, we see
that an atomic relation algebra satisfies the Lyndon conditions if and only if it
is elementarily equivalent to a completely representable relation algebra.

8.3 Infinite-dimensional cylindric algebras

A simple cardinality argument shows that the class of all cylindric algebras of
any fixed infinite dimension that have a complete representation is not elemen-
tary.

Let α be a fixed infinite ordinal, the dimension. Below, |α| denotes the car-
dinality of α. Write CCAα for the class of all α-dimensional cylindric algebras
C such that C has a complete representation. If C ∈ CCAα then C must be
atomic (cf. proposition 8.3). We write At(C) for the set of all atoms of C.

Lemma 8.11 Let C ∈ CCAα be such that C |= d01 < 1. Then |At(C)| ≥ 2|α|.

Proof. Let h be an isomorphism from C onto a cylindric set algebra on the set
αM that respects all infs and sups where defined. Since C |= d01 < 1, there is
ā ∈ αM with ā ∈ h(1) \ h(d01). So if x = ā0, y = ā1, then x 6= y.

Let S ⊆ α be arbitrary such that 0 ∈ S, and define āS ∈ αM to be the
sequence whose ith coordinate is x, if i ∈ S, and y, if i ∈ α \S. Then āS ∈ h(1)
by definition of cylindric set algebras, so by proposition 8.3, āS is ‘labelled’ by
an atom, in that āS ∈ h(c) for some (unique) atom c of C. Let S, S′ ⊆ α be any
distinct sets containing 0. Then, without loss of generality, there is i < α with
i ∈ S, i /∈ S′. Clearly, d0i is above (≥) the atom that labels āS , but not above
the one labelling āS′ . So these atoms must be different. Hence, the number of
atoms in C is at least the number of subsets of α that contain 0 — i.e., at least
2|α|. �

Corollary 8.12 The class CCAα is not elementary.

Proof. Take any C ∈ CCAα such that C |= d01 < 1. (There exist such C
— for example, the full power set algebra ℘(αX), for any set X with at least
two elements.) Since the cardinality of the language of α-dimensional cylindric

4The claim is correct for finite relation algebras but not for arbitrary ones; the correction
is in [L2].
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algebras is |α|, we may use the downward Löwenheim–Skolem theorem to take
B � C with |B| ≤ |α|. Then B |= d01 < 1, since B is an elementary substructure
of C. But B has at most |α| atoms. Hence, by the lemma, B /∈ CCAα. So
the class CCAα is not closed under elementary equivalence, and so cannot be
elementary. �

9 Atom structures

The relation algebra structure of an atomic relation algebra is determined by
its boolean algebra structure and by the way the product operation behaves
on its atoms. Hence we can extract the atom structure of an atomic relation
algebra, and endow it with natural first-order relations from which the relation
algebra structure of the given algebra may be recovered. Now the difficulties
in finding representations for relation algebras mostly arise from the product
structure — it is easy to find representations of a boolean algebra, and even
complete representations. So the question naturally arises as to whether these
problems can be pinned down to the atom structure, in the case of atomic
relation algebras. That is, does representability of an atomic relation algebra
depend only on its atom structure?

If the relation algebra is finite then the answer is clearly ‘yes’. So we confine
our attention to the infinite case. Here, there are many different relation algebras
sharing the same atom structure C. The biggest, P(C), is called the complex
algebra over C, and has as its universe the power set of C. The smallest —
call it the term algebra — is the subalgebra of P(C) generated by the atoms.
Slightly more formally, any relation algebra A with atom structure C embeds
into the complex algebra over C, via r 7→ {c ∈ C : A |= c ≤ r}. Identifying A
with its image under this embedding, the term algebra over C is a subalgebra
of A. Thus, up to isomorphism, any relation algebra with atom structure C lies
between the term algebra and the complex algebra over C.

Now, by theorem 3.5, if a relation algebra is representable then so is any
subalgebra. So our question can be rephrased: if the term algebra of an atom
structure C is representable, must the complex algebra over C be representable
as well?

Our knowledge here is as follows. See [Hodk] for the proofs.

• There are two countable relation algebras A,B with the same atom struc-
ture, A being representable, and B not representable. This is proved by
the construction of [HH2] mentioned above. Hence the answer to the
question above is ‘no’.

• The class

{C : some relation algebra with atom structure C is representable}

of atom structures of representable atomic relation algebras is elemen-
tary, and can be axiomatised explicitly using games. However, there is no
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axiomatisation using a finite number of first-order sentences.5

• The class of atom structures

S = {C : every relation algebra with atom structure C is representable}

is not finitely axiomatisable in first-order logic.5

• If an atom structure C satisfies the Lyndon conditions (see remark 8.10),
then it is in S. The converse fails: a counterexample can be given by
modifying a construction of Maddux [Ma1], which in turn is related to
one of Lyndon [L1].

• We do not know whether S is elementary; this question was asked in [Ma2].
We conjecture that it is not. Nor do we know whether it is closed under
elementary equivalence, or whether membership of it is set-theoretically
absolute.
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