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RELATION ALGEBRA REDUCTS OF CYLINDRIC ALGEBRAS AND
COMPLETE REPRESENTATIONS

ROBIN HIRSCH

Abstract. We show, for any ordinal v > 3, that the class MaCA., is pseudo-elementary
and has a recursively enumerable elementary theory. S.K denotes the class of strong
subalgebras of members of the class K. We devise games, F™ (3 < n < w), G, H, and
show, for an atomic relation algebra A with countably many atoms, that

3 has a winning strategy in F“ (At(A)) & A€ S MaCA,

3 has a winning strategy in F"(At(A)) < A€ S MaCA,
3 has a winning strategy in G(At(A4)) <« A€ RaCA,
A)

3 has a winning strategy in H(At(A4)) = A€ MaRCA,

for 3 < n < w. We use these games to show, for v > 5 and any class K of relation algebras
satisfying
MRaRCA, C K C S.MaCA;,
that K is not closed under subalgebras and is not elementary. For infinite ~y, the inclusion
MRaCA, C S MaCA, is strict.
For infinite v and for a countable relation algebra A we show that A has a complete

representation if and only if A is atomic and 3 has a winning strategy in F(At(A)) if and
only if A is atomic and A € ScMRaCA,.

§1. Introduction. There are two kinds of algebras of relations largely due
to Alfred Tarski: relation algebra (although the history of relation algebra goes
much further back [10, 3]) and n-dimensional cylindric algebra, for various n. Re-
lation algebras are closely related to fields of binary relations and n-dimensional
cylindric algebras are based on fields of n-ary relations. Both types of algebra
have been studied intensively and are widely used.

For any n-dimensional cylindric algebra C (n > 3) the relation algebra reduct
Ra(C) can be defined by taking the two dimensional elements of C and using the
third dimension to define converse and composition. The relation algebra reduct
is the key tool for connecting cylindric algebras to relation algebras. Quite a lot is
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known about the class of subalgebras of relation algebra reducts of n-dimensional
cylindric algebras: the class is a canonical variety [6, proposition 5.48], for exam-
ple. The neat embedding theorem [5, 5.3.13, 5.3.16] says that a relation algebra
is representable if and only if it is a subalgebra of a relation algebra reduct of an
w-dimensional cylindric algebra.

Much less is known about the class of relation algebra reducts of n-dimensional
cylindric algebras (here we do not take subalgebras). A relation algebra in this
class is more directly connected with an n-dimensional cylindric algebra. We
can at least show that the class is pseudo-elementary, even for infinite n, and
that the elementary theory of the class is recursively enumerable provided n is
not uncountably infinite. But Monk proved that RaCA,, is not closed under
subalgebras for any n > 5 (including infinite n) [12], Maddux and Németi inde-
pendently proved that RaCA,, is not closed under subalgebras for n > 4 [8, 14]
and later the same was proved for n = 3 [19, 15]. Tt is also known that the
related classes M, CA,, of neat reducts of cylindric algebras, for 2 < m < n,
are not closed under subalgebras [13, 18]. In this article we will show, for n > 5,
that RaCA,, is not closed under elementary equivalence. [A corresponding re-
sult was already established for neat reducts of cylindric algebras [17], but the
construction used there does not seem to work for relation algebra reducts.]

A complete representation of a relation algebra is a representation where ar-
bitrary suprema are preserved in the representation, wherever they exist in the
algebra. There are connections between relation algebra reducts and CRA, the
class of completely representable relation algebras, although the relation algebra
reduct is algebraically defined whereas CRA has a semantic definition. CRA
is known to be pseudo-elementary but not closed under elementary equivalence
[6, theorem 17.6], so it cannot be defined by any first-order theory. The same
negative properties hold for iaCA,, (n > 5).

It is known that a completely representable relation algebra must be atomic
and representable (of course), but representability and atomicity do not suf-
fice to prove that a relation algebra is completely representable (see [7, exam-
ples 23, p. 154 1] for an atomic, representable relation algebra with no complete
representation). This makes you wonder what else is needed to ensure that a
relation algebra is completely representable. A transfinite game can be defined
that does characterise CRA, but not everyone likes transfinite games. In this
paper we will demonstrate another connection between the class RaCA,, and
the class CRA, at least for countable algebras, by proving a complete version
of the neat embedding theorem: a countable relation algebra has a complete
representation if and only if it is atomic and it is a strong subalgebra of the
relation algebra reduct of an w-dimensional cylindric algebra. (An algebra is a
strong subalgebra of another if it embeds into it in such a way that arbitrary
suprema are preserved by the embedding, whenever they exist in the algebra.)
This can be thought of as an algebraic characterisation of CRA, at least for the
countable case. Whether this characterisation works for uncountable algebras
remains unknown.

In the next section we run through the necessary prerequisites from algebraic
logic, including the definition of the relation algebra reduct, the relation algebra
atom structure, the complete representation, the strong subalgebra etc. and



some basic lemmas. In section 3 we prove that SRaCA,, is pseudo-elementary.
In section 4 we define three games played over a relation algebra atom structure
and use these games to determine if a relation algebra is a strong subalgebra of a
relation algebra reduct, as well as some other results concerning other classes. We
use one of these games to re-prove a result of Sayed-Ahmed: a countable relation
algebra is completely representable iff it is atomic and a strong subalgebra of an
w-dimensional cylindric algebra. In section 5 we construct a particular atom
structure (sometimes called a rainbow algebra atom structure) and use this in
section 6 to demonstrate that a range of classes, including RaCA,, for n > 5, are
not closed under elementary subalgebras. The paper includes a series of open
problems.

§2. Preliminaries.

2.1. General. p(X) is the power set of X. "X denotes the set of all functions
from the ordinal v to the set X. Equivalently, we may consider £ € 7X as a
sequence (2o, %1,...) = (#; : i < 7), it will be implicit that the ’th element of
Z (or equivalently #(i)) is x;. We write <“X for |J, ., "X. For f € X, i <~y
and z € X we write f[i/«] for the function which is identical to f except that
fli/z]({) = =. It 0 : X — Y is any function and z € "X then 0(z) € Y is
defined by (6(z))(¢) = 6(z(¢)). Fix some n € w. For ¢,j < n we write [¢/j], Id_;
for the functions n — n defined by

am={ & 2R
Id_; = {(k, k) : k € n\ {i}}

Note that all these definitions depend implicitly on n, the first one is a total
function and the second one is a partial function.

2.2. Boolean algebra with operators. We assume some knowledge about
cylindric algebras and relation algebras [9, 4, 5, 6]. For any ordinal v, CA,
denotes the class of y-dimensional cylindric algebras [4, definition 1.1.1]. If T is
a finite subset of v we write ¢z for ¢;, .. .c;, @, where ig, ... i is an arbitrary
enumeration of I'. Since ¢;c;x = ¢;¢;x is one of the cylindric algebra axioms, the
order of the enumeration makes no difference.

R A is the class of all relation algebras. One of the defining axioms for relation
algebras is the Peircean law which states

a;b.c” =0« bjc.a” =0

CA, ,RA are examples of classes of boolean algebras with (completely addi-
tive) operators. A boolean algebra with operators is simple if any homomor-
phism defined on the algebra is an isomorphism or has a degenerate image. For
similar boolean algebras with operators A, B we write A C B if A is isomor-
phic to a subalgebra of B (often we will identify A with its isomorphic image).
[I;e;r Ai denotes the direct product of the similar boolean algebras with opera-
tors (A; 1 i € ). If K is a class of similar boolean algebras with operators then
HK,SK,PK denote the classes of homomorphic images, subalgebras, direct
products of members of K, respectively.



2.3. Representations. A relation algebra A is representable if there is a
structure M in which each element a € A is interpretted as a binary relation a™
over the domain of M faithfully (i.e. a # b € A — a™ # b™) s0 as to preserve
all the relation algebra operators, i.e. 0™ =@, (a +b)M = aM UM (—a)M =
M\ aM UM = {(m,m) : m e M}, a=M = {(n,m) : (m,n) € a™} and
(a; 0)M = aM|pM. Tt follows, using 1~ =1, 1;1 = 1, that 1™ is an equivalence
relation over the domain of M, if M is a representation. RRA is the class of
all representable relation algebras. A partial isomorphism 6 of the representation
M of A is a partial map on the base of M such that for all ¢, j € dom(#) and all
a € A we have (i,j) € a™ & (0(:),0(j)) € a™M.

The cylindric set algebra of dimension v on a base D is (p("D),0,"D, U, \, D;;, C;
i,j <), where D;j; = {f € "D: f(i) = f(j)} and for S C "D, C;(S) = {f €
"D :3d € D, fli/d] € S}. A cylindric algebra C € CA, is representable if it is
isomorphic to a subalgebra of a product of cylindric set algebras of dimension ~
(see [4, page 171] and [5, definition 3.1.1], but note that in the latter definition
instead of closing under direct products the equivalent notion of a generalised
eylindric field of sets is used). We write RCA,, for the class of representable
~-dimensional cylindric algebras.

PROPOSITION 1 ([3.1.108]HMT2). RCA, is a variety, hence closed under

subalgebras, direct products and homomorphic images.

2.4. Locally finite cylindric algebras and weak set algebras. Define
the dimension set of z, for v € C € CA,, by A(x) ={i<~v:gz #z} Cis
said to be locally finite if |A(z)| is finite, for all # € C. If v is finite then every
~-dimensional cylindric algebra is locally finite.

Let v > w and let D be aset. Fix fo € "Dandlet W= {f e "D :{i: f(i) #
Jo(7)} is finite}. The y-dimensional cylindric algebra (p(W),0, W, D;;,C; 1 i,j <
w) where D;;, C; are defined as for cylindric set algebras, but relativized to W,
is called a weak cylindric set algebra of dimension ~ [5, definition 3.1.2].

PROPOSITION 2 ([5, 3.1.102]). Every weak cylindric set algebra is repre-

sentable.

2.5. Atom structures. An atom of a boolean algebra with operators is a
minimal non-zero element. A boolean algebra with operators is atomic if every
non-zero element is above some atom. If A is an atomic relation algebra, the
relation algebra atom structure At(A) = (A, Id,~,C) consists of the set A of
atoms of A, the set Id of atoms below the identity of A, the function ~ that takes
an atom to its converse, and the list C' of consistent triples of atoms (a,b,¢) —
those where a; b > ¢. Since the relation algebra operators are completely additive,
the atom structure suffices to define the operators over arbitrary elements of
A. The following properties always hold in a relation algebra atom structure
[6, lemma 3.24]. For all z,y, 2,1 € A,

o 1 =y iff there is e € Id such that (z,e,y) € C.

o If (x,y,7z) € C then (Z,2,y),(§,%,2) € C.

o (Fue A((z,y,u),(u,z,t) € C)) & (Fve A((y,z,v),(x,v,1) € C)).

Conversely, if & = (A, Id, 7, C) has the type of a relation algebra atom struc-
ture we can define the compler algebra of a, which has the type of a relation



algebra, by ¢m(a) = (p(A), 0, A,U,\, Id, 7, ;), where the converse operator ~ is
extended from atoms to sets of atoms by S~ = {s~ : s € S}, and composition of
sets of atoms is defined by S;T ={a € a:3s€ S, I €T, (s,t,a) € C}, where
S, T C A. It turns out that the three conditions above are not only necessary
for an atom structure to arise from the atoms of a relation algebra, but they
are also sufficient — the complex algebra of such an structure will be a relation
algebra.

An atomic relation algebra A is simple if and only if At(A) = (A, Id, —,C) |
Va,b € A, 3e,d, f € A, (a,¢,d),(f,d,b) € C. (Rewriting this with the compo-
sition operator instead of the list of consistent triples we get Va,b € A, e, f €
A, f;a;e > b and this is equivalent to the more familiar statement # # 0 —
L 1=1)

2.6. Substitutions. Let v be an ordinal and C € CA,, 4,7 < v and z € C.

Define
5t = ¢;(dij . ) otherwise

FACT 3. Let C € CA, (some~ >3), x,y€C, 1,j, k1 <~.

1. 5§ is a completely additive endomorphism of C [4, 1.5.3].
2. Ifi # j then cisjx = six (from the definition of sj and the cylindric algebra
ariom ¢; ¢y = ¢y).

Ife . ccy=0theny.ca=0[4, 1.2.5].

Ifk & {i,j} then cysix = siepx [4, 1.5.8(i1)].

siciz = ¢z [4, 1.5.8(i)]

If i # j then ¢;sjz = sy [{, 1.5.9(1i)]

cjsé»x = cisga: M4, 1.5.9(i)]

If i # k then sisyx = spx [{, 1.5.10(i)]

sisly = 531‘ [4, 1.5.10(v)]

jo1

O 0 ~1I O O = W

DEFINITION 4. Let n > 3 be an ordinal and i,j < n. We define a string
of substitutions s;; that ‘move dimensions 0,1 to ¢, 5’ as follows.

5?5} ifj £0
sij =4 sps;  ifj=0,i#£1
s3slsh 4fj=0,i=1

[In the notation of [6, definition 5.23, lemma 13.29], §;; is the function n — n
taking 0,1 to i, j, respectively, and fizing all k € n\ {i,j}.]

2.7. Neat reducts and relation algebra reducts.

DEFINITION 5. Let A < p be ordinals and let C € CA,. The neat A-reduct
Nea(C) € CAy has as its domain {x € C: A < i< [ — ¢ =z} and all the
operators are inherited from C.  MuaCA, denotes the class {MuA(C) : C €
CA,}.

Let A > 3 and let C € CA . The relation algebra reduct Ra(C) is the algebra
of the type of relation algebras whose domain is the same as that of Mt2(C), with
boolean operators inherited from C and with the relation algebra operators defined



by

'=dn
a” =sislsia

a;b = cy(sya . s9b)
for a,b € MNra(C). Observe, in the notation of definition 4, that a~ = siga and
a;b = ca(sgaa . s21b). For A > 4, Ra(C) is a relation algebra [5, 5.3.8]. RaCA,
denotes the class {Ma(C) : C € CA,}.

LEMMA 6. Let 2 <A< pu <~ and 3 < pu.
e Nty (N, CA,) = Ny (CA,) and Ra(Nr, CA,) = Ra(CA,).
e MNuy(CA,) CNen(CA,) and Ra(CA,) C Ra(CA ).

The neat embedding theorem was first proved in the closely related setting of
neat reducts of cylindric algebras [12, theorems 4.1,9.11,9.12], see [11, p.112] for
a similar result with relational bases.

THEOREM 7 (Neat embedding theorem, Henkin, Maddux, Monk). Lety >
w.

RRA = (] S%uaCA, = SRaCA,
n<<w
The theorem and a proof can be found in [6, proposition 13.48]. Thus SSRaCA
is constant, for v > w. By contrast, it is strictly decreasing for 3 < v < w
[6, theorem 15.1] and therefore SRaCA., strictly decreases as + increases, for
finite v. We might ask what happens to SRaCA, as v > w increases. We thank
Andréka and Németi for this result®.

THEOREM 8 (Andréka and Németi). Fory > w we have RaCA, = RaCA,,.

Proor. The inclusion RaCA., C RaCA,, is lemma 6. Conversely, let A €
RaCA,,, say A= RaC for some C € CA,,. We have to show that A € RaCA,,.
Let €’ be the subalgebra of C generated (using the cylindric algebra operators)
by A. Then A = RRaC’ and (' is a locally finite, w-dimensional cylindric algebra.
By [4, 2.6.74(ii)], every locally finite w-dimensional cylindric algebra is the neat
reduct of a locally finite y-dimensional cylindric algebra, so ¢’ = N, D for
some locally finite D € CA,. Hence A = Ra(C') = Ra(Nr, D) = Ra(D) (by
lemma 6), so A € RaCA., as required.

_|

PROBLEM 9. That still leaves one case: i1s RaCA, = ﬂn<w RaCA, ? Andréka
and Németi have proved that every relation algebra in (), ., RaCA,, has an el-
ementary subalgebra in SRaCA,,, but the question as stated remains open.

THEOREM 10. RaCA, = RaRCA,,.

Proo¥F. The inclusion RaCA, DO RaRCA, is trivial. To prove the other
inclusion, let A € RaCA,,, say A = RaC for some C € CA,. Let C' be the
subalgebra of C generated by .A. Then C’ is locally finite and A = Ra(C’). By
proposition 2, ' € RCA, so A € RaRCA,,. =

! Personal communication to the author.



PROPOSITION 11 ([6, 13.31]). Let 4 <~, C € CA, i,j,k < 7, k & {i,j}
and a, 3,7 € Ra(C).

sij(oz;ﬁ) = ck(sika . Skjﬁ)

For v > 3 it is known that SaCA., is not closed under subalgebra. It is easy
to check that it is closed under direct products: HiEI RaC; = NRa HiEI C;, where
C; € CA,. Andréka and Németi proved? that the class is also closed under
homomorphic images.

THEOREM 12 (Andréka and Németi). Let v > 3. HRaCA, = RaCA,.

PRrOOF. See [13, theorem 1(i)]. Let A = fRaC for some C € CA, and let
h : A — B be a relation algebra homomorphism. We have to show that B €
RaCA.,. We can assume that the algebra generated by A in C using the cylindric
algebra operations is the whole of C (else replace C by the subalgebra generated
by A). Then C is locally finite. Let I be the kernel of A, an ideal of A. The
domain of A is the same as the domain of Nry(C) and I is also an ideal of
Nro(C). Hence [4, 2.3.8] I extends to an ideal I’ of C and I = I' N A. Now
B= A/l = A/ CRa(C/I'). We have to show that the inclusion is not proper.

Let 2 € Ra(C/I') be arbitrary, say « = ¢/I’ for some ¢ € C, we will show that
z = a/I' for some a € A. Since C is locally finite, the dimension set A(c) is
finite. Let I' = A(c) \ {0, 1} (a finite subset of v) and let ¢/ = ¢irye. Now ¢’ € A
and x =¢/I' = /I’ since # € Neo(C/1). Thus B = Ra(C/I') as required.

_'

2.8. Complete representations and strong embeddings.

DEFINITION 13. For any boolean algebras with operators A C B we say
“A is a strong subalgebra of B” and we write A C. B if whenever the supremum
ZA X exists in A then the supremum exists in B and ZA X = ZB X. Erxamples
of cases where A C. B include the case where A is a finite subalgebra of B
and the case where B is the MacNeille completion of A. We write ScK for
{A:3Be K, AC. B}.

A representation M with base D of a boolean algebra B interprets each element
b € B as a distinct subset of D such that 0™ = §, 1™ = D, (=b)™ = D\ M
and (b4 b6 )M = MU b’M, for all bt € B. So M is a representation of B with
base D iff the map b — b™ is an embedding: B C P(M) =4y (p(D), D,0,U,\).
If B C. P(M) then we say that M is a complete boolean representation 5.
Equivalently, for any subset X of the unwverse of B, if the supremum ZBX
exists in B then (ZB XM = Usex bM.

A relation algebra A is completely representable if there is a representation M
of A such that the reduct of M to the boolean part of the signature is a complete
boolean representation of the boolean part of A. CRA denotes the class of all
completely representable relation algebras.

It is easy to show, using the De Morgan laws, that infima are also preserved by
strong subalgebras: if A C. B then whenever HA X exists then HB X = HA X

2Personal communication to the author.



also exists. Similarly, if M is a complete representation of B then whenever
T1° X exists ([T° X)M = Nyex M.

The next few lemmas are are about boolean algebras but apply equally to any
boolean algebras with operators.

LEMMA 14 ([6, lemma 2.16]). If B is an atomic boolean algebra and A C. B
then A is atomic too.

ProOF. Suppose that B is atomic but A is not. Then there is a € A with
a # 0 with no atom of A below a. But B D A is atomic so there is 3 € At(B)
with 3 < a. Let F={re A:3<r}. Wehavea € F. ThenHAFZObut
ﬁgHBF.Hence.AZCB. .

LEMMA 15. Let A C B be boolean algebras and let A be atomic. A C. B if
and only if for all b € B\ {0} there is a € At(A) such that a.b# 0.

PrROOF. If b € B\ {0} and for all a € At(A) a.b =0 then >-* At(A) = 1 but
SPALA < 1— b if it exists, so A €. B.

Conversely, if A €. B then there is a set S C A such that ZA S exists but
there is b € B with b # ZAS and b is an upper bound for S. But then,
b = EA S — b # 0 must be disjoint from all atoms of A. A

LEMMA 16 ([6, theorem 2.21]). Let A be a boolean algebra and let M be a

representation of A. The following are equivalent.

o M is a complete representation of A.
e M is an atomic representation of A i.e. 1M = |J{pM : B € At(A)}.

PROOF. Let M be any representation of A, i.e. A C B(M) = (p(1M), 1M 6, U,\).
By definition 13,

(1) M is a complete representation of A <— A C. P(M)

If M is a complete representation of A then, since PB(M) is atomic and by
lemma 14, A is also atomic. By lemma 15, for all b € PB(M) \ {0} there is
a € At(A) with a.b # 0. It follows that 1" = Udenca) a™, so M is an atomic
representation.

Conversely, if M is an atomic representation of A, i.e. 1M = UaEAt(A) aM,
then A must be atomic. By lemma 15, A C. PB(M), hence M is a complete

representation of A, by (1).
_|

LEMMA 17. If M is a complete representation of B and A C. B then M
induces a complete representation of A.

PrOOF. Suppose for contradiction that M is a complete representation of B
but it does not induce a complete representation of A. By lemma 16 there is
m € M with m € 1™ but m ¢ o™ for all a € At(A). By the same lemma,
m € M for some 3 € At(B). Let F = {a € A: 3 < a}. Then HAF: 0 but
HB F > 3. This contradicts A C. B.

_|



Now we apply this to relation algebra. FRA denotes the class of full relation
algebras — the closure under isomorphism of the class of relation algebras of the
form Re(D) =4er. (p(D x D), D x D, B, U\, Idp,” ,;) for some domain D.

THEOREM 18. CRA = S.P(FRA).

ProoF. Let A € CRA and let M be a complete representation of A. From
definition 13, we have A C. PB(M). 1™ is an equivalence relation over the base
of M, as we saw earlier, and P(M) = Hequiv. classes D Re(D) € P(FRA), so
A€ S.P(FRA).

Conversely, let A € ScP(FRA), say A C. [[pca Re(D), for some A. Now
HDeA MRe(D) is completely representable — just interpret each element as itself.
CRA is closed under strong subalgebras (lemma 17) so A € CRA. Hence
Sc.P(FRA) C CRA.

_|

LEMMA 19. Let n > 3 and let A be an atomic relation algebra, A C. Rua(C)
for some C € CA,,. For all x € C\ {0} and all i,j < n there is a € At(A) such
that sj;a . x # 0.

ProoF. Recall from fact 3.1, that 5§ is a completely additive operator (any
i,7), hence s;; is too (see definition 4). So > {s;;ja:a € At(A)} = s;; > At(A) =
s;;1 =1, for any ¢,j < n. Let z € C\ {0}. It is impossible that s;;a . z = 0
for all @ € At(A) because this would imply that 1 — # was an upper bound for
{sija : a € At(A)}, contradicting > {s;;a : a € At(A)} = 1. A

§3. RaCA, is pseudo-elementary.

DEFINITION 20. Let K be a class of structures in a signature L. We say
that K 1is pseudo-elementary if there is a many-sorted signature L°, where the
signature L1 of the first sort contains L, and some L’-theory U such that K =
{MYp : M = U}. Here M|y is the L-structure obtained from M by (a)
restricting the domain to the first-sorted elements only and (b) restricting the
language to L.

THEOREM 21. For any ordinal v > 3 the class RaCA., is pseudo-elementary.

Proor. For finite v it is quite easy to define S{aCA , in a two-sorted language.
The first sort is for relation algebra elements and the second sort is for cylindric
algebra elements. The defining theory includes sentences requiring the second-
sorted elements to form an 7-dimensional cylindric algebra. The signature of
the defining theory also includes a function I from sort one to sort two and the
defining theory includes a sentence requiring that I respects the operators (e.g.
I(1") = dg1) and is injective. Finally, there is a sentence saying, for any cylindric
algebra element y, that /\2<i<v c¢;y = y if and only if that there is a relation
algebra element # such that y = I(x). This ensures that [ is a surjection onto
the relation algebra reduct of the cylindric algebra.

For infinite v this method won’t work because the conjunction /\2<i<v GY=y
is infinitary. Instead, we use a three sorted defining theory, with one sort for a
relation algebra (r), the second sort for the boolean part of a cylindric algebra (b)

9



and the third sort for a set of dimensions (6). We will use superscripts r, b, for
variables and functions to indicate that the variable, or the returned value of the
function, is of the sort of the relation algebra, the boolean part of the cylindric
algebra or the dimension set, respectively. Our signature includes dimension
sort constants i°, for each ¢ < 5 to represent the dimensions. It also includes the
relation algebra operators for the first sort, a function d® taking two dimension
sort arguments and returning a boolean sort element, and a function ¢ taking
one argument of sort § and a second argument of sort b and returning an element
of sort b. The defining theory for RaCA., includes sentences demanding that the
constants #° for i < v are distinct, and that the last two sorts define a cylindric
algebra of dimension at least . For example, in place of the cylindric algebra
axiom d;; = cg(dik.di;) (all ¢, 7, k < ) we have the sentence

Vl‘é,yé,zé (db(l‘é,yé) — Cb(zé,db(l‘é,zé).bdb(zé,yé)))

$ b

(here 29y, 2% are variables of sort §, .°is the boolean intersection operator for
cylindric algebras, henceforth we drop sort superscripts for boolean operators)
with similar translations of the other cylindric algebra axioms. We also have a
function I° from sort = to sort & and sentences requiring I° to be injective and
to respect the relation algebra operations as follows: for all 27, y",

11 = d*(0°,1)
I'(@") = 3503 P (=7

IP(a"5y") = (s51°(x) - s51°(y))

where 5§ the substitution operator from sort b to sort b. More precisely, an

b

equation z° = 5§ y? abbreviates the formula

(i =3) = (@ =" AL #5) = (@ =@, (d(,5°) )]
Finally, we require that I° maps onto the set of two dimensional elements:
Yyl ((V2°(20 #0°,1° = (2%, 4%) = o)) & Fa" (y° = I°(2"7)))

Clearly, any algebra of the type of a relation algebra A € RaCA., is the first
sort of a model of this theory. Conversely, a model of this theory will consist of
a relation type algebra (sort ) and a cylindric algebra whose dimension is the
cardinality of the set of J-sorted elements. This cardinality is at least |y| since
we required that all the constants {i® : i < v} are distinct. So the first sort of
a model will be the relation algebra reduct of a cylindric algebra of dimension
v' > ~. By lemma 6 this implies that the first sort of a model must belong to
RaCA.,. Hence this three sorted theory does define RaCA.,. -

COROLLARY 22. For countable v > 3 the elementary theory of RaCA,, is
recursively enumerable.

ProOOF. The defining three-sorted theory in the proof of the previous theorem
is recursive. Use [6, theorem 9.37]. =
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§4. Games. Since iaCA., is pseudo-elementary and the defining theory is
recursive for countable v, it is possible to devise a two-player game T'(A) to test
if a relation algebra A belongs to this class [6, definition 9.32, proposition 9.33].
The number of rounds in a play of I'(A) is the cardinal |A| 4+ |y| + w. In each
of these rounds the first player, V, makes a move and the second player, 3, has
to respond. There are rules which stipulate which responses by 3 are legal and
which are not. If 3 makes an illegal response in any round then V wins the play,
otherwise 4 makes a legal response in every round and 3 wins the play. 3 has a
winning strategy in I'(A) if and only if A € RaCA,.

For n < w, a shortened version of this game, T'y,(A), can be defined. This is
very similar, but play stops after n rounds. If 3 responds legally in each of the n
rounds she wins the play, otherwise ¥V wins. [6, Propositions 9.34, 9.36] state (in
the more general setting of arbitrary pseudo-elementary classes) that for each
n < w there is a first-order formula 7, in the signature of relation algebras such
that 3 has a winning strategy (w.s.) in T',(A) if and only if A |= n,, and that if
3 has a winning strategy in T'y, (A) for all n < w then A is elementarily equivalent
to a member of RaCA.,. Thus {7, : n < w} axiomatises the elementary theory
of RaCA.,.

However, the game T'(A) is not very easy to use in practice — it seems that
games that use the atoms of an atomic boolean algebra with operators are easier
to use then these more general games. Furthermore, we want to prove not
only that 91aCA, is not elementary, but various other classes also fail to be
elementary (see theorem 45). We also want to draw out the connection between
relation algebra reducts and complete representations. For these reasons, we
omit details of the game T'(A) and define three other games F («), G(a), H(e)
played on the atom structure of an atomic relation algebra. The games are
increasingly difficult for 3 to win (and increasingly easy for V to win), so

w.s. for 3in H(a) = w.s. for 3 in G(a) = w.s. for Jin F¥(«)

For countable a;, we will prove

w.s. for 3in F'¥(«a) & o € At(S.RaCA,,) (thm. 29)
w.s. for 3in H(a) = o € At(JRaCA,) = w.s. for Jin G(o) (thms. 39, 34)

We are not sure about the converses of the last two implications. We will
also prove that there is a relation algebra atom structure o € AtS.SRaCA,, \
AtRaCA,, (theorem 36). Tt follows that it is strictly harder for 3 to win H(«a)
than F“(«). The game G(a) is in between, but we do not know if it is equivalent
to F'¥(a) or H(«) or neither.

DEFINITION 23 (Networks and Hypernetworks). Let o be a relation alge-
bra atom structure. A network over « (sometimes called an atomic network, also
known as a basic matriz) is a complete labelled graph N whose nodes nodes(N)
form a set of natural numbers, with each edge labelled by an atom from « such
that

I. N(4,9)

IT. N(4,9)

<
= (.’j)v
1. N(i,5); N

1/
Nz ,
(J,k) > N(i, k),

11



for all nodes i,j, k € nodes(N). In fact if N satisfies conditions I and III then,
by the relation algebra axioms, it must also satisfy condition II. A network N 1is
strict if N(i,j) <1 <= i=3j.

Define an equivalence relation ~ over the set of all finite sequences over
nodes(N) by z ~ g iff |2| = |y| and N(z;,y;) <1’ for all i < |z|.

A hypernetwork N = (N% N") consists of a network N? together with a
labelling function for hyperlabels N* : <“nodes(N) — A (some arbitrary set of
hyperlabels A) such that for z,5 € <“nodes(N)

IV. & ~y= N"(z) = N"(y).
If |7| = k € N and N*(z) = X then we say that X is a k-ary hyperlabel. When
there is no risk of ambiguity we may drop the superscripts a, h.

The following notation is defined for hypernetworks, but applies equally to net-
works. If N 1s a hypernetwork and S is any set then N|g s the n-dimensional
hypernetwork defined by restricting N to the set of nodes S N nodes(N). For
hypernetworks M, N f there s a set S such that M = NJs then we write
M C N. If Ng C Ny C ... is a nested sequence of hypernetworks then we let the
limit N = J; ., Ni be the hypernetwork defined by nodes(N) = | J; ., nodes(N;),
N4(z,y) = Nf(z,y) if x,y € nodes(N;), and N*(z) = N} (z) if mg(z) C
nodes(N;). This is well-defined since the hypernetworks are nested and since
hyperedges T € <“nodes(N) are only finitely long.

For hypernetworks M, N and any set S, we write M =° N if N|g = M]s.
For hypernetworks M, N, and any set S, we write M =5 N if the symmetric
difference A(nodes(M),nodes(N)) C S and M =(nodes(M)unodes(N)\S p7 — jp7e
write M = N for M =gy N.

Let N be a network and let 6 be any function. The network NO is a complete
labelled graph with nodes 0=1(nodes(N)) = {x € dom(0) : 8(x) € nodes(N)}, and
labelling defined by (NO)(i,7) = N(0(i),0(j)), for i,j € 0= (nodes(N)). Simi-
larly, for a hypernetwork N = (Na,Nh), we define N to be the hypernetwork
(N9, N"9) with hyperlabelling defined by N"0(xq, x1,...) = N*(0(xq),0(z1),...)
Jor (zg,x1,...) € <“071(nodes(N)).

Let M, N be hypernetworks. A partial isomorphism 6 : M — N s a partial
map 0 : nodes(M) — nodes(N) such that for any i,j € dom(f) C nodes(M) we
have M%(i,j) = N°(0(i),0(j)) and for any finite sequence T € <“dom(f) we
have M"(z) = N*0(z). If M = N we may call 6 a partial isomorphism of N.

A hyperedge & € <“nodes(N) of N is called short if there are yo, y1 € nodes(N)
and for all i < |&| either N(z;,y0) <1’ or N(z;,y1) < 1'. Other hyperedges are
called long. A hypernetwork N is called A-neat if N(Z) = A, for all short hyper-
edges x of N. If N is a A-neat hypernetwork then NO is a A-neat hypernetwork.

REMARK 24. We will fir some hyperlabel Ay and use Ag-neat hypernetworks
extensively in what follows. The idea is to keep a constant label (Ay) on short
hyperedges of the hypernetworks we use. These hypernetworks can be used to
form the atoms of a cylindric algebra (at least in the finite dimensional case).
The fact that short hyperlabels are constant means that the atoms of the relation
algebra reduct of this cylindric algebra should be no smaller than the atoms of
the original relation algebra. This will help us prove that the relation algebra is
a relation algebra reduct of a cylindric algebra.

12



DEFINITION 25. Forn > 3 and C € CA,, if A C Ra(C) is an atomic
relation algebra and N is an A-network then we define N € C by
N=J] suNGJ)

i,jEnodes(N)
Nec depends implicitly on C.

LEMMA 26. Let 3 <n, C € CA, and let A C. RaC be an atomic relation
algebra.
1. For any x € C\ {0} and any finite set I C n there is a network N such that
nodes(N) =T and x . N #0.
2. For any networks M, N zf]\/i N #0 then M =nodes(M)Nnodes(N) p

ProOF. The proof of the first part is based on repeated use of lemma 19. We
define the edge labelling of N one edge at a time. Initially no edges are labelled.
Suppose FE C nodes(N) x nodes(N) is the set of labelled edges of N (initially
E =0) and = . H(i,j)eESijN(iaj) # 0. Pick k,{ € I such that (k,{) € E.
By lemma 19 there is a € At(A) such that z . H(z’,j)eE si; N (7). sma #
0. If £ = [ then we can find such an a with @ < 1’ (note that s;;dpy = 1).
Extend the labelling of N so that N(k,{) = a and include the edge (k,!) in
E. Eventually, all edges will be labelled, so we obtain a completely labelled
graph N with N # 0. Network condition I in definition 23 is true by the way
we selected the label of reflexive edges. For condition II1, let 7, 5,k < n. We
have s;; N(i,7) . s;aN(j, k) . siuN (i, k) > N # 0 so by proposition 11, 0 <
Cj (SijN(i,j) . SjkN(j, k’)) . SikN(i, k’) = Sk (N(Z,_]), N(], k’)) . SikN(i, k’), hence
N(i,j); N(j, k) . N(i, k) # 0, by fact 3.1, so N satisfies network condition TII.
Network condition II follows from I and III, hence N is a network.

For the second part, if it is not true that A7 =nedes(M)nnodes(N) A thep there are
i,j € nodes(M)Nnodes(N) such that M (7, j) # N(i,j). Since edges are labelled
by atoms we have M (i,7).N(4,j) = 0 s0 0 = 5,0 = s;; M (i, 5) . 5; N(i,5) >
M.N.

_|

LEMMA 27. Let n >3, C € CA, and let A C Ra(C) be atomic. Let N be a
network over A and i,j < n.

1. Ifi & nodes(N) then &N =N.

2. NId_; > N.

3. If i € nodes(N) and j € nodes(N) then N#0—> N/[ZE] # 0.

4. If 0 is any partial, finite map n — n and if nodes(N) is a proper subset of

n, thenﬁ#O—)]@;ﬁO.

ProoF. The first part is by facts 3.1, 3.2 and 3.4. The second part is by

definition of ~. For the third part suppose N # 0. Since i & nodes(N), by part 1,

we have ciﬁ = N. By cylindric algebra axioms it follows that N. di; #0. By
lemma 26 there is a network M where nodes(M) = nodes(N) U {i} such that

M\.N.dij #+ 0, so 1\77&0 By lemma 26 we have M D N and M (¢,j) < 1. Tt
follows that M = N[i/j]. Hence N[i/j] = M\;é 0.

13



FiGURE 1. Triangle move

For the final part (cf. [6, lemma 13.29]), since there is k& € n \ nodes(N), 6
can be expressed as a product ogoy . ..0: of maps such that, for s < ¢, we have
either o5 = Id_; for some ¢ < n or o, = [i/j] for some 4,j < n and where
i ¢ nodes(Nog...05_1). Now apply parts 2 and 3 of the lemma. &

DEFINITION 28 (Games). For any relation algebra atom structure o« and
3 < n < w, we define two-player games F™(«), G(a) and H(«), each with w
rounds, and for n < w we define Hy(«) with n rounds.

o Let 3< n<w. In a play of F"(«) the two players construct a sequence of
networks Ny, N1, ... where nodes(N;) is a finite subset of n = {j : j < n},
for each i. In the nitial round of this game ¥ picks any atom a € o and 3
must play a network Ny with nodes(Ny) C {0, 1}, such that No(i,j) = a for
some i, j € nodes(Ny). In a subsequent round of a play of F" (o) ¥ can pick
a previously played network N and i, j € nodes(N), k € n\{i,j}, and atoms
b,b' € a such that b;b' > N(i,7). This move is called a triangle move and
is denoted (N,i,j,k,b,b"), see figure 1. In order to make a legal response,
3 must play a network M O N such that M (i, k) = b and M(k,j) = b and
nodes(M) = nodes(N) U {k}.

3 wins F™(«) if she responds with a legal move in each of the w rounds.
If she fails to make a legal response in any round then ¥V wins.

o G(«) is similar to F¥(«). For each i, the nodes of N; are a finite sub-
set of w. The initial round in a play of G(«) is the same as in a play of
F¥(a). In any subsequent round ¥ can play a triangle move, as in F'¥(«)
and the rules for 3’s response are the same. In G(«), ¥ has the option of
playing a transformation move (N,6) by picking a previously played net-
work N and a partial finite surjection 0 : w — nodes(N). 3 must respond
with NO. Also, ¥ can play an amalgamation move (M, N) by picking previ-
ously played networks M, N such that 0 < |nodes(M) N nodes(N)| < 2 and
M =redes(M)nnodes(N) N see figure 2(a). To make a legal response, I must
respond with some network L extending M and N. If she fails to make a
legal response in any of the w rounds of the play, ¥ wins. If she succeeds in
each round, she wins.

o Fiz some hyperlabel Ay. H () is similar to G(), but in this game the play
consists of a sequence of Ag-neat hypernetworks No, N1, ... where nodes(N;)
1s a finite subset of w, for each i < w. The other main difference is
that ¥ can play a more general kind of amalgamation move. In the ini-
tial round ¥ picks a € « and I must play a Ag-neat hypernetwork Ny
with nodes contained in {0,1} and Ng(i,j) = a for some nodes i,j. At

14
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(a) Game G(a) (b) Game H(«)

FIGURE 2. Amalgamation moves

a later stage ¥ can make any triangle move (N, i, 4,k b b') by picking a
previously played hypernetwork N and i,j € nodes(N), k € w \ nodes(N)
and b;b' > N(i,j). [In H we require that ¥ chooses k as a ‘new node’,
i.e. not in nodes(N), whereas in F™ for finite n it was necessary to allow
Y to ‘reuse old nodes’.] For a legal response, 1 must play a Ao-neat hy-
pernetwork M =j N where nodes(M) = nodes(N) U {k} and M (i, k) = b
and M(k,j) = V. Alternatively, ¥ can play a transformation move by
picking a previously played hypernetwork N and a partial, finite surjec-
tion 6 : w — nodes(N), this move is denoted (N,0). 3 must respond
with N6. Finally, ¥ can play an amalgamation move by picking previ-
ously played hypernetworks M, N such that M =nedes(M)Onodes(N) N g
nodes(M) N nodes(N) # 0, see figure 2(b). This move is denoted (M, N).
To make a legal response, 3 must play a Ag-neat hypernetwork L extending
M and N, where nodes(L) = nodes(M) U nodes(N).
Again, 3 wins H(«) if she responds legally in each of the w rounds, oth-

erwise ¥ wins.

o Forn < w the game Hy () is similar to H(«) but play ends after n rounds,
so a play of Hy(«) could be

NOaNla"' aNn
If 3 responds legally in each of these n rounds she wins, otherwise ¥ wins.

THEOREM 29. Let A be a relation algebra. With reference to the four con-
ditions below, we have (1) = (2) = (3) = (4). If A is atomic with countably
many atoms then ({) = (1) and all conditions are equivalent.

1. A has a complete representation.

2. There is an atomic representable cylindric algebra C € RCA,, such that
A C. Ra(C).

3. A is atomic and A € SCRaCA,, .

4. A is atomic and 3 has a winning strategy in F*(At(A)).

ProOF. The equivalence of (1) and (3), for countable algebras, is proved in
[16, theorem 1].

(1) = (2): Let M be a complete representation of 4. By lemma 16 A is
atomic. The plan is to define an atomic representable cylindric algebra C,
to show that there is an embedding I : A — 9a(C) and that for all non-zero
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z € Ra(C) there is a € At(A) such that I(a) . ¢ # 0. We will then apply
lemma 15 to get A C. Ra(C).

1™ must be an equivalence relation over the domain of M, as we saw
earlier. Let E be the set of equivalence classes of 1. For each equivalence
class D € E pick an arbitrary sequence fp € “D. Let Wp = {f € “D:
{i <w: f(i) # fp(7)} is finite} and let Cp = (p(Wp), B, Wp,U,\, Dsj, Ci :
i,j < w). This is a weak cylindric algebra (see section 2.4) and by proposi-
tion 2 it belongs to RCA,,. Cp is an atomic cylindric algebra — the atoms
are the singleton sets {f}, for f € Wp. Note, for f,g € Wp and i < w,
that if flu\(i} = glw\fi) then {f} < Ci{g}.

Let 2 € Ra(Cp), ie. Cix =z for2 <i<w. If f € x and g € Wp satisfies
g(0)y = f(0), g(1) = f(1) then g € = since {2 < i < w : f(i) # g()} is
finite. Tt follows that $ta(Cp) is atomic and its atoms are {{g € Wp : ¢(0) =
m, ¢(1) = n} : m,n € D}. There is a homomorphism hp : A — Ra(Cp)
given by hp(a) ={f € Wp :3d' < a, o’ € AtA, M = ' (f(0), f(1))}.

Let C = HDeE Cp € RCA,. Let mp : C — Cp be the D’th projection
and let tp : Cp — C be the D’th embedding. Since C is a product of atomic
cylindric algebras, it is atomic and its atoms are {¢p(5) : D € E, g €
At(Cp)}.

A embeds into Ra(C) by I : a — (hp(a) : D € E). If € Ra(C) then
for each D we have mp(z) € Ra(Cp) and if # is non-zero then 7p(x) # 0
for some D. By atomicity of Cp there are m,n € D such that {g € Wp :
g9(0) =m, g(1) = n} C mp(z). By lemma 16 there is a € At(.A) such that
M = a(m,n). Hence, {g € Wp : g(0) = m, g(1) = n} C np((x) . I(a))
and so « . I(a) # 0. By lemma 15, A C, Ra(C).

(2) = (3): Trivial (use lemma 14 for atomicity of A).
(3) = (4): Let A C. RaC for some C € CA,,. We have to show that 3 has
a winning strategy in F“(At(A)).

F’s strategy is to always play networks N such that N # 0. In the initial
round, let ¥ play a € At(A). 3 plays the network Ny with nodes {0,1} and
labelling determined by Ny(0,1) = a. Then ]/\7\0 =a#0.

At a later stage suppose Y plays the triangle move (N, 4, j, k, b, '), where
k#1414, b6/ > N(i,j) and N was previously played so N #+ 0. By propo-
sition 11, cg(sipb . si;b') = si;(b;8") > s;;N(4,§) > N. By lemma 27(1),
ckﬁ = N. Therefore ek (sigh . spb') > ckﬁ and hence sirb . si;b' . ckﬁ +
0, by fact 3.3.

By lemma 26, there is a network M where nodes(M) = nodes(N) U {k}
such that M . ckﬁ . sikb . spb’ # 0. By lemma 26, M =; N. Lemma 26
also proves that M(i,k) = b and M(k,j) = b'. To see why, consider a
network B where nodes(B) = {¢,k} and B(i, k) = b. Tt is not hard to show
that B = sikb, so by lemma 26 we get M =1"*} B hence M (i, k) = b and
similarly M (k,j) = &’. This means that M is a legal response, so 3 plays
such a network M. Thus 3 can preserve the conditions: M is a network

and M\;é 0.

Now suppose A is atomic with countably many atoms. The implication (4) =
(1) is essentially [6, theorem 11.7(2)], or see lemma 35 for a very similar proof.
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PROBLEM 30. Let A be an atomic relation algebra. If A € () ScRaCA,

must 3 have a winning strategy in F*(At(A))?

n <w

REMARK 31. For atomic relation algebras with uncountably many atoms
the four conditions in theorem 29 need not be equivalent. Let A be the atomic
relation algebra with atoms {1’ aly,a; :i < 2%, 1 < j < w}, all symmetric, and
where the forbidden triples of atoms are the permutations of (1',z,y) for & # y,
(aj,a;,a;) forl < j < w, and (af, ag, al’) fori i’ i < 2¥. In other words, if you
think of the subscript of a non-identity atom as its colour, then monochromatic
triangles are forbidden. All other triples of atoms are consistent. Write ag for
{a :i < 2%} and ay for {a; : 1 < j < w}. Define A to be the subalgebra of the
compler algebra over this atom structure generated by the atoms (this is called
the term algebra of the atom structure). It is easy to check that each element
of A has the form F'U Ag U Ay, where I' is a finite set of atoms, Ay is either
empty of a cofinite subset of ag and Ay is either empty of a cofinile subsel of
ay. With this definition, we can prove:

(2) A has no complete representation.

The proof of this is based on an infinite version of Ramsay’s theorem (which
requires continuum many atoms aj ).

(3) A€ RaCA,,.

The proof of this is more complicated, but here 1s an outline. Let S be the set
of atomic A-networks N with nodes w such that {a; : a; labels some edge of N}
1s finite. We can show that S forms an w-dimensional cylindric algebra atom
structure and hence €m(S) € CA,. We have A C Ra(Cm(S)), the embedding
isa— {N €5 :N(0,1) <a}. We will identify A with its image under this
embedding henceforth. The next step is to caleulate the subalgebra of Tm(S)
generated by A using the cylindric algebra operations.

Let X be the set of finite labelled graphs N where the label of any edge of N
is either an atom of A, a cofinite subset of ay or a cofinite subset of ag, such
that for any nodes l,m,n of N we have N(I,n) < N(l,m); N(m,n). For N € X
let N' € €m(S) be defined by N' ={L € S: L(m,n) < N(m,n) form,n € N}.
Fori < w let N[_; be the subgraph of N obtained by deleting the node i. We can
show that

(4) ci(N') = (N1-)

It follows that the subalgebra C of €m(S) generated by A consists of finite unions
of elements of the form N', for N € X. [Note that C is not an atomic cylindric
algebra, indeed it 1s atomless, because for any N € X we can add an extra node
and extend N to M € X in such a way that § C M’ C N', so N' is not an
atom.]

Finally we show that A = Ra(C). The inclusion A C Ra(C) is easy. Con-
versely, let = € Ra(C). By definition of Ra, we have ¢;z = z for i > 1. By
the above, z is a finite union | Jycp N', where I is a finite subset of X. Let
20, - .- ,tx enumerate all the nodes, other than 0 and 1, that occur wn any la-
belled graph in I'. Then for N € F, by (4), ciy...c;, N' = (Nljo,11), hence
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Ciy .- -Ci, NV € A, using our identification of A with its embedded image in RaC.
Soz=ciy...ci,2=Unep Cio - i N' € A. This shows that Ra(C) C A.

Thus A € RaCA,, but A has no complete representation, so A satisfies con-
dition 3 but not condition 1 of theorem 29.

For a corollary to neat cylindric reducts, let B = Ne,C (2 < n < w). Then
B € N, CA,, but B has no complete representation (a complete representation
of B would induce a complete representation of A = Ra(B)).

PROBLEM 32. If A C. RaC for some atomic C € CA,, does it follow that
A has a complete representation? In other words, does (2) = (1) in theorem 297
The remark, above, does not answer this question since the cylindric algebra C
wn that remark is not atomic.

For finite n < w an n-dimensional version of theorem 29 can also be obtained,
but instead of classical representations we have to use ‘n-square relativised rep-
resentations’ [6, definition 5.7]. But we do not have to follow that particular
deviation, we only need the n-dimensional version of part of the preceding the-
orem.

THEOREM 33. Let 3 < n < w and let A be an atomic relation algebra. If
A € ScRaCA,, then 3 has a winning strategy in F™(AtA).

The proof is very similar to the proof of the implication (3) = (4) of theo-
rem 29. If A C RaC for some C € CA,, then 3 always plays hypernetworks N
with nodes(N) C n such that N # 0. We omit the details.

The theorems above help us determine whether or not an atomic relation
algebra is a strong subalgebra of a member of RaCA,. The next theorem
uses the game GG and can be used to prove that an atom structure is not in
At(RaCA,). This game and the theorem below will help us prove that the
inclusion RaCA,, C S HRaCA,, is strict.

THEOREM 34. Let « be a relation algebra atom structure. If o € At(RaCA,)
then 3 has a winning strategy in G(a).

ProOF. Assume a = At(RaC) for some C € CA,,. For all ¢ € & and # € RaC
if a.z # 0 then a < z, by atomicity of a. By considering = = 5{563/ and using
facts 3.1 and 3.4-3.9, a non-trivial calculation shows, for all : < j < w, a € «
and y € C, that

(5) (Vkew\{i,jtay=y) Ay .sija#0] = sija<y

F’s strategy is to always play networks N such that N #0.

As in the proof of theorem 29(3) = (4), 3 can always play N such that N #+0
in the initial round and in response to any triangle move by V. If V plays the
transformation move (N, ) then 3 responds with Nf. Since the dimension set
is w and nodes(N) is finite, by lemma 27(4) we get NO # 0.

If ¥ plays an amalgamation move (M, N) where nodes(M) Nnodes(N) = {4, j}
then M (i,j) = N(i,7). For now we suppose that i # j, without loss ¢ < j.

Let = nodes(M) \ {4,j} and let v = nodes(N) \ {7, j}. By lemma 27(1),
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and by facts 3.4 and 3.6,
0# C(N)M < C(N)SijM(i,j)

Hence

By fact 3.3, it follows that
xr=M.N #0

If ¢ = j we can still deduce that M. N # 0. To see why, suppose ¢ = j, so
nodes(M)Nnodes(N) = {i}. Let M’ D M be defined by nodes(M’) = nodes(M U
{k} and M'(i, k) < 1’ (here k € w\ (nodes(M) U nodes(N)) is arbitrary) and
let N* D N be defined by nodes( = nodes( )U {k} and N'(i, k) < 1’. Since
M'" D M we have M < M and srmllarly N < N By the previous case (Where
[nodes(M) N nodes(N)| = 2) we get 0 # M .N'<M.N =z, say.

By lemma 26 there is a network L with nodes(L) = nodes(M) Unodes(N) # 0
and L . » # 0. This implies L.M # 0 so by lemma 26 I =redes(M) 1 Tt follows

that L O M and similarly L. D N, so L is a legal response to the amalgamation
move.

_|

LEMMA 35. If a s a countable relation algebra atom structure and 3 has
a winning strategy in G(«) then €m(«) has a complete representation in which
for any partial isomorphism ¢ of size two or less and any finite subset X of the
domain of the representation there ts a partial isomorphism 0 extending ¢ with
X contained within its range.

PrROOF. A minor complication arises due to the fact that « might be the
atom structure of a non-simple relation algebra. Let C' the the set of consistent
triples of «. Define a binary relation ~ over @ by a ~ b <= [d¢,d, f €
a, (¢,a,d),(d, f,b) € C]. The properties of relation algebra atom structures (see
section 2.5) prove that ~ is an equivalence relation (in fact a ~ b iff @ and b
belong to the same simple component of a subdirect representation of Cme).
Let A C « contain exactly one atom from each ~-equivalence class. [This means
that A has one representative atom from each of the simple components of €me.]

Let a € A. Next we define a nested sequence of networks Ng C N1 C .... Let
Ny be I’s response, using her winning strategy, to the ¥-move @ in the initial
round. We have to schedule a sequence of extensions according to a fair system.
Suppose Ny € ... C N, has been defined and that each network N; (i < r)
occurs in a play of G(«) in which 3 uses her winning strategy. Consider the
following requirements to extend N,.

1. If Np(4,5) < by, for some i < j € nodes(N,), some b,b' € «a, we seek

Ns; D N, (some s > r) with a node k € w \ nodes(N, ) such that N, (i, k) =
b, Ny(k,j)=1b.
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2. If there are ¢,4,i,j/ € nodes(N,) such that N,.(i,j) = N, (¢, ;") (equiv-
alently « = {(¢,1), (j',7)} is a partial isomorphism of N,), we seek a fi-
nite surjection @ extending ¢, mapping onto nodes(N,) such that dom(#) N
nodes(N,) = {¢, j'}, and we seek an extension Ny O N,, N0 (some s > r).

Since a 1s countable there are countably many of these requirements to extend.
Since our sequence of networks 1s nested, these requirements to extend remain
in all subsequent rounds. So we can schedule these requirements to extend so
that eventually, every requirement gets dealt with.

Now, if we are required to find & € w \ nodes(N,) and N,41 D N, such
that Nyy1(i, k) = b, Ney1(k,j) = O (case 1), then let k& € w \ nodes(N,.) be
least possible (for definiteness) and let N,y; be 3’s response, using her winning
strategy, to the V-move (N,,4,j,k,b,0). For an extension of type 2, let ¢« be
a partial 1somorphism of N, of size two and let # be any finite surjection onto
nodes(N,) such that dom(6) N nodes(N,) = {¢',j'}. 3’s response to the V-move
(Ny,0) is necessarily N, 0. Let N,y be her response, using her winning strategy,
to the subsequent V-move (N, N.0). Observe that in this latter case, 6 is a
partial isomorphism of Ny41 with rng(@) = nodes(N,) and dom(f) = nodes(N,.6).

This defines how we construct the sequence No C Ny C .... Let N, be the
limit of this sequence (see definition 23, this is well-defined since the sequence
is nested). Observe that if « = {(¢,4), (§',4)} is any partial isomorphism of N,
and X is any finite subset of nodes(N,) then

(6) there is a partial isomorphism 6 D ¢, rng(0) O X
Also note that for b € «,
(7) b occurs as the label of some edge of N, <= b~a

Rename the nodes, if necessary, so that ¢ # b € A implies nodes(N,) N
nodes(Ny) = 0.
Now define a representation N of €m(a) with base (J,. 4 nodes(N,), by

SN ={(i,j):Jae A, Is € S, N,(i,j) = s}

for any subset S of a. By lemma 16, A is a complete representation of Cma.
By (7), any partial isomorphism of A fixes each component N, setwise. By (6),
for every partial isomorphism ¢ of size two or less and every finite subset X of
the domain of A there is a partial isomorphism 6 2 ¢ with rng(6) 2 X. -

THEOREM 36. The inclusion RaCA, C SRaCA,, s strict.

PrOOF. A relation algebra is integral if its identity 1s an atom. A permu-
tational representation of an integral relation algebra is one in which, for any
pair of points z, y, there is an automorphism of the representation taking x to
y (in model theory this kind of representation is called transitive). An inte-
gral relation algebra is called non-permutational if none of its representations is
permutational. In [1] a finite, integral, representable, non-permutational rela-
tion algebra A is defined and it is shown that the representations of A are all
finite (they have size 45). Since A is finite and representable it is completely
representable; so by theorem 29 it belongs to S;SRaCA,,.
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Since all representations of A are finite and not permutational, in any repre-
sentation of A there is a partial isomorphism of size one that does not extend to
an automorphism of the representation. Hence, by lemma 35, V has a winning
strategy in G(At(Ay)), so by theorem 34 it does not belong to RaCA,,. This
proves that the inclusion in the theorem is strict. -

PROBLEM 37. For which finite values n s it the case that the inclusion
RaCA, C S RaCA,, is strict?

One suggestion here is the following. For n < w, define a game G™, like G
but played on networks N with nodes(N) C n, show that o € RaCA,, implies
3 has a winning strategy in G"(«). Now use the fact that A (above) has only
non-permutational representations and they all have size 45 to show for n > 45
that the inclusion RaCA,, C S.RaCA,, is strict.

PROBLEM 38. In fact [1] define a whole sequence A, of finite, non-permutational
relation algebras and prove that a non-principal ultraproduct B of the A,, has a
permutational representation. If it could be shown that B has a homogeneous
representation, where arbitrary finite partial isomorphisms extend to full auto-
morphisms, then it would follow that 3 has a winning strategy in H(At(B)) so a
countable elementary subalgebra of B would belong to SRaCA,,, by theorem 39,
below. This would show that RaCA,, cannot be defined by finitely many azxioms
over S;RaCA,,.

We have now established techniques to determine whether a relation algebra
is in ScRaCA, (theorem 29) and to prove that a relation algebra is not in
RaCA,, (theorem 34). The next theorem will be useful to prove that an atomic
relation algebra is in RaRCA,,. Recall that H(«) is the hypernetwork game of
definition 28 where the nodes of any hypernetwork played form a finite subset of
w.

THEOREM 39. Let a be a countable relation algebra atom structure. If 3
has a winning strategy in H(«) then there is C € CA, such that Ra(C) is atomic
and At(Ra(C)) = o.

ProoOF. In fact we’ll construct € € RCA,,. Suppose 3 has a winning strategy
in H(«). Fix some a € a. As in the proof of lemma 35 we can define a nested
sequence Ny C ... (but here they are hypernetworks) where Ny is 3’s response
to the initial V-move a, so that:

1. If N, is in the sequence and N, (¢,j) < b; b then there is s > r and k €
nodes(N;) such that Ns(i, k) = b, Ns(k,j)="¥".

2. If N, isin the sequence and @ is any partial isomorphism of N, then there is
s > r and a partial isomorphism 6% of N extending 6 such that rng(6%) D
nodes(N, ).

The difference is that here we extend arbitrary finite partial isomorphisms whereas
in lemma 35 we only extended partial isomorphisms of size one or two. The more
general kind of amalgamation move in H(a) means that this can be done. We
omit the details which are very similar to the proof of lemma 35. Now let N, be
the limit of this sequence. This limit is well-defined since the hypernetworks are
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nested. Note, for b € o, that
(8) (34,7 € nodes(N,), Ny(i,j) =b) < b~a

Let 6 be any finite partial isomorphism of N, and let X be any finite subset of
nodes(N,). Since 6, X are finite, there is ¢ < w such that nodes(N;) D XUdom(#).
There is a bijection #% D @ onto nodes(N;) and j > i such that N; O N;, N;0F.
Then 6% is a partial isomorphism of N; and rng(6%) = nodes(N;) D X. Hence, if
@ is any finite partial isomorphism of N, and X is any finite subset of nodes(N,)
then

(9) 3 a partial isomorphism 6% D @ of N, where rng(6%) D X

and by considering its inverse we can extend a partial isomorphism so as to
include an arbitrary finite subset of nodes(N,) within its domain.

We will use the networks N, : @ € a as the base of a cylindric algebra C €
RCA,. Let L be the signature with one binary predicate symbol (b) for each
b € «, and one k-ary predicate symbol (A) for each k-ary hyperlabel A. The
set of variables for L-formulas is {#; : ¢ < w}. Pick f, € “nodes(N,). Let
Us ={f € “nodes(N,) : {i <w:g(i) # fa(i)} is finite}.

We can make U, into the base of an L-structure N, and evaluate L-formulas
at f € U, as follow. For b € o, ¢,7,20... ,i5—1 < w, k-ary hyperlabels A, and
all L-formulas ¢, ¢, let

Naaf ': b($iaxj) — Na(f(l)’f(])) =b
Na, f ': A($ioa cee ’xik—l) <~ Na(f(io), s ’f(ik—l)) =A
Na,JE—¢ = No, [ 6
Na, fE@VY) <= NoyfEGor No, fEY
Na, f | 3wi¢p <= Na, fli/m] = ¢, some m € nodes(N,)
For any L-formula ¢, write ¢« for {f € “nodes(N,) : Ny f E ¢}, Let
FormMe = {QSN” : ¢ is an L-formula} and define a cylindric algebra
Ca = (Form™e 0,U,,U,\, Dij, C; 14,5 < w)

where D;; = 1’(xi,xj)Na, C’i(qSN”) = (EIJ:Z'(/))N”. Observe that TV« = U,, (¢ V
1/))Na = ¢Ne UypNa | ete. Note also that C, is a subalgebra of the w-dimensional
cylindric set algebra on the base nodes(N,), hence C, € RCA,,.

Let ¢(@;y, #iy, - .. , 5, ) be an arbitrary L-formula using only variables belong-

ingto {;,,...,%;}. Let f,g € U, (some a € o) and suppose {(f (i), g(¢0)), (f(i1),9(i1)), ...

is a partial isomorphism of N,. We can prove by induction over the quantifier

depth of ¢ and using (9), that

(10) Naaf':qs <:>Na,g':¢
Let C = HGEQCG. By proposition 1, ¢ € RCA,,. It remains to show that
a = At(fRaC). An element z of C has the form (z, : a € «), where 2z, € C,.

For b € o let m, : C — Cp be the projection defined by my(z, @ a € o) = .
Conversely, let ¢, : C, = C be the embedding defined by ¢q(y) = (2 : b € «),
where 2, = y and #, = 0 for b # a. Evidently m(en(y)) = y for y € Cp and
mp(ta(y)) = 0if a # b.
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Suppose € PRa(C) \ {0}. Since £ # 0 it must have a non-zero compo-
nent m,(x) € C,, for some a € a. Say B # ¢(zi,,..., ;)% = ma(x) for
some L-formula ¢(z;,,...,z;,). We have ¢(z;,,...,2;,)%* € Ra(C,). Pick f €
¢(xiy, ... x5, )¢ and let b = N, (£(0), f(1)) € a. We will show that b(zg, 2, )% C
¢(xiy, ...z, ). For this, take any g € b(zg,21), so N4(g(0),g(1)) = b. The
map {(f(0),¢(0)), (f(1),g(1))} is a partial isomorphism of N, — here it is cru-
cial that short hyperedges have constant label Ay. By (9) this extends to a finite
partial isomorphism @ of N, whose domain includes f(ig), ..., f(ix). Let ¢’ € U,
be defined by

J(i) = { 6(¢) if ¢ € dom(6)

g(i) otherwise

By (10), Ny, ¢’ E ¢(zi,,... ,2;,). Observe that ¢’(0) = 6(0) = ¢(0) and sim-
ilarly ¢'(1) = g(1), so g is identical to ¢’ over {0,1} and it differs from ¢’ on

only a finite set of coordinates. Since ¢(z;,,...,2;, )% € Ra(C) we deduce
Na,g B d(xig, ..., x5,),50 g € ¢(xiy, ... x;, ). This proves that b(xo, z1)%* C
(ziy, .2, ) = ma(x), and s0 14(b(x0, 21)%) < 14(P(@iy, ..., 2,)5) <z €

C\ {0}. Hence every non-zero element z of RaC is above a non-zero element
ta(b(zo, 1)) (some a,b € a) and these latter elements are the atoms of fRaC.
So fRaC is atomic and o = At(?RaC) — the isomorphism is b+ (b(zg, 1) :a €
A). =

§5. Rainbow algebra.

DEFINITION 40. We define a rainbow algebra atom structure « (in the
terminology of [6, §16.2] it is very similar, though not identical, to At(Az 7))

Let F be the set of partial, order preserving functions f . Z. — N where
|[dom(f)| < 2. The atoms of a are {1' ) y,b,w}U{g; : i € Z}U{w; : f € F}U{r;; :
i,j € N}. Non-identity atoms have colours: y is yellow, b is black, w,w; are
white, g; is green and r;; 1s red. All atoms are self-converse except the red atoms,
for these r7 = rj;. Composition of atoms is defined by listing the forbidden
triples of atoms (the set of consistent triples of atoms is the complement in o x
aXa of the set of forbidden triples). The forbidden triples (a, b, ¢) are those where
a,byc € o and a;b F c. If (a,b,¢) is a forbidden triple of atoms, its Peircean
transforms (a,b,¢), (b,c7,a7), (¢7,a,b7), (b7 ,a7,¢7), (a7, ¢,b),(c, b7, a) are
also forbidden. The forbidden triples of atoms of a are the Pewrcean transforms
of the following.

(11) (1',2,y) unless x =y
(12) (gi,8i" 8i+), (8i, g, W), any i,i",i" €Z, any f € F
(i, g, wy)
(13) (v,¥, %), (v,y,b)
(14) (gi,y,w¢) unless i € dom(f)
(15) (gi,8;, k1) unless {(1,k),(j,0)} is an order-

preserving partial function Z — N
(16) (rij,rjogsstisgs) unless i =", j=j and k' = k*
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FiGURE 3. How ¥ can win F°(«)

and no other triple of atoms is forbidden.
Let A be the complex algebra over o (so the domain of A consists of arbitrary
sets of atoms).

We will show that A ¢ S.RaCAs5, but an elementary extension A’ of A
belongs to RaRCA,,.

LEMMA 41. For any relation algebra B such that At(B) = «, we have B ¢
ScRaCAs. The rainbow algebra A (definition above) is not in ScRaCAs.

PrROOF. We prove that ¥ has a winning strategy in F5(a), see figure 3. In
the initial round ¥ plays w and 3 must play a network Ny with Ny(0,1) = w.
In the next round Y plays the triangle move (Ng,0,1,2,go,y) and 3 must play
a network Ny =3 Ny with N1(0,2) = go, N1(2,1) = y. In the following round
V plays the triangle move (N1,0,1,3,g_1,y) and 3 must play Ny =5 Ny with
N2(0,3) = g—1, N2(3,1) = y. 3 must choose an atomic label for the edge (3,2)
of Na. By considering the triangle (2,3,0) we see that the identity, a green
atom or a white atom are impossible (see forbidden triples 11, 12). From the
triangle (2,3,1) we see that the yellow atom or the black atom are impossible
(forbidden triple 13). So 3 must let N2(3,2) be a red atom, say rp, (some
m,n € N) and since —1 < 0 we must have m < n (forbidden triple 15). In
the next move V plays the triangle move (N3,0,1,4,g_5,y) and 3 must play
N3 =4 N3 such that N3(0,4) = g_2, N3(4,1) = y. As before we must have
N3(4,3) and N3(4,2) both being red atoms and from the triangle (2,3,4) we see
that the indices of these red atoms must match (forbidden triple 16), so we have
N3(4,3) = tin, N3(4,2) = rim, for some [ < m € N.

In the next round V plays (N3,0,1,2,g_3,y) and 3 must play Ny =3 N3
with N4(0,2) = g_3, Na(2,1) = y. In figure 3, node 2 of N, is marked 2’ to
distinguish it from node 2 of N3. This time we get Nu(3,2) = r;; for some
j <l € N. In this way V can force an infinite descending sequence of natural

numbers n > m > [ > j > .... This is impossible. Hence 3 has no winning
strategy.
By theorem 33, o & At(S.RaCA5). &

Recall from definition 28 that H,(«) is the hypernetwork game with n rounds.

REMARK 42. It will simplify things a bit if we alter the rules of the game
H () slightly so that only strict hypernetworks are played. In the initial round if
V plays a then 3 can always play a strict hypernetwork Ny where nodes(Ny) = {0}
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ifa <1’ and nodes(Ny) = {0, 1} otherwise. In the former case Ny(0,0) = a and
in the latter case the edge labelling is completely determined by Ny(0, 1) = a.
The restrictions we impose on ¥’s moves are

o Y is only allowed to play a triangle move (N,i,j, k, a,b) if there does not
erist | € nodes(N) such that N(i,l) = a and N(l,j) = b.

o Y is only allowed to play transformation moves (N,0) if 0 is injective.

o Y is only allowed to play an amalgamation move (M, N) if for all m €
nodes(M) \ nodes(N) and all n € nodes(N) \ nodes(M) the map {(m,n)}U
{(z,z) : © € nodes(M) Nnodes(N)} is not a partial isomorphism. Le. he
can only play (M, N) if the amalgamated part is ‘as large as possible’.

If, as a result of these restrictions, ¥ cannot move at some stage then he loses
and the game halts.

It is easy to check that ¥ has a winning strategy in H(«) iff he has a winning
strategy with these restrictions to his moves. Also, if V plays with these restric-
tions to his moves, if 3 has a winning strategy then she has a winning strategy
which only directs her to play strict hypernetworks. The same holds when we
consider Hp(«). We will assume that ¥V plays according to these restrictions and
3 only plays strict hypernetworks in H(a) and Hp(«).

LEMMA 43. 3 has a winning strategy in H,(a), for any n < w.

ProoF. In aplay of N, (), 3 is required to play Ag-neat hypernetworks, so she
has no choice about the hyperlabels used for short edges — she must label these
with Ag. 3 uses the default strategy for choosing hyperlabels for long hyperedges,
as follows. In response to a triangle move (N, ¢, j, k, a, b), all long hyperedges not
incident with k necessarily keep the hyperlabel they had in N. By remark 42,
we are assuming a # 1’ and b # 1’. All long hyperedges incident with &k in M
are given unique hyperlabels, not occurring as the hyperlabel of any previously
played hypernetwork and not occurring as the hyperlabel of any other hyperedge
in M. We assume we have an infinite supply of hyperlabels of all finite arities, so
this is possible. In response to an amalgamation move (M, N) all long hyperedges
whose range is contained in nodes(M) have hyperlabel determined by M, and
those whose range is contained in nodes(N) have hyperlabel determined by N. If
z is a long hyperedge of 3’s response L where rng(Z) € nodes(M), nodes(N) then
z is given a new hyperlabel, not used in any previously played hypernetwork and
not used within L as the label of any hyperedge other than z. This completes the
definition of her strategy for labelling hyperedges. Condition IV in definition 23
is clearly satisfied by this. [In fact, the only function served by these hyperlabels
is to restrict the possible amalgamation moves that V can make in future rounds.]

Before we give 3’s strategy for edge labelling, we need some more notation
and terminology. Every irreflexive edge of any hypernetwork played in the game
has an owner, V or 3. We call such edges V-edges or 3-edges, as appropriate.
And a long hyperedge & in a hypernetwork N occurring in the play has an
envelope vy (Z) C nodes(N). We will see that although our hypernetworks are
all strict, 1t is not necessarily the case that hyperlabels label unique hyperedges
— amalgamation moves can force the same hyperlabel to label more than one
hyperedge. However, we will be able to prove that within the envelope of a
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hyperedge Z of a N, the hyperlabel N (%) is unique (see the claim, below). Lets
explain this more carefully.

In the initial round, if V plays a € a and 3 plays Ny then all irreflexive edges
of Ny belong to V. There are no long hyperedges in Ny. If, in a later round,
V plays the transformation move (N, §) and 3 responds with N then owners
and envelopes are inherited in the obvious way: (f(m),@(n)) is a V-edge of N
iff (m,n) is a Y-edge of NO (any m # n € dom(6)), and vy (0(%)) = vne(Z)
(any long hyperedge z of N@). If V plays a triangle move (N, i, j, k,a,b) and 3
responds with M then the owner in M of an edge not incident with the new
node k is the same as it was in N and the envelope in M of a long hyperedge
not incident with % is the same as it was in N. By remark 42 we know that
a# 1" and b # 1. The edges (i, k), (k,7), (j, k), (k, j) belong to Vin M, all edges
(1, k), (k1) for | € nodes(N)\ {4, j} belong to 3 in M. If Z is any long hyperedge
of M with k € rng(Z) then vy (Z) = nodes(M).

If V plays the amalgamation move (M, N) and 3 responds with L then, for
m # n € nodes(L), the owner in L of an edge (m,n) is V if it belongs to ¥ in
either M or N; in all other cases (either it belongs to 3 in M or it is not an edge
of M, and either it belongs to 3 in N or it is not an edge of N) it belongs to 3
in L. If z is a long hyperedge of L then

v (%) if rng(Z) C nodes(M)
vi(Z) =< vn(Z) if rng(Z) C nodes(N), rng(z) € nodes(M)
nodes(M) otherwise

In fact the first two parts of the following claim show that if # C nodes(M) N
nodes(N) then vy (#) = vy (2). This completes the definition of owners and
envelopes.

CLAIM: Let M, N occur in a play of H(«) in which 3 uses the default la-
belling for hyperedges. Let z be a long hyperedge of M and let y be a long
hyperedge of N.

1. For any hyperedge &’ with rng(z') C var(z), if M(2") = M(Z) then &’ = &.

2. If Z is a long hyperedge of M and ¥ is a long hyperedge of N and M (z) =
N(y) then there is a local isomorphism ¢ : vp(Z) — vn(y) such that
0(x;) = yi, for i < |z|.

3. For any x € nodes(M) \ vy (%) and S C vy (2), if (x, s) belongs to ¥V in M,
for all s € S, then |S| < 2.

The claim can be proved by a simple induction over the number of rounds taken
before M and N are played.

Now we define 3’s strategy for choosing the labels for edges in response to
V-moves. Let Ny, Ny, ..., N, be the start of a play of H,(«) just before round
7+ 1 (where r < n). 3 computes partial functions p; : Z — N, for s < r.
Inductively, for each s < r, suppose:

I. If Ny(z,y) is green or yellow then (z,y) belongs to Vin Nj.
II. po C ... C pr,
II. dom(ps) = {i € Z: 3t < s, x,y € nodes(Ny), Ne(z,y) =g}
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F1GURE 4. Property V and red indices

IV. p; is order preserving: if i < j € dom(p,) then p;(¢) < ps(j). The range of
ps is ‘widely spaced’: if i < j € dom(p,) then p,(7), (ps(j) — ps(¥)) > 3777
(n — r is the number of rounds remaining in the game).

V. For u,v,z,y € nodes(N;), if No(u,v) = rys5, No(z,u) = gi, Ns(x,v) =
gi, Ns(y,u) = Ns(y,v) =y then
(a) if Ny(z,y) # wy (all f € F) then p,(i) =7, ps(j) =
(b) if Ny(z,y) = wy (some f € F) then v = () (5:f( )
See figure 4.

VI. Nj is a strict Ag-neat hypernetwork.

To start with if V plays @ # 1’ in the initial round then nodes(Ny) = {0,1},
the edge labelling of Ny is determined by Ng(0,1) = a. If V plays 1’ then
nodes(Ng) = {0} and No(0,0) = 1'. If a = g, (some p € Z) let po = {(p,3")},
otherwise let pg = (). All properties hold when r = 0.

Suppose the properties hold after round r (some r < n). We’ll define how 3
chooses atoms for new edges and maintains the properties above in response to
a ¥Y-move in round r + 1. In response to a transformation move (N,#) 3 has
nothing to do: her response, N,.;1 = N8, is forced. There are no new edge
labels, so she lets py41 = pr.

In response to a triangle move (N, 4, 7, k, gp,8¢) by V (some s < r and some
p,q € Z), 3 must extend p, to pry1 so that p,¢ € dom(p,41) (property III)
and the gap between elements of its range is at least 3"~"~1 (property IV).
Inductively, p, is order-preserving and the gap between elements of its range is
at least 3777 so this can be maintained. If ¥V chooses non-green atoms, green
atoms with the same suffix, or green atoms whose suffices already belong to
dom(p,), there would be fewer elements to add to the domain of p,41 so it only
makes it easier for 3 to define p,y1. This establishes properties (II-T1V) for round
r+1.

To choose edge labels in response to a triangle move by V, 3 uses her normal
strategy for rainbow algebras. In rough outline: she chooses a white atom if
possible, else the black atom, and if neither of these is consistent then she chooses
a red atom. In the first of these cases she chooses a white atom for the new edge
under the circumstances that this does not complete a triangle where a forbidden
triple of atoms listed under (12) would result. In this case, she could easily choose
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FIGURE 5. Defining the suffix f

the white atom w and avoid all inconsistencies in that round, but because she
has an eye to future V moves, she very carefully selects an appropriate atom wy
for some f € F, avoiding forbidden triples of atoms (14), so as to restrict ¥’s
moves in later rounds. In the second of these cases it is not consistent to choose
a white atom but the black atom 1s consistent because it does not complete a
triangle where a forbidden triple of atoms listed under (13) is exhibited. This
case 1is straight-forward. Finally, if a white atom and the black atom are both
inconsistent then she chooses a red atom. This case is tricky, but she uses the
functions p, and the suffix f in a label w; to help her choose the suffices of red
atoms for this case.

Now we explain this strategy in more detail. Let V play the triangle move
(Ns,i,4,k,a,b)in round r+1. 3 has to choose labels for the edges {(z, k), (k, z) :
x € nodes(N; )\ {%,j}}. She chooses the labels for the edges (z, k) one at a time,
this then determines the labels of the reverse edges (k, z) uniquely. She selects
the first permissible option below. Property I is clear in all cases since the only
atoms 3 chooses are white, black or red.

1. Suppose it is not the case that N;(z,) and a are both green, and it is not
the case that N(z,j) and b are both green. Let S = {p € Z : (Ns(x,¢) =
gphNa=y)V(Ny(z,)) =yAa=1gp)V(Ns(2,j) =gp Ab=y)V (N:(z,j) =
yAb=g,)}. Clearly |S] < 2. 3lets Noyq(x, k) = wy for some f € F with
dom(f) = S, which we define next. Since dom(f) D S and since 3 does not
choose green or yellow for her edges, this will avoid all forbidden triples of
atoms (12) and (14) and these are the only forbidden triples including a
white atom.

Suppose N,(i,j) = rg~ (some B,y € N), N,(x,i) = gp, Ns(2,j) = g
(some p,q € Z) and a = b = vy, see figure 5. By property VI and for-
bidden triple (15), f = {(p,5),(¢,7)} is an order-preserving function. 3
lets Nop1(z, k) = wy in this case. Similarly, if N,(i,j) = rg, Ns(z,4) =
Ny(z,j) =y, a=gp, b=ggthenIlets f = {(p, 5), (¢,7)} and Nop1 (2, k) =
wy (here we use the fact that a; b > rg  to prove that f is order-preserving).
By definition, dom(f) = {p, ¢} = S, as promised.
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FIGURE 6. (z,k) is given a red label

In all other cases (either N, (4, 7) is not red or if it is then is not the case
that N;(x,7), Ns(z,j) are both green and ¢ = b =y and it is not the case
that N,(x,i) = Ns(x,j) =y and a,b are both green) I lets f : S - N
be an arbitrary order-preserving function (e.g. if S = {p,q} and p < ¢ let
flp) =0, flg) = 1).

Having defined f 3 lets N,41(z, k) = wy. This maintains property V for
round r + 1.

The only forbidden triples of atoms involving wy are (12) and (14) of
definition 40. Since 3 does not choose green or yellow atoms to label new
edges and N,41(z, k) = wy, all triangles involving the new edge (z, k) are
consistent in N, 1, so property VI holds after round r + 1.

. Else, if it is not the case that N;(x,7) = ¢ = y and it is not the case that

Ns(z,j) = b=y, 3lets Noy1(x, k) = b. Property V is not applicable in this

case. The only forbidden triple involving the atom b is (13), so all triangles

(z,y, k) are consistent in N,41 and property VI holds after round r + 1.

. If neither case above apply, then either N,(x,7) = g,, a = g (some p, q)

and N,(z,j) = b=y or Ny(z,i) = a =y and N,(z,j) = gp, b = g

Assume the first alternative, see figure 6. 3 lets N,y1(2, k) = ry 5, where

~,d remain to be specified. There are two subcases.

(a) Ns(i,5) #wy (all f € F). Tletsy = pry1(p), § = pr4+1(¢), maintaining
property Va. The only forbidden triples of atoms involving r., 5 are (15)
and (16) of definition 40. The triple of atoms from a triangle (z,y, k)
will not be forbidden by (15) since the only green edge incident with
kis (i, k) and since p,41 is order preserving. To check forbidden triple
(16) suppose Ny (x,y), Nr1(y, k) are both red (some y € nodes(N,)).
We have y ¢ {4, j} so 3 chose the red label N,11(y, k). By her strategy,
we must have N, (¢, y) = g; (some ¢, else she would have chosen a white
atom) and N, (j,y) = y (else she would have chosen the black atom).
By property (Va) for N,y1 we have Nyy1(2,y) = 1, . (p),p41(r) @a0d
by her strategy Nyy1(y, k) = rp ,1(t),pr41(q), hence the triple of atoms
from the triangle (x,y, k) is not forbidden by (16). Thus property VI
holds for Ny41.

(b) N.(i,j) = wy (some f € F). By consistency of N, and forbidden
triple (14) we have p € dom(f) and since ¥’s move was legal a;b =
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gy > Ns(i,j) = wy so ¢ € dom(f). T lets v = f(p),d = flq),
maintaining property Vb for round »+1. As above, the only forbidden
triples of atoms involving r, 5 are (15) and (16) of definition 40. Since f
is order preserving and since the only green edge incident with k is (¢, k)
in Npy1, triangles involving the new edge (z, k) cannot give a forbidden
triple of the form (15). For forbidden triple (16), let y € nodes(Nj)
and suppose Nyi1(2,¥), Ney1(y, k) are both red. As above, by her
strategy, we must have N(y,i) = g for some t and N,(y,j) =y. By
consistency of N; we have ¢ € dom(f) and by the current part of her
strategy she let Ny y1(y, k) = r7(1),7(q)- By property Vb for N we have
Ney1(®,y) = rs(p),7(r)- So the triple of atoms from the triangle (z,y, k)
is not forbidden by (16). This establishes property VI for N,4i.

Thus 3 can maintain all the properties in round r 4 1 in response to a triangle
move by V.

Finally we consider an amalgamation move (N;, N¢) by V in round » + 1.
Essentially, the claim above, particularly the third part, reduces this case to a
case very similar to the triangle move case. 3 has to choose a label for each edge
(,7) where i € nodes(N;) \ nodes(N;) and j € nodes(N;) \ nodes(N) (this then
determines the label for the reverse edge (j,)).

Let Z enumerate nodes(N,) Nnodes(N;). If Z is short then, by strictness of the
hypernetworks, there are at most two nodes in nodes(N;) N nodes(N;) and this
case 1s already quite similar to the triangle move case. If z i1s long in N; then
by the claim (2) there is a partial isomorphism @ : vy, (Z) — vy, (2) fixing . By
remark 42, since we are assuming that V only plays ‘maximal amalgamations’,
we see that vn, () = nodes(N;) N nodes(N;) = rng(Z) = vn,(Z).

It remains to label the edges (¢, 7) in N,41 where i € nodes(N;) \ nodes(Vy)
and j € nodes(N;) \ nodes(N;). Her strategy for labelling these edges is similar
to her strategy for dealing with triangle moves. She chooses the labels for edges
(,7) one at a time. As before she chooses a white atom if possible, else the black
atom if possible, otherwise a red atom. Since she never chooses a green atom,
she lets pr41 = pr and properties II, III and IV remain true after round r + 1.
She uses the first possible of the cases below.

1. There is no # € nodes(N;) N nodes(N;) such that Ny (i,2) and Ny(z,j) are
both green. If there are u, v € nodes(N;) N nodes(N;) such that Ng(u,v) =
g, No(i,u) = gp, Ns(i,v) = gq, Ne(u,j) = Ne(v,j) =y (some 3,y €
N, some p,q € 7Z) or the roles of ¢ and j are swapped, she lets f =
{(p,#),(¢,7)} and sets N,41(¢,j) = wy. Since all the edges labelled by
green or yellow atoms belong to V (property I), we can apply the claim (3)
to show that the points u,v are unique, so f is well-defined. This 1s
also true if # i1s short, since in this case there are only two nodes in
nodes(N) N nodes(N;).

If there are no such points w,v as just described then let S = {p € Z :
Jdy € nodes(N,) N nodes(Ny), (N:(i,y) = gp AN:(y,4) = y)V (Ns(4,y) =
YAN:(y,j) = gp)}. By the claim (3), |S| < 2. Let f be any order preserving
function from S into N. Jlets N,41 (4, j) = wy. Property VI holds for N,44,
as for triangle moves.
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2. Otherwise, if there is no & € nodes(N;) N nodes(N;) such that N, (i, z) =
Ni(z,j) =y, then she lets N,.(4,7) = b. As with triangle moves, all prop-
erties are maintained.

3. Otherwise, there are z,y € nodes(N,) N nodes(N;) such that N, (¢,2) =
gs, Ni(z,j) = g (some k,l € N) and N,(i,y) = Ne(y,j) = y. By the
claim (3), z,y are unique. She labels (4, ) in N, with a red atom rg
where:

(a) If No(z,y) # wy, all f € F), then 8 = py1(k), v = pr+1(1). This
maintains property Va.

(b) Otherwise N,(z,y) = wy, for some f € F, and g = f(k), v = f().
This maintains property Vb.

In either case, we can show that property VI holds for N, 1, as in the case

of triangle moves.

This proves that 3 has a winning strategy in H,(«). =

§6. Non-elementary classes.

LEMMA 44. Let A be the rainbow algebra of definition 40. There is a count-
able relation algebra A’ such that A’ = A and 3 has a winning strategy in H(A').

PrROOF. We have seen that for n < w 3 has a winning strategy o, in Hy(A).
We can assume that o, is deterministic. Let B be a non-principal ultrapower of
A. We can show that 3 has a winning strategy o in H(B) — essentially she uses
oy in the n’th component of the ultraproduct so that at each round of H(B)
3 is still winning in co-finitely many components, this suffices to show she has
still not lost. Now use an elementary chain argument to construct countable
elementary subalgebras A = Ay < A; <X ... < B. For this, let A;4; be a
countable elementary subalgebra of 5 containing .A; and all elements of B that
o selects in a play of H,(B) in which V only chooses elements from 4;. Now
let A" = ;. Ai. This is a countable elementary subalgebra of B and 3 has a
winning strategy in H(A’).

_|

THEOREM 45. Let K be any class of relation algebras with Ra(CA,) C
K C SRaCA5. Then K is not closed under elementary subalgebra, hence K is
not an elementary class.

Proor. Let A be the rainbow algebra of definition 40 and let A’ = A be the
countable elementary extension given in the previous lemma. .4’ must belong to
Ra(CA,), by lemma44 and theorem 39, hence A’ € K. But A ¢ K (lemma41)
and 4 < A, =

PROBLEM 46. For n = 3 or 4, s RaCA,, eclementary? Is ScRaCA,, ele-
mentary?

PROBLEM 47. For2 <n <m <w and if N, CA, C K C S M, CA,, is
it always the case that K is not elementary?

We expect a positive answer to this problem (i.e. K is not elementary), at
least for m > 5. Some partial results are known: t, L is not elementary, for
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various subclasses L of CA,,; SO, CA, 1s not elementary; the inclusion
Nr, CA,, C S I, CA,, is strict. See [17].

PROBLEM 48. [Andréka and Németi] For which n with 3 < n < w is it
the case that

RaRCA, = RaCA, NRRA

Andréka and Németi point out the the equation is true forn =3 and n > w.
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