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 � 3, that the classRaCA
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 � ScRaCA
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known about the class of subalgebras of relation algebra reducts of n-dimensionalcylindric algebras: the class is a canonical variety [6, proposition 5.48], for exam-ple. The neat embedding theorem [5, 5.3.13, 5.3.16] says that a relation algebrais representable if and only if it is a subalgebra of a relation algebra reduct of an!-dimensional cylindric algebra.Much less is known about the class of relation algebra reducts of n-dimensionalcylindric algebras (here we do not take subalgebras). A relation algebra in thisclass is more directly connected with an n-dimensional cylindric algebra. Wecan at least show that the class is pseudo-elementary, even for in�nite n, andthat the elementary theory of the class is recursively enumerable provided n isnot uncountably in�nite. But Monk proved that RaCAn is not closed undersubalgebras for any n � 5 (including in�nite n) [12], Maddux and N�emeti inde-pendently proved that RaCAn is not closed under subalgebras for n � 4 [8, 14]and later the same was proved for n = 3 [19, 15]. It is also known that therelated classes NrmCAn of neat reducts of cylindric algebras, for 2 � m < n,are not closed under subalgebras [13, 18]. In this article we will show, for n � 5,that RaCAn is not closed under elementary equivalence. [A corresponding re-sult was already established for neat reducts of cylindric algebras [17], but theconstruction used there does not seem to work for relation algebra reducts.]A complete representation of a relation algebra is a representation where ar-bitrary suprema are preserved in the representation, wherever they exist in thealgebra. There are connections between relation algebra reducts and CRA, theclass of completely representable relation algebras, although the relation algebrareduct is algebraically de�ned whereas CRA has a semantic de�nition. CRAis known to be pseudo-elementary but not closed under elementary equivalence[6, theorem 17.6], so it cannot be de�ned by any �rst-order theory. The samenegative properties hold for RaCAn (n � 5).It is known that a completely representable relation algebra must be atomicand representable (of course), but representability and atomicity do not suf-�ce to prove that a relation algebra is completely representable (see [7, exam-ples 23, p. 154 �.] for an atomic, representable relation algebra with no completerepresentation). This makes you wonder what else is needed to ensure that arelation algebra is completely representable. A trans�nite game can be de�nedthat does characterise CRA, but not everyone likes trans�nite games. In thispaper we will demonstrate another connection between the class RaCA! andthe class CRA, at least for countable algebras, by proving a complete versionof the neat embedding theorem: a countable relation algebra has a completerepresentation if and only if it is atomic and it is a strong subalgebra of therelation algebra reduct of an !-dimensional cylindric algebra. (An algebra is astrong subalgebra of another if it embeds into it in such a way that arbitrarysuprema are preserved by the embedding, whenever they exist in the algebra.)This can be thought of as an algebraic characterisation of CRA, at least for thecountable case. Whether this characterisation works for uncountable algebrasremains unknown.In the next section we run through the necessary prerequisites from algebraiclogic, including the de�nition of the relation algebra reduct, the relation algebraatom structure, the complete representation, the strong subalgebra etc. and2



some basic lemmas. In section 3 we prove that RaCAn is pseudo-elementary.In section 4 we de�ne three games played over a relation algebra atom structureand use these games to determine if a relation algebra is a strong subalgebra of arelation algebra reduct, as well as some other results concerning other classes. Weuse one of these games to re-prove a result of Sayed-Ahmed: a countable relationalgebra is completely representable i� it is atomic and a strong subalgebra of an!-dimensional cylindric algebra. In section 5 we construct a particular atomstructure (sometimes called a rainbow algebra atom structure) and use this insection 6 to demonstrate that a range of classes, includingRaCAn for n � 5, arenot closed under elementary subalgebras. The paper includes a series of openproblems.x2. Preliminaries.2.1. General. }(X) is the power set ofX. 
X denotes the set of all functionsfrom the ordinal 
 to the set X. Equivalently, we may consider �x 2 
X as asequence (x0; x1; : : : ) = (xi : i < 
), it will be implicit that the i'th element of�x (or equivalently �x(i)) is xi. We write <!X for Sn<! nX. For f 2 
X; i < 
and x 2 X we write f [i=x] for the function which is identical to f except thatf [i=x](i) = x. If � : X ! Y is any function and �x 2 
X then �(�x) 2 
Y isde�ned by (�(�x))(i) = �(�x(i)). Fix some n 2 !. For i; j < n we write [i=j]; Id�ifor the functions n! n de�ned by[i=j](k) = � k if k 6= i; k < nj if k = iId�i = f(k; k) : k 2 n n figgNote that all these de�nitions depend implicitly on n, the �rst one is a totalfunction and the second one is a partial function.2.2. Boolean algebra with operators. We assume some knowledge aboutcylindric algebras and relation algebras [9, 4, 5, 6]. For any ordinal 
, CA
denotes the class of 
-dimensional cylindric algebras [4, de�nition 1.1.1]. If � isa �nite subset of 
 we write c(�)x for ci0 : : : cikx, where i0; : : : ; ik is an arbitraryenumeration of �. Since cicjx = cjcix is one of the cylindric algebra axioms, theorder of the enumeration makes no di�erence.RA is the class of all relation algebras. One of the de�ning axioms for relationalgebras is the Peircean law which statesa; b : c^ = 0 () b; c : a^ = 0CA
 ;RA are examples of classes of boolean algebras with (completely addi-tive) operators. A boolean algebra with operators is simple if any homomor-phism de�ned on the algebra is an isomorphism or has a degenerate image. Forsimilar boolean algebras with operators A;B we write A � B if A is isomor-phic to a subalgebra of B (often we will identify A with its isomorphic image).Qi2I Ai denotes the direct product of the similar boolean algebras with opera-tors (Ai : i 2 I). If K is a class of similar boolean algebras with operators thenHK;SK;PK denote the classes of homomorphic images, subalgebras, directproducts of members of K, respectively.3



2.3. Representations. A relation algebra A is representable if there is astructureM in which each element a 2 A is interpretted as a binary relation aMover the domain ofM faithfully (i.e. a 6= b 2 A ! aM 6= bM) so as to preserveall the relation algebra operators, i.e. 0M = ;; (a+ b)M = aM [ bM; (�a)M =1M n aM; 10M = f(m;m) : m 2 Mg; a^M = f(n;m) : (m;n) 2 aMg and(a; b)M = aMjbM. It follows, using 1^ = 1; 1; 1 = 1, that 1M is an equivalencerelation over the domain of M, if M is a representation. RRA is the class ofall representable relation algebras. A partial isomorphism � of the representationM of A is a partial map on the base ofM such that for all i; j 2 dom(�) and alla 2 A we have (i; j) 2 aM , (�(i); �(j)) 2 aM.The cylindric set algebra of dimension 
 on a baseD is (}(
D); ;; 
D;[; n; Dij; Ci :i; j < 
), where Dij = ff 2 
D : f(i) = f(j)g and for S � 
D; Ci(S) = ff 2
D : 9d 2 D; f [i=d] 2 Sg. A cylindric algebra C 2 CA
 is representable if it isisomorphic to a subalgebra of a product of cylindric set algebras of dimension 
(see [4, page 171] and [5, de�nition 3.1.1], but note that in the latter de�nitioninstead of closing under direct products the equivalent notion of a generalisedcylindric �eld of sets is used). We write RCA
 for the class of representable
-dimensional cylindric algebras.PROPOSITION 1 ([3.1.108]HMT2). RCA
 is a variety, hence closed undersubalgebras, direct products and homomorphic images.2.4. Locally �nite cylindric algebras and weak set algebras. De�nethe dimension set of x, for x 2 C 2 CA
 , by �(x) = fi < 
 : cix 6= xg. C issaid to be locally �nite if j�(x)j is �nite, for all x 2 C. If 
 is �nite then every
-dimensional cylindric algebra is locally �nite.Let 
 � ! and let D be a set. Fix f0 2 
D and let W = ff 2 
D : fi : f(i) 6=f0(i)g is �niteg. The 
-dimensional cylindric algebra (}(W ); ;;W;Dij; Ci : i; j <!) where Dij ; Ci are de�ned as for cylindric set algebras, but relativized to W ,is called a weak cylindric set algebra of dimension 
 [5, de�nition 3.1.2].PROPOSITION 2 ([5, 3.1.102]). Every weak cylindric set algebra is repre-sentable.2.5. Atom structures. An atom of a boolean algebra with operators is aminimal non-zero element. A boolean algebra with operators is atomic if everynon-zero element is above some atom. If A is an atomic relation algebra, therelation algebra atom structure At(A) = (A; Id;^; C) consists of the set A ofatoms ofA, the set Id of atoms below the identity of A, the function ^ that takesan atom to its converse, and the list C of consistent triples of atoms (a; b; c) |those where a; b � c. Since the relation algebra operators are completely additive,the atom structure su�ces to de�ne the operators over arbitrary elements ofA. The following properties always hold in a relation algebra atom structure[6, lemma 3.24]. For all x; y; z; t 2 A,� x = y i� there is e 2 Id such that (x; e; y) 2 C.� If (x; y; z) 2 C then (�x; z; y); (�y; �x; �z) 2 C.� (9u 2 A ((x; y; u); (u; z; t) 2 C)), (9v 2 A ((y; z; v); (x; v; t) 2 C)).Conversely, if � = (A; Id;^; C) has the type of a relation algebra atom struc-ture we can de�ne the complex algebra of �, which has the type of a relation4



algebra, by Cm(�) = (}(A); ;; A;[; n; Id;^; ; ), where the converse operator ^ isextended from atoms to sets of atoms by S^ = fs^ : s 2 Sg, and composition ofsets of atoms is de�ned by S;T = fa 2 � : 9s 2 S; 9t 2 T; (s; t; a) 2 Cg, whereS; T � A. It turns out that the three conditions above are not only necessaryfor an atom structure to arise from the atoms of a relation algebra, but theyare also su�cient | the complex algebra of such an structure will be a relationalgebra.An atomic relation algebra A is simple if and only if At(A) = (A; Id;^; C) j=8a; b 2 A; 9c; d; f 2 A; (a; c; d); (f; d; b) 2 C. (Rewriting this with the compo-sition operator instead of the list of consistent triples we get 8a; b 2 A; 9c; f 2A; f ; a; c � b and this is equivalent to the more familiar statement x 6= 0 !1;x; 1 = 1.)2.6. Substitutions. Let 
 be an ordinal and C 2 CA
 ; i; j < 
 and x 2 C.De�ne sijx = � x if i = jci(dij : x) otherwiseFACT 3. Let C 2 CA
 (some 
 � 3), x; y 2 C; i; j; k; l < 
.1. sij is a completely additive endomorphism of C [4, 1.5.3].2. If i 6= j then cisijx = sijx (from the de�nition of sij and the cylindric algebraaxiom ciciy = ciy).3. If x : ciy = 0 then y : cix = 0 [4, 1.2.5].4. If k 62 fi; jg then cksijx = sijckx [4, 1.5.8(ii)].5. sijcix = cix [4, 1.5.8(i)]6. If i 6= j then cisijx = sijx [4, 1.5.9(ii)]7. cjsijx = cisjix [4, 1.5.9(i)]8. If i 6= k then sijsikx = sikx [4, 1.5.10(i)]9. sijsjix = sijx [4, 1.5.10(v)]DEFINITION 4. Let n � 3 be an ordinal and i; j < n. We de�ne a stringof substitutions sij that `move dimensions 0; 1 to i; j' as follows.sij = 8<: s0i s1j if j 6= 0s10s0i if j = 0; i 6= 1s20s01s12 if j = 0; i = 1[In the notation of [6, de�nition 5.23, lemma 13.29], csij is the function n ! ntaking 0; 1 to i; j, respectively, and �xing all k 2 n n fi; jg.]2.7. Neat reducts and relation algebra reducts.DEFINITION 5. Let � � � be ordinals and let C 2 CA�. The neat �-reductNr�(C) 2 CA� has as its domain fx 2 C : � � i < � ! cix = xg and all theoperators are inherited from C. Nr�CA� denotes the class fNr�(C) : C 2CA�g.Let � � 3 and let C 2 CA�. The relation algebra reduct Ra(C) is the algebraof the type of relation algebras whose domain is the same as that of Nr2(C), withboolean operators inherited from C and with the relation algebra operators de�ned5



by 10 = d01a^ = s20s01s12aa; b = c2(s12a : s02b)for a; b 2 Nr2(C). Observe, in the notation of de�nition 4, that a^ = s10a anda; b = c2(s02a : s21b). For � � 4; Ra(C) is a relation algebra [5, 5.3.8]. RaCA�denotes the class fRa(C) : C 2 CA�g.LEMMA 6. Let 2 � � � � � 
 and 3 � �.� Nr�(Nr�CA
 ) = Nr�(CA
 ) and Ra(Nr�CA
) = Ra(CA
).� Nr�(CA
 ) � Nr�(CA�) and Ra(CA
) � Ra(CA�).The neat embedding theorem was �rst proved in the closely related setting ofneat reducts of cylindric algebras [12, theorems 4.1,9.11,9.12], see [11, p.112] fora similar result with relational bases.THEOREM 7 (Neat embedding theorem, Henkin, Maddux, Monk). Let 
 �!. RRA = \n<!SRaCAn = SRaCA
The theorem and a proof can be found in [6, proposition 13.48]. Thus SRaCA
is constant, for 
 � !. By contrast, it is strictly decreasing for 3 � 
 < ![6, theorem 15.1] and therefore RaCA
 strictly decreases as 
 increases, for�nite 
. We might ask what happens to RaCA
 as 
 � ! increases. We thankAndr�eka and N�emeti for this result1.THEOREM 8 (Andr�eka and N�emeti). For 
 � ! we have RaCA
 = RaCA!.Proof. The inclusion RaCA
 � RaCA! is lemma 6. Conversely, let A 2RaCA!, say A = RaC for some C 2 CA!. We have to show that A 2 RaCA
 .Let C0 be the subalgebra of C generated (using the cylindric algebra operators)by A. Then A = RaC0 and C0 is a locally �nite, !-dimensional cylindric algebra.By [4, 2.6.74(ii)], every locally �nite !-dimensional cylindric algebra is the neatreduct of a locally �nite 
-dimensional cylindric algebra, so C0 = Nr!D forsome locally �nite D 2 CA
 . Hence A = Ra(C0) = Ra(Nr!D) = Ra(D) (bylemma 6), so A 2 RaCA
 , as required. aPROBLEM 9. That still leaves one case: is RaCA! = Tn<!RaCAn? Andr�ekaand N�emeti have proved that every relation algebra in Tn<!RaCAn has an el-ementary subalgebra in RaCA!, but the question as stated remains open.THEOREM 10. RaCA! = RaRCA!.Proof. The inclusion RaCA! � RaRCA! is trivial. To prove the otherinclusion, let A 2 RaCA! , say A = RaC for some C 2 CA!. Let C0 be thesubalgebra of C generated by A. Then C0 is locally �nite and A = Ra(C0). Byproposition 2, C0 2 RCA! so A 2 RaRCA!. a1Personal communication to the author. 6



PROPOSITION 11 ([6, 13.31]). Let 4 � 
; C 2 CA
 ; i; j; k < 
; k 62 fi; jgand �; �; 
 2 Ra(C). sij(�; �) = ck(sik� : skj�)For 
 � 3 it is known that RaCA
 is not closed under subalgebra. It is easyto check that it is closed under direct products: Qi2I RaCi �= RaQi2I Ci, whereCi 2 CA
 . Andr�eka and N�emeti proved2 that the class is also closed underhomomorphic images.THEOREM 12 (Andr�eka and N�emeti). Let 
 � 3. HRaCA
 = RaCA
 .Proof. See [13, theorem 1(i)]. Let A = RaC for some C 2 CA
 and leth : A ! B be a relation algebra homomorphism. We have to show that B 2RaCA
 . We can assume that the algebra generated by A in C using the cylindricalgebra operations is the whole of C (else replace C by the subalgebra generatedby A). Then C is locally �nite. Let I be the kernel of h, an ideal of A. Thedomain of A is the same as the domain of Nr2(C) and I is also an ideal ofNr2(C). Hence [4, 2.3.8] I extends to an ideal I0 of C and I = I0 \ A. NowB �= A=I �= A=I 0 � Ra(C=I 0). We have to show that the inclusion is not proper.Let x 2 Ra(C=I0) be arbitrary, say x = c=I0 for some c 2 C, we will show thatx = a=I 0 for some a 2 A. Since C is locally �nite, the dimension set �(c) is�nite. Let � = �(c) n f0; 1g (a �nite subset of 
) and let c0 = c(�)c. Now c0 2 Aand x = c=I 0 = c0=I0, since x 2 Nr2(C=I0). Thus B �= Ra(C=I0) as required. a2.8. Complete representations and strong embeddings.DEFINITION 13. For any boolean algebras with operators A � B we say\A is a strong subalgebra of B" and we write A �c B if whenever the supremumPAX exists in A then the supremum exists in B andPAX =PBX. Examplesof cases where A �c B include the case where A is a �nite subalgebra of Band the case where B is the MacNeille completion of A. We write ScK forfA : 9B 2 K; A �c Bg.A representationM with base D of a boolean algebra B interprets each elementb 2 B as a distinct subset of D such that 0M = ;; 1M = D; (�b)M = D n bMand (b+ b0)M = bM [ b0M, for all b; b0 2 B. So M is a representation of B withbase D i� the map b 7! bM is an embedding: B � P(M) =def. (}(D); D; ;;[; n).If B �c P(M) then we say that M is a complete boolean representation B.Equivalently, for any subset X of the universe of B, if the supremum PBXexists in B then (PBX)M = Sb2X bM.A relation algebra A is completely representable if there is a representationMof A such that the reduct of M to the boolean part of the signature is a completeboolean representation of the boolean part of A. CRA denotes the class of allcompletely representable relation algebras.It is easy to show, using the De Morgan laws, that in�ma are also preserved bystrong subalgebras: if A �c B then whenever QAX exists then QBX = QAX2Personal communication to the author. 7



also exists. Similarly, if M is a complete representation of B then wheneverQBX exists (QBX)M = Tb2X bM.The next few lemmas are are about boolean algebras but apply equally to anyboolean algebras with operators.LEMMA 14 ([6, lemma 2.16]). If B is an atomic boolean algebra and A �c Bthen A is atomic too.Proof. Suppose that B is atomic but A is not. Then there is a 2 A witha 6= 0 with no atom of A below a. But B � A is atomic so there is � 2 At(B)with � � a. Let F = fr 2 A : � � rg. We have a 2 F . Then QAF = 0 but� � QB F . Hence A 6�c B. aLEMMA 15. Let A � B be boolean algebras and let A be atomic. A �c B ifand only if for all b 2 B n f0g there is a 2 At(A) such that a:b 6= 0.Proof. If b 2 B n f0g and for all a 2 At(A) a:b = 0 then PA At(A) = 1 butPB AtA � 1� b if it exists, so A 6�c B.Conversely, if A 6�c B then there is a set S � A such that PA S exists butthere is b 2 B with b 6� PA S and b is an upper bound for S. But then,b0 =PA S � b 6= 0 must be disjoint from all atoms of A. aLEMMA 16 ([6, theorem 2.21]). Let A be a boolean algebra and let M be arepresentation of A. The following are equivalent.� M is a complete representation of A.� M is an atomic representation of A i.e. 1M = Sf�M : � 2 At(A)g.Proof. LetM be any representation ofA, i.e. A � P(M) = (}(1M); 1M; ;;[; n).By de�nition 13,M is a complete representation of A () A �c P(M)(1)If M is a complete representation of A then, since P(M) is atomic and bylemma 14, A is also atomic. By lemma 15, for all b 2 P(M) n f0g there isa 2 At(A) with a:b 6= 0. It follows that 1M = Sa2At(A) aM, so M is an atomicrepresentation.Conversely, if M is an atomic representation of A, i.e. 1M = Sa2At(A) aM,then A must be atomic. By lemma 15, A �c P(M), hence M is a completerepresentation of A, by (1). aLEMMA 17. If M is a complete representation of B and A �c B then Minduces a complete representation of A.Proof. Suppose for contradiction that M is a complete representation of Bbut it does not induce a complete representation of A. By lemma 16 there ism 2 M with m 2 1M but m 62 �M for all � 2 At(A). By the same lemma,m 2 �M for some � 2 At(B). Let F = fa 2 A : � � ag. Then QA F = 0 butQB F � �. This contradicts A �c B. a8



Now we apply this to relation algebra. FRA denotes the class of full relationalgebras | the closure under isomorphism of the class of relation algebras of theform Re(D) =def. (}(D �D); D �D; ;;[; n; IdD;^ ; ; ) for some domain D.THEOREM 18. CRA = ScP(FRA).Proof. Let A 2 CRA and let M be a complete representation of A. Fromde�nition 13, we have A �c P(M). 1M is an equivalence relation over the baseofM, as we saw earlier, and P(M) �= Qequiv. classes D Re(D) 2 P(FRA), soA 2 ScP(FRA).Conversely, let A 2 ScP(FRA), say A �c QD2�Re(D), for some �. NowQD2�Re(D) is completely representable | just interpret each element as itself.CRA is closed under strong subalgebras (lemma 17) so A 2 CRA. HenceScP(FRA) � CRA. aLEMMA 19. Let n � 3 and let A be an atomic relation algebra, A �c Ra(C)for some C 2 CAn. For all x 2 C n f0g and all i; j < n there is a 2 At(A) suchthat sija : x 6= 0.Proof. Recall from fact 3.1, that sij is a completely additive operator (anyi; j), hence sij is too (see de�nition 4). SoPfsija : a 2 At(A)g = sijPAt(A) =sij1 = 1, for any i; j < n. Let x 2 C n f0g. It is impossible that sija : x = 0for all a 2 At(A) because this would imply that 1 � x was an upper bound forfsija : a 2 At(A)g, contradicting Pfsija : a 2 At(A)g = 1. ax3. RaCA
 is pseudo-elementary.DEFINITION 20. Let K be a class of structures in a signature L. We saythat K is pseudo-elementary if there is a many-sorted signature Ls, where thesignature L1 of the �rst sort contains L, and some Ls-theory U such that K =fM1�L : M j= Ug. Here M1�L is the L-structure obtained from M by (a)restricting the domain to the �rst-sorted elements only and (b) restricting thelanguage to L.THEOREM 21. For any ordinal 
 � 3 the classRaCA
 is pseudo-elementary.Proof. For �nite 
 it is quite easy to de�ne RaCA
 in a two-sorted language.The �rst sort is for relation algebra elements and the second sort is for cylindricalgebra elements. The de�ning theory includes sentences requiring the second-sorted elements to form an 
-dimensional cylindric algebra. The signature ofthe de�ning theory also includes a function I from sort one to sort two and thede�ning theory includes a sentence requiring that I respects the operators (e.g.I(10) = d01) and is injective. Finally, there is a sentence saying, for any cylindricalgebra element y, that V2�i<
 ciy = y if and only if that there is a relationalgebra element x such that y = I(x). This ensures that I is a surjection ontothe relation algebra reduct of the cylindric algebra.For in�nite 
 this method won't work because the conjunction V2�i�
 ciy = yis in�nitary. Instead, we use a three sorted de�ning theory, with one sort for arelation algebra (r), the second sort for the boolean part of a cylindric algebra (b)9



and the third sort for a set of dimensions (�). We will use superscripts r; b; � forvariables and functions to indicate that the variable, or the returned value of thefunction, is of the sort of the relation algebra, the boolean part of the cylindricalgebra or the dimension set, respectively. Our signature includes dimensionsort constants i�, for each i < 
 to represent the dimensions. It also includes therelation algebra operators for the �rst sort, a function db taking two dimensionsort arguments and returning a boolean sort element, and a function cb takingone argument of sort � and a second argument of sort b and returning an elementof sort b. The de�ning theory for RaCA
 includes sentences demanding that theconstants i� for i < 
 are distinct, and that the last two sorts de�ne a cylindricalgebra of dimension at least 
. For example, in place of the cylindric algebraaxiom dij = ck(dik:dkj) (all i; j; k < 
) we have the sentence8x�; y� ; z� (db(x�; y�) = cb(z� ; db(x�; z�):bdb(z� ; y�)))(here x�; y�; z� are variables of sort �, :b is the boolean intersection operator forcylindric algebras, henceforth we drop sort superscripts for boolean operators)with similar translations of the other cylindric algebra axioms. We also have afunction Ib from sort r to sort b and sentences requiring Ib to be injective andto respect the relation algebra operations as follows: for all xr; yr,Ib(10) = db(0�; 1�)Ib(xr) = s20s01s12Ib(x^r)Ib(xr; yr) = cb2(s12Ib(x) : s02Ib(y))where sij the substitution operator from sort b to sort b. More precisely, anequation xb = sijyb abbreviates the formula[(i� = j�)! (xb = yb)] ^ [(i� 6= j�)! (xb = cb(i� ; (db(i�; j�):yb)))]Finally, we require that Ib maps onto the set of two dimensional elements:8yb ((8z�(z� 6= 0�; 1� ! cb(z�; yb) = yb))$ 9xr (yb = Ib(xr)))Clearly, any algebra of the type of a relation algebra A 2 RaCA
 is the �rstsort of a model of this theory. Conversely, a model of this theory will consist ofa relation type algebra (sort r) and a cylindric algebra whose dimension is thecardinality of the set of �-sorted elements. This cardinality is at least j
j sincewe required that all the constants fi� : i < 
g are distinct. So the �rst sort ofa model will be the relation algebra reduct of a cylindric algebra of dimension
0 � 
. By lemma 6 this implies that the �rst sort of a model must belong toRaCA
 . Hence this three sorted theory does de�ne RaCA
 . aCOROLLARY 22. For countable 
 � 3 the elementary theory of RaCA
 isrecursively enumerable.Proof. The de�ning three-sorted theory in the proof of the previous theoremis recursive. Use [6, theorem 9.37]. a10



x4. Games. Since RaCA
 is pseudo-elementary and the de�ning theory isrecursive for countable 
, it is possible to devise a two-player game �(A) to testif a relation algebra A belongs to this class [6, de�nition 9.32, proposition 9.33].The number of rounds in a play of �(A) is the cardinal jAj + j
j + !. In eachof these rounds the �rst player, 8, makes a move and the second player, 9, hasto respond. There are rules which stipulate which responses by 9 are legal andwhich are not. If 9 makes an illegal response in any round then 8 wins the play,otherwise 9 makes a legal response in every round and 9 wins the play. 9 has awinning strategy in �(A) if and only if A 2 RaCA
 .For n < !, a shortened version of this game, �n(A), can be de�ned. This isvery similar, but play stops after n rounds. If 9 responds legally in each of the nrounds she wins the play, otherwise 8 wins. [6, Propositions 9.34, 9.36] state (inthe more general setting of arbitrary pseudo-elementary classes) that for eachn < ! there is a �rst-order formula �n in the signature of relation algebras suchthat 9 has a winning strategy (w.s.) in �n(A) if and only if A j= �n, and that if9 has a winning strategy in �n(A) for all n < ! then A is elementarily equivalentto a member of RaCA
 . Thus f�n : n < !g axiomatises the elementary theoryof RaCA
 .However, the game �(A) is not very easy to use in practice | it seems thatgames that use the atoms of an atomic boolean algebra with operators are easierto use then these more general games. Furthermore, we want to prove notonly that RaCA
 is not elementary, but various other classes also fail to beelementary (see theorem 45). We also want to draw out the connection betweenrelation algebra reducts and complete representations. For these reasons, weomit details of the game �(A) and de�ne three other games Fn(�); G(�);H(�)played on the atom structure of an atomic relation algebra. The games areincreasingly di�cult for 9 to win (and increasingly easy for 8 to win), sow.s. for 9 in H(�)) w.s. for 9 in G(�)) w.s. for 9 in F!(�)For countable �, we will provew.s. for 9 in F!(�) , � 2 At(ScRaCA!) (thm. 29)w.s. for 9 in H(�) ) � 2 At(RaCA!) ) w.s. for 9 in G(�) (thms. 39, 34)We are not sure about the converses of the last two implications. We willalso prove that there is a relation algebra atom structure � 2 AtScRaCA! nAtRaCA! (theorem 36). It follows that it is strictly harder for 9 to win H(�)than F!(�). The game G(�) is in between, but we do not know if it is equivalentto F!(�) or H(�) or neither.DEFINITION 23 (Networks and Hypernetworks). Let � be a relation alge-bra atom structure. A network over � (sometimes called an atomic network, alsoknown as a basic matrix) is a complete labelled graph N whose nodes nodes(N )form a set of natural numbers, with each edge labelled by an atom from � suchthatI. N (i; i) � 10,II. N (j; i) = N (i; j)^,III. N (i; j);N (j; k) � N (i; k), 11



for all nodes i; j; k 2 nodes(N ). In fact if N satis�es conditions I and III then,by the relation algebra axioms, it must also satisfy condition II. A network N isstrict if N (i; j) � 10 () i = j.De�ne an equivalence relation � over the set of all �nite sequences overnodes(N ) by �x � �y i� j�xj = j�yj and N (xi; yi) � 10 for all i < j�xj.A hypernetwork N = (Na; Nh) consists of a network Na together with alabelling function for hyperlabels Nh : <!nodes(N ) ! � (some arbitrary set ofhyperlabels �) such that for �x; �y 2 <!nodes(N )IV. �x � �y ) Nh(�x) = Nh(�y).If j�xj = k 2 N and Nh(�x) = � then we say that � is a k-ary hyperlabel. Whenthere is no risk of ambiguity we may drop the superscripts a; h.The following notation is de�ned for hypernetworks, but applies equally to net-works. If N is a hypernetwork and S is any set then N�S is the n-dimensionalhypernetwork de�ned by restricting N to the set of nodes S \ nodes(N ). Forhypernetworks M;N if there is a set S such that M = N�S then we writeM � N . If N0 � N1 � : : : is a nested sequence of hypernetworks then we let thelimit N = Si<!Ni be the hypernetwork de�ned by nodes(N ) = Si<! nodes(Ni),Na(x; y) = Nai (x; y) if x; y 2 nodes(Ni), and Nh(�x) = Nhi (�x) if rng(�x) �nodes(Ni). This is well-de�ned since the hypernetworks are nested and sincehyperedges �x 2 <!nodes(N ) are only �nitely long.For hypernetworks M;N and any set S, we write M �S N if N�S = M�S .For hypernetworks M;N , and any set S, we write M �S N if the symmetricdi�erence �(nodes(M ); nodes(N )) � S and M �(nodes(M)[nodes(N))nS N . Wewrite M �k N for M �fkg N .Let N be a network and let � be any function. The network N� is a completelabelled graph with nodes ��1(nodes(N )) = fx 2 dom(�) : �(x) 2 nodes(N )g, andlabelling de�ned by (N�)(i; j) = N (�(i); �(j)), for i; j 2 ��1(nodes(N )). Simi-larly, for a hypernetwork N = (Na; Nh), we de�ne N� to be the hypernetwork(Na�;Nh�) with hyperlabelling de�ned by Nh�(x0; x1; : : :) = Nh(�(x0); �(x1); : : : )for (x0; x1; : : : ) 2 <!��1(nodes(N )).Let M;N be hypernetworks. A partial isomorphism � : M ! N is a partialmap � : nodes(M ) ! nodes(N ) such that for any i; j 2 dom(�) � nodes(M ) wehave Ma(i; j) = Na(�(i); �(j)) and for any �nite sequence �x 2 <!dom(�) wehave Mh(�x) = Nh�(�x). If M = N we may call � a partial isomorphism of N .A hyperedge �x 2 <!nodes(N ) of N is called short if there are y0; y1 2 nodes(N )and for all i < j�xj either N (xi; y0) � 10 or N (xi; y1) � 10. Other hyperedges arecalled long. A hypernetwork N is called �-neat if N (�x) = �, for all short hyper-edges �x of N . If N is a �-neat hypernetwork then N� is a �-neat hypernetwork.REMARK 24. We will �x some hyperlabel �0 and use �0-neat hypernetworksextensively in what follows. The idea is to keep a constant label (�0) on shorthyperedges of the hypernetworks we use. These hypernetworks can be used toform the atoms of a cylindric algebra (at least in the �nite dimensional case).The fact that short hyperlabels are constant means that the atoms of the relationalgebra reduct of this cylindric algebra should be no smaller than the atoms ofthe original relation algebra. This will help us prove that the relation algebra isa relation algebra reduct of a cylindric algebra.12



DEFINITION 25. For n � 3 and C 2 CAn, if A � Ra(C) is an atomicrelation algebra and N is an A-network then we de�ne bN 2 C bybN = Yi;j2nodes(N) sijN (i; j)bN 2 C depends implicitly on C.LEMMA 26. Let 3 � n; C 2 CAn and let A �c RaC be an atomic relationalgebra.1. For any x 2 C nf0g and any �nite set I � n there is a network N such thatnodes(N ) = I and x : bN 6= 0.2. For any networks M;N if cM : bN 6= 0 then M �nodes(M)\nodes(N) N .Proof. The proof of the �rst part is based on repeated use of lemma 19. Wede�ne the edge labelling of N one edge at a time. Initially no edges are labelled.Suppose E � nodes(N ) � nodes(N ) is the set of labelled edges of N (initiallyE = ;) and x : Q(i;j)2E sijN (i; j) 6= 0. Pick k; l 2 I such that (k; l) 62 E.By lemma 19 there is a 2 At(A) such that x : Q(i;j)2E sijN (i; j) : skla 6=0. If k = l then we can �nd such an a with a � 10 (note that siid01 = 1).Extend the labelling of N so that N (k; l) = a and include the edge (k; l) inE. Eventually, all edges will be labelled, so we obtain a completely labelledgraph N with bN 6= 0. Network condition I in de�nition 23 is true by the waywe selected the label of re
exive edges. For condition III, let i; j; k < n. Wehave sijN (i; j) : sjkN (j; k) : sikN (i; k) � bN 6= 0 so by proposition 11, 0 <cj(sijN (i; j) : sjkN (j; k)) : sikN (i; k) = sik(N (i; j);N (j; k)) : sikN (i; k), henceN (i; j);N (j; k) : N (i; k) 6= 0, by fact 3.1, so N satis�es network condition III.Network condition II follows from I and III, hence N is a network.For the second part, if it is not true thatM �nodes(M)\nodes(N) N then there arei; j 2 nodes(M )\ nodes(N ) such that M (i; j) 6= N (i; j). Since edges are labelledby atoms we have M (i; j):N (i; j) = 0 so 0 = sij0 = sijM (i; j) : sijN (i; j) �cM : bN . aLEMMA 27. Let n � 3; C 2 CAn and let A � Ra(C) be atomic. Let N be anetwork over A and i; j < n.1. If i 62 nodes(N ) then ci bN = bN .2. \NId�j � bN .3. If i 62 nodes(N ) and j 2 nodes(N ) then bN 6= 0!\N [i=j] 6= 0.4. If � is any partial, �nite map n! n and if nodes(N ) is a proper subset ofn, then bN 6= 0! cN� 6= 0.Proof. The �rst part is by facts 3.1, 3.2 and 3.4. The second part is byde�nition of b. For the third part suppose bN 6= 0. Since i 62 nodes(N ), by part 1,we have ci bN = bN . By cylindric algebra axioms it follows that bN : dij 6= 0. Bylemma 26 there is a network M where nodes(M ) = nodes(N ) [ fig such thatcM : bN : dij 6= 0, so cM 6= 0. By lemma 26 we have M � N and M (i; j) � 10. Itfollows that M = N [i=j]. Hence \N [i=j] = cM 6= 0.13



'& $%cc c ccc cXXXXXXXXz��������9ij kbb'N Figure 1. Triangle moveFor the �nal part (cf. [6, lemma 13.29]), since there is k 2 n n nodes(N ), �can be expressed as a product �0�1 : : :�t of maps such that, for s � t, we haveeither �s = Id�i for some i < n or �s = [i=j] for some i; j < n and wherei 62 nodes(N�0 : : : �s�1). Now apply parts 2 and 3 of the lemma. aDEFINITION 28 (Games). For any relation algebra atom structure � and3 � n � !, we de�ne two-player games Fn(�); G(�) and H(�), each with !rounds, and for n < ! we de�ne Hn(�) with n rounds.� Let 3 � n � !. In a play of Fn(�) the two players construct a sequence ofnetworks N0; N1; : : : where nodes(Ni) is a �nite subset of n = fj : j < ng,for each i. In the initial round of this game 8 picks any atom a 2 � and 9must play a network N0 with nodes(N0) � f0; 1g, such that N0(i; j) = a forsome i; j 2 nodes(N0). In a subsequent round of a play of Fn(�) 8 can picka previously played network N and i; j 2 nodes(N ); k 2 nnfi; jg, and atomsb; b0 2 � such that b; b0 � N (i; j). This move is called a triangle move andis denoted (N; i; j; k; b; b0), see �gure 1. In order to make a legal response,9 must play a network M � N such that M (i; k) = b and M (k; j) = b0 andnodes(M ) = nodes(N ) [ fkg.9 wins Fn(�) if she responds with a legal move in each of the ! rounds.If she fails to make a legal response in any round then 8 wins.� G(�) is similar to F!(�). For each i, the nodes of Ni are a �nite sub-set of !. The initial round in a play of G(�) is the same as in a play ofF!(�). In any subsequent round 8 can play a triangle move, as in F!(�)and the rules for 9's response are the same. In G(�), 8 has the option ofplaying a transformation move (N; �) by picking a previously played net-work N and a partial �nite surjection � : ! ! nodes(N ). 9 must respondwith N�. Also, 8 can play an amalgamationmove (M;N ) by picking previ-ously played networks M;N such that 0 < jnodes(M ) \ nodes(N )j � 2 andM �nodes(M)\nodes(N) N , see �gure 2(a). To make a legal response, 9 mustrespond with some network L extending M and N . If she fails to make alegal response in any of the ! rounds of the play, 8 wins. If she succeeds ineach round, she wins.� Fix some hyperlabel �0. H(�) is similar to G(�), but in this game the playconsists of a sequence of �0-neat hypernetworks N0; N1; : : : where nodes(Ni)is a �nite subset of !, for each i < !. The other main di�erence isthat 8 can play a more general kind of amalgamation move. In the ini-tial round 8 picks a 2 � and 9 must play a �0-neat hypernetwork N0with nodes contained in f0; 1g and N0(i; j) = a for some nodes i; j. At14



'& $%'& $%'& $%'& $%aa aa a aaa aaa aaaM N M N(a) Game G(�) (b) Game H(�)Figure 2. Amalgamation movesa later stage 8 can make any triangle move (N; i; j; k; b; b0) by picking apreviously played hypernetwork N and i; j 2 nodes(N ); k 2 ! n nodes(N )and b; b0 � N (i; j). [In H we require that 8 chooses k as a `new node',i.e. not in nodes(N ), whereas in Fn for �nite n it was necessary to allow8 to `reuse old nodes'.] For a legal response, 9 must play a �0-neat hy-pernetwork M �k N where nodes(M ) = nodes(N ) [ fkg and M (i; k) = band M (k; j) = b0. Alternatively, 8 can play a transformation move bypicking a previously played hypernetwork N and a partial, �nite surjec-tion � : ! ! nodes(N ), this move is denoted (N; �). 9 must respondwith N�. Finally, 8 can play an amalgamation move by picking previ-ously played hypernetworks M;N such that M �nodes(M)\nodes(N) N andnodes(M ) \ nodes(N ) 6= ;, see �gure 2(b). This move is denoted (M;N ).To make a legal response, 9 must play a �0-neat hypernetwork L extendingM and N , where nodes(L) = nodes(M ) [ nodes(N ).Again, 9 wins H(�) if she responds legally in each of the ! rounds, oth-erwise 8 wins.� For n < ! the game Hn(�) is similar to H(�) but play ends after n rounds,so a play of Hn(�) could beN0; N1; : : : ; NnIf 9 responds legally in each of these n rounds she wins, otherwise 8 wins.THEOREM 29. Let A be a relation algebra. With reference to the four con-ditions below, we have (1) ) (2) ) (3) ) (4). If A is atomic with countablymany atoms then (4) ) (1) and all conditions are equivalent.1. A has a complete representation.2. There is an atomic representable cylindric algebra C 2 RCA! such thatA �c Ra(C).3. A is atomic and A 2 ScRaCA!.4. A is atomic and 9 has a winning strategy in F!(At(A)).Proof. The equivalence of (1) and (3), for countable algebras, is proved in[16, theorem 1].(1) ) (2): Let M be a complete representation of A. By lemma 16 A isatomic. The plan is to de�ne an atomic representable cylindric algebra C,to show that there is an embedding I : A ! Ra(C) and that for all non-zero15



x 2 Ra(C) there is a 2 At(A) such that I(a) : x 6= 0. We will then applylemma 15 to get A �c Ra(C).1M must be an equivalence relation over the domain of M, as we sawearlier. Let E be the set of equivalence classes of 1M. For each equivalenceclass D 2 E pick an arbitrary sequence fD 2 !D. Let WD = ff 2 !D :fi < ! : f(i) 6= fD(i)g is �niteg and let CD = (}(WD); ;;WD;[; n; Dij; Ci :i; j < !). This is a weak cylindric algebra (see section 2.4) and by proposi-tion 2 it belongs to RCA!. CD is an atomic cylindric algebra | the atomsare the singleton sets ffg, for f 2 WD. Note, for f; g 2 WD and i < !,that if f�!nfig = g�!nfig then ffg � Cifgg.Let x 2 Ra(CD), i.e. Cix = x for 2 � i < !. If f 2 x and g 2WD satis�esg(0) = f(0); g(1) = f(1) then g 2 x since f2 � i < ! : f(i) 6= g(i)g is�nite. It follows thatRa(CD) is atomic and its atoms are ffg 2WD : g(0) =m; g(1) = ng : m;n 2 Dg. There is a homomorphism hD : A ! Ra(CD)given by hD(a) = ff 2WD : 9a0 � a; a0 2 AtA; M j= a0(f(0); f(1))g.Let C = QD2E CD 2 RCA!. Let �D : C ! CD be the D'th projectionand let �D : CD ! C be the D'th embedding. Since C is a product of atomiccylindric algebras, it is atomic and its atoms are f�D(�) : D 2 E; � 2At(CD)g.A embeds into Ra(C) by I : a 7! (hD(a) : D 2 E). If x 2 Ra(C) thenfor each D we have �D(x) 2 Ra(CD) and if x is non-zero then �D(x) 6= 0for some D. By atomicity of CD there are m;n 2 D such that fg 2 WD :g(0) = m; g(1) = ng � �D(x). By lemma 16 there is a 2 At(A) such thatM j= a(m;n). Hence, fg 2 WD : g(0) = m; g(1) = ng � �D((x) : I(a))and so x : I(a) 6= 0. By lemma 15, A �c Ra(C).(2) ) (3): Trivial (use lemma 14 for atomicity of A).(3) ) (4): Let A �c RaC for some C 2 CA!. We have to show that 9 hasa winning strategy in F!(At(A)).9's strategy is to always play networks N such that bN 6= 0. In the initialround, let 8 play a 2 At(A). 9 plays the network N0 with nodes f0; 1g andlabelling determined by N0(0; 1) = a. Then cN0 = a 6= 0.At a later stage suppose 8 plays the triangle move (N; i; j; k; b; b0), wherek 6= i; j; b; b0 � N (i; j) and N was previously played so bN 6= 0. By propo-sition 11, ck(sikb : skjb0) = sij(b; b0) � sijN (i; j) � bN . By lemma 27(1),ck bN = bN . Therefore ck(sikb : skjb0) � ck bN and hence sikb : skjb0 : ck bN 6=0, by fact 3.3.By lemma 26, there is a network M where nodes(M ) = nodes(N ) [ fkgsuch that cM : ck bN : sikb : skjb0 6= 0. By lemma 26, M �k N . Lemma 26also proves that M (i; k) = b and M (k; j) = b0. To see why, consider anetwork B where nodes(B) = fi; kg and B(i; k) = b. It is not hard to showthat bB = sikb, so by lemma 26 we get M �fi;kg B hence M (i; k) = b andsimilarlyM (k; j) = b0. This means that M is a legal response, so 9 playssuch a network M . Thus 9 can preserve the conditions: M is a networkand cM 6= 0.Now suppose A is atomic with countably many atoms. The implication (4) )(1) is essentially [6, theorem 11.7(2)], or see lemma 35 for a very similar proof.16



aPROBLEM 30. Let A be an atomic relation algebra. If A 2 Tn<! ScRaCAnmust 9 have a winning strategy in F!(At(A))?REMARK 31. For atomic relation algebras with uncountably many atomsthe four conditions in theorem 29 need not be equivalent. Let A be the atomicrelation algebra with atoms f10; ai0; aj : i < 2!; 1 � j < !g, all symmetric, andwhere the forbidden triples of atoms are the permutations of (10; x; y) for x 6= y,(aj; aj; aj) for 1 � j < !, and (ai0; ai00 ; ai�0 ) for i; i0; i� < 2!. In other words, if youthink of the subscript of a non-identity atom as its colour, then monochromatictriangles are forbidden. All other triples of atoms are consistent. Write a0 forfai0 : i < 2!g and a+ for faj : 1 � j < !g. De�ne A to be the subalgebra of thecomplex algebra over this atom structure generated by the atoms (this is calledthe term algebra of the atom structure). It is easy to check that each elementof A has the form F [ A0 [ A+, where F is a �nite set of atoms, A0 is eitherempty of a co�nite subset of a0 and A+ is either empty of a co�nite subset ofa+. With this de�nition, we can prove:A has no complete representation.(2)The proof of this is based on an in�nite version of Ramsay's theorem (whichrequires continuum many atoms ai0).A 2 RaCA!:(3)The proof of this is more complicated, but here is an outline. Let S be the setof atomic A-networks N with nodes ! such that faj : aj labels some edge of Ngis �nite. We can show that S forms an !-dimensional cylindric algebra atomstructure and hence Cm(S) 2 CA!. We have A � Ra(Cm(S)), the embeddingis a 7! fN 2 S : N (0; 1) � ag. We will identify A with its image under thisembedding henceforth. The next step is to calculate the subalgebra of Cm(S)generated by A using the cylindric algebra operations.Let X be the set of �nite labelled graphs N where the label of any edge of Nis either an atom of A, a co�nite subset of a+ or a co�nite subset of a0, suchthat for any nodes l;m; n of N we have N (l; n) � N (l;m);N (m;n). For N 2 Xlet N 0 2 Cm(S) be de�ned by N 0 = fL 2 S : L(m;n) � N (m;n) for m;n 2 Ng.For i < ! let N��i be the subgraph of N obtained by deleting the node i. We canshow that ci(N 0) = (N��i)0(4)It follows that the subalgebra C of Cm(S) generated by A consists of �nite unionsof elements of the form N 0, for N 2 X. [Note that C is not an atomic cylindricalgebra, indeed it is atomless, because for any N 2 X we can add an extra nodeand extend N to M 2 X in such a way that ; ( M 0 ( N 0, so N 0 is not anatom.]Finally we show that A = Ra(C). The inclusion A � Ra(C) is easy. Con-versely, let z 2 Ra(C). By de�nition of Ra, we have ciz = z for i > 1. Bythe above, z is a �nite union SN2F N 0, where F is a �nite subset of X. Leti0; : : : ; ik enumerate all the nodes, other than 0 and 1, that occur in any la-belled graph in F . Then for N 2 F , by (4), ci0 : : :cikN 0 = (N�f0;1g)0, hence17



ci0 : : :cikN 0 2 A, using our identi�cation of A with its embedded image in RaC.So z = ci0 : : :cikz = SN2F ci0 : : : cikN 0 2 A. This shows that Ra(C) � A.Thus A 2 RaCA! but A has no complete representation, so A satis�es con-dition 3 but not condition 1 of theorem 29.For a corollary to neat cylindric reducts, let B = NrnC (2 < n < !). ThenB 2 NrnCA! but B has no complete representation (a complete representationof B would induce a complete representation of A = Ra(B)).PROBLEM 32. If A �c RaC for some atomic C 2 CA! does it follow thatA has a complete representation? In other words, does (2)) (1) in theorem 29?The remark, above, does not answer this question since the cylindric algebra Cin that remark is not atomic.For �nite n < ! an n-dimensional version of theorem 29 can also be obtained,but instead of classical representations we have to use `n-square relativised rep-resentations' [6, de�nition 5.7]. But we do not have to follow that particulardeviation, we only need the n-dimensional version of part of the preceding the-orem.THEOREM 33. Let 3 � n < ! and let A be an atomic relation algebra. IfA 2 ScRaCAn then 9 has a winning strategy in Fn(AtA).The proof is very similar to the proof of the implication (3) ) (4) of theo-rem 29. If A � RaC for some C 2 CAn then 9 always plays hypernetworks Nwith nodes(N ) � n such that bN 6= 0. We omit the details.The theorems above help us determine whether or not an atomic relationalgebra is a strong subalgebra of a member of RaCA!. The next theoremuses the game G and can be used to prove that an atom structure is not inAt(RaCA!). This game and the theorem below will help us prove that theinclusion RaCA! � ScRaCA
 is strict.THEOREM 34. Let � be a relation algebra atom structure. If � 2 At(RaCA!)then 9 has a winning strategy in G(�).Proof. Assume � = At(RaC) for some C 2 CA!. For all a 2 � and x 2 RaCif a:x 6= 0 then a � x, by atomicity of a. By considering x = sj1si0y and usingfacts 3.1 and 3.4{3.9, a non-trivial calculation shows, for all i < j < !; a 2 �and y 2 C, that[(8k 2 ! n fi; jgcky = y) ^ y : sija 6= 0]! sija � y(5)9's strategy is to always play networks N such that bN 6= 0.As in the proof of theorem 29(3)) (4), 9 can always play N such that bN 6= 0in the initial round and in response to any triangle move by 8. If 8 plays thetransformation move (N; �) then 9 responds with N�. Since the dimension setis ! and nodes(N ) is �nite, by lemma 27(4) we get cN� 6= 0.If 8 plays an amalgamation move (M;N ) where nodes(M )\nodes(N ) = fi; jgthen M (i; j) = N (i; j). For now we suppose that i 6= j, without loss i < j.Let � = nodes(M ) n fi; jg and let � = nodes(N ) n fi; jg. By lemma 27(1),c(�)cM = cMc(�) bN = bN18



and by facts 3.4 and 3.6, 0 6= c(�)cM � c(�)sijM (i; j)= sijM (i; j)Therefore, by (5) applied to M (i; j), sijM (i; j) � c(�)cM , soc(�)cM = sijM (i; j) = sijN (i; j) = c(�) bNHence c(�)cM = cM � c(�)cM = c(�) bNBy fact 3.3, it follows that x = cM : bN 6= 0If i = j we can still deduce that cM : bN 6= 0. To see why, suppose i = j, sonodes(M )\nodes(N ) = fig. LetM 0 � M be de�ned by nodes(M 0) = nodes(M )[fkg and M 0(i; k) � 10 (here k 2 ! n (nodes(M ) [ nodes(N )) is arbitrary) andlet N 0 � N be de�ned by nodes(N 0) = nodes(N ) [ fkg and N 0(i; k) � 10. SinceM 0 � M we have cM 0 � cM and similarly cN 0 � bN . By the previous case (wherejnodes(M ) \ nodes(N )j = 2) we get 0 6= cM 0 : cN 0 � cM : bN = x, say.By lemma 26 there is a network L with nodes(L) = nodes(M )[ nodes(N ) 6= 0and bL : x 6= 0. This implies bL : cM 6= 0 so by lemma 26 bL �nodes(M) cM . It followsthat L � M and similarly L � N , so L is a legal response to the amalgamationmove. aLEMMA 35. If � is a countable relation algebra atom structure and 9 hasa winning strategy in G(�) then Cm(�) has a complete representation in whichfor any partial isomorphism � of size two or less and any �nite subset X of thedomain of the representation there is a partial isomorphism � extending � withX contained within its range.Proof. A minor complication arises due to the fact that � might be theatom structure of a non-simple relation algebra. Let C the the set of consistenttriples of �. De�ne a binary relation � over � by a � b () [9c; d; f 2�; (c; a; d); (d; f; b) 2 C]. The properties of relation algebra atom structures (seesection 2.5) prove that � is an equivalence relation (in fact a � b i� a and bbelong to the same simple component of a subdirect representation of Cm�).Let A � � contain exactly one atom from each �-equivalence class. [This meansthat A has one representative atom from each of the simple components of Cm�.]Let a 2 A. Next we de�ne a nested sequence of networks N0 � N1 � : : : . LetN0 be 9's response, using her winning strategy, to the 8-move a in the initialround. We have to schedule a sequence of extensions according to a fair system.Suppose N0 � : : : � Nr has been de�ned and that each network Ni (i � r)occurs in a play of G(�) in which 9 uses her winning strategy. Consider thefollowing requirements to extend Nr .1. If Nr(i; j) � b; b0, for some i � j 2 nodes(Nr), some b; b0 2 �, we seekNs � Nr (some s � r) with a node k 2 ! n nodes(Nr) such that Ns(i; k) =b; Ns(k; j) = b0. 19



2. If there are i; j; i0; j0 2 nodes(Nr) such that Nr(i; j) = Nr(i0; j0) (equiv-alently � = f(i0; i); (j0; j)g is a partial isomorphism of Nr), we seek a �-nite surjection � extending �, mapping onto nodes(Nr) such that dom(�) \nodes(Nr) = fi0; j0g, and we seek an extension Ns � Nr; Nr� (some s � r).Since � is countable there are countably many of these requirements to extend.Since our sequence of networks is nested, these requirements to extend remainin all subsequent rounds. So we can schedule these requirements to extend sothat eventually, every requirement gets dealt with.Now, if we are required to �nd k 2 ! n nodes(Nr) and Nr+1 � Nr suchthat Nr+1(i; k) = b; Nr+1(k; j) = b0 (case 1), then let k 2 ! n nodes(Nr) beleast possible (for de�niteness) and let Nr+1 be 9's response, using her winningstrategy, to the 8-move (Nr ; i; j; k; b; b0). For an extension of type 2, let � bea partial isomorphism of Nr of size two and let � be any �nite surjection ontonodes(Nr) such that dom(�) \ nodes(Nr) = fi0; j0g. 9's response to the 8-move(Nr ; �) is necessarily Nr�. Let Nr+1 be her response, using her winning strategy,to the subsequent 8-move (Nr ; Nr�). Observe that in this latter case, � is apartial isomorphism of Nr+1 with rng(�) = nodes(Nr) and dom(�) = nodes(Nr�).This de�nes how we construct the sequence N0 � N1 � : : : . Let Na be thelimit of this sequence (see de�nition 23, this is well-de�ned since the sequenceis nested). Observe that if � = f(i0; i); (j0; j)g is any partial isomorphism of Naand X is any �nite subset of nodes(Na) thenthere is a partial isomorphism � � �; rng(�) � X(6)Also note that for b 2 �,b occurs as the label of some edge of Na () b � a(7)Rename the nodes, if necessary, so that a 6= b 2 A implies nodes(Na) \nodes(Nb) = ;.Now de�ne a representation N of Cm(�) with base Sa2A nodes(Na), bySN = f(i; j) : 9a 2 A; 9s 2 S; Na(i; j) = sgfor any subset S of �. By lemma 16, N is a complete representation of Cm�.By (7), any partial isomorphism of N �xes each component Na setwise. By (6),for every partial isomorphism � of size two or less and every �nite subset X ofthe domain of N there is a partial isomorphism � � � with rng(�) � X. aTHEOREM 36. The inclusion RaCA! � ScRaCA! is strict.Proof. A relation algebra is integral if its identity is an atom. A permu-tational representation of an integral relation algebra is one in which, for anypair of points x; y, there is an automorphism of the representation taking x toy (in model theory this kind of representation is called transitive). An inte-gral relation algebra is called non-permutational if none of its representations ispermutational. In [1] a �nite, integral, representable, non-permutational rela-tion algebra A is de�ned and it is shown that the representations of A are all�nite (they have size 45). Since A is �nite and representable it is completelyrepresentable, so by theorem 29 it belongs to ScRaCA!.20



Since all representations of A are �nite and not permutational, in any repre-sentation of A there is a partial isomorphism of size one that does not extend toan automorphism of the representation. Hence, by lemma 35, 8 has a winningstrategy in G(At(An)), so by theorem 34 it does not belong to RaCA!. Thisproves that the inclusion in the theorem is strict. aPROBLEM 37. For which �nite values n is it the case that the inclusionRaCAn � ScRaCAn is strict?One suggestion here is the following. For n < !, de�ne a game Gn, like Gbut played on networks N with nodes(N ) � n, show that � 2 RaCAn implies9 has a winning strategy in Gn(�). Now use the fact that A (above) has onlynon-permutational representations and they all have size 45 to show for n � 45that the inclusion RaCAn � ScRaCAn is strict.PROBLEM 38. In fact [1] de�ne a whole sequence An of �nite, non-permutationalrelation algebras and prove that a non-principal ultraproduct B of the An has apermutational representation. If it could be shown that B has a homogeneousrepresentation, where arbitrary �nite partial isomorphisms extend to full auto-morphisms, then it would follow that 9 has a winning strategy in H(At(B)) so acountable elementary subalgebra of B would belong to RaCA!, by theorem 39,below. This would show that RaCA! cannot be de�ned by �nitely many axiomsover ScRaCA!.We have now established techniques to determine whether a relation algebrais in ScRaCAn (theorem 29) and to prove that a relation algebra is not inRaCAn (theorem 34). The next theorem will be useful to prove that an atomicrelation algebra is in RaRCA!. Recall that H(�) is the hypernetwork game ofde�nition 28 where the nodes of any hypernetwork played form a �nite subset of!.THEOREM 39. Let � be a countable relation algebra atom structure. If 9has a winning strategy in H(�) then there is C 2 CA! such that Ra(C) is atomicand At(Ra(C)) �= �.Proof. In fact we'll construct C 2 RCA!. Suppose 9 has a winning strategyin H(�). Fix some a 2 �. As in the proof of lemma 35 we can de�ne a nestedsequence N0 � : : : (but here they are hypernetworks) where N0 is 9's responseto the initial 8-move a, so that:1. If Nr is in the sequence and Nr(i; j) � b; b0 then there is s � r and k 2nodes(Ns) such that Ns(i; k) = b; Ns(k; j) = b0.2. If Nr is in the sequence and � is any partial isomorphism of Nr then there iss � r and a partial isomorphism �+ of Ns extending � such that rng(�+) �nodes(Nr).The di�erence is that here we extend arbitrary �nite partial isomorphismswhereasin lemma 35 we only extended partial isomorphisms of size one or two. The moregeneral kind of amalgamation move in H(�) means that this can be done. Weomit the details which are very similar to the proof of lemma 35. Now let Na bethe limit of this sequence. This limit is well-de�ned since the hypernetworks are21



nested. Note, for b 2 �, that(9i; j 2 nodes(Na); Na(i; j) = b) () b � a(8)Let � be any �nite partial isomorphism of Na and let X be any �nite subset ofnodes(Na). Since �;X are �nite, there is i < ! such that nodes(Ni) � X[dom(�).There is a bijection �+ � � onto nodes(Ni) and j � i such that Nj � Ni; Ni�+.Then �+ is a partial isomorphism of Nj and rng(�+) = nodes(Ni) � X. Hence, if� is any �nite partial isomorphism of Na and X is any �nite subset of nodes(Na)then 9 a partial isomorphism �+ � � of Na where rng(�+) � X(9)and by considering its inverse we can extend a partial isomorphism so as toinclude an arbitrary �nite subset of nodes(Na) within its domain.We will use the networks Na : a 2 � as the base of a cylindric algebra C 2RCA!. Let L be the signature with one binary predicate symbol (b) for eachb 2 �, and one k-ary predicate symbol (�) for each k-ary hyperlabel �. Theset of variables for L-formulas is fxi : i < !g. Pick fa 2 !nodes(Na). LetUa = ff 2 !nodes(Na) : fi < ! : g(i) 6= fa(i)g is �niteg.We can make Ua into the base of an L-structure Na and evaluate L-formulasat f 2 Ua as follow. For b 2 �; i; j; i0 : : : ; ik�1 < !, k-ary hyperlabels �, andall L-formulas �;  , letNa; f j= b(xi; xj) () Na(f(i); f(j)) = bNa; f j= �(xi0 ; : : : ; xik�1) () Na(f(i0); : : : ; f(ik�1)) = �Na; f j= :� () Na; f 6j= �Na; f j= (� _  ) () Na; f j= � or Na; f j=  Na; f j= 9xi� () Na; f [i=m] j= �; some m 2 nodes(Na)For any L-formula �, write �Na for ff 2 !nodes(Na) : Na; f j= �g. LetFormNa = f�Na : � is an L-formulag and de�ne a cylindric algebraCa = (FormNa ; ;; Ua;[; n; Dij; Ci : i; j < !)where Dij = 10(xi; xj)Na ; Ci(�Na) = (9xi�)Na . Observe that >Na = Ua; (� _ )Na = �Na [  Na , etc. Note also that Ca is a subalgebra of the !-dimensionalcylindric set algebra on the base nodes(Na), hence Ca 2 RCA!.Let �(xi0 ; xi1; : : : ; xik) be an arbitrary L-formula using only variables belong-ing to fxi0 ; : : : ; xikg. Let f; g 2 Ua (some a 2 �) and suppose f(f(i0); g(i0)); (f(i1); g(i1)); : : : ; (f(ik); g(ik))gis a partial isomorphism of Na. We can prove by induction over the quanti�erdepth of � and using (9), thatNa; f j= � () Na; g j= �(10)Let C = Qa2� Ca. By proposition 1, C 2 RCA!. It remains to show that� �= At(RaC). An element x of C has the form (xa : a 2 �), where xa 2 Ca.For b 2 � let �b : C ! Cb be the projection de�ned by �b(xa : a 2 �) = xb.Conversely, let �a : Ca ! C be the embedding de�ned by �a(y) = (xb : b 2 �),where xa = y and xb = 0 for b 6= a. Evidently �b(�b(y)) = y for y 2 Cb and�b(�a(y)) = 0 if a 6= b. 22



Suppose x 2 Ra(C) n f0g. Since x 6= 0 it must have a non-zero compo-nent �a(x) 2 Ca, for some a 2 �. Say ; 6= �(xi0 ; : : : ; xik)Ca = �a(x) forsome L-formula �(xi0; : : : ; xik). We have �(xi0 ; : : : ; xik)Ca 2 Ra(Ca). Pick f 2�(xi0; : : : ; xik)Ca and let b = Na(f(0); f(1)) 2 �. We will show that b(x0; x1)Ca ��(xi0; : : : ; xik)Ca . For this, take any g 2 b(x0; x1)Ca , so Na(g(0); g(1)) = b. Themap f(f(0); g(0)); (f(1); g(1))g is a partial isomorphism of Na | here it is cru-cial that short hyperedges have constant label �0. By (9) this extends to a �nitepartial isomorphism � of Na whose domain includes f(i0); : : : ; f(ik). Let g0 2 Uabe de�ned by g0(i) = � �(i) if i 2 dom(�)g(i) otherwiseBy (10), Na; g0 j= �(xi0 ; : : : ; xik). Observe that g0(0) = �(0) = g(0) and sim-ilarly g0(1) = g(1), so g is identical to g0 over f0; 1g and it di�ers from g0 ononly a �nite set of coordinates. Since �(xi0 ; : : : ; xik)Ca 2 Ra(C) we deduceNa; g j= �(xi0; : : : ; xik), so g 2 �(xi0; : : : ; xik)Ca . This proves that b(x0; x1)Ca ��(xi0; : : : ; xik)Ca = �a(x), and so �a(b(x0; x1)Ca) � �a(�(xi0 ; : : : ; xik)Ca) � x 2C n f0g. Hence every non-zero element x of RaC is above a non-zero element�a(b(x0; x1)Ca) (some a; b 2 �) and these latter elements are the atoms of RaC.So RaC is atomic and � �= At(RaC) | the isomorphism is b 7! (b(x0; x1)Ca : a 2A). ax5. Rainbow algebra.DEFINITION 40. We de�ne a rainbow algebra atom structure � (in theterminology of [6, x16.2] it is very similar, though not identical, to At(AZ;N)).Let F be the set of partial, order preserving functions f : Z! N wherejdom(f)j � 2. The atoms of � are f10; y; b;wg[fgi : i 2Zg[fwf : f 2 Fg[frij :i; j 2 Ng. Non-identity atoms have colours: y is yellow, b is black, w;wf arewhite, gi is green and rij is red. All atoms are self-converse except the red atoms,for these rîj = rji. Composition of atoms is de�ned by listing the forbiddentriples of atoms (the set of consistent triples of atoms is the complement in ����� of the set of forbidden triples). The forbidden triples (a; b; c) are those wherea; b; c 2 � and a; b 6� c. If (a; b; c) is a forbidden triple of atoms, its Peirceantransforms (a; b; c); (b; c^; a^); (c^; a; b^); (b^; a^; c^); (a^; c; b); (c; b^; a) arealso forbidden. The forbidden triples of atoms of � are the Peircean transformsof the following. (10; x; y) unless x = y(11) (gi; gi0 ; gi�); (gi; gi0 ;w); any i; i0; i� 2Z; any f 2 F(12) (gi; gi0;wf )(y; y; y); (y; y;b)(13) (gi; y;wf ) unless i 2 dom(f)(14) (gi; gj; rkl) unless f(i; k); (j; l)g is an order-(15) preserving partial function Z! N(rij; rj0k0 ; ri�k�) unless i = i�; j = j0 and k0 = k�(16) 23



e e eeeee ��������@@@@@@@@�������������������w yyyy g0g�1g�2g�3 rmnrlmrjlFigure 3. How 8 can win F 5(�)and no other triple of atoms is forbidden.Let A be the complex algebra over � (so the domain of A consists of arbitrarysets of atoms).We will show that A 62 ScRaCA5, but an elementary extension A0 of Abelongs to RaRCA!.LEMMA 41. For any relation algebra B such that At(B) = �, we have B 62ScRaCA5. The rainbow algebra A (de�nition above) is not in ScRaCA5.Proof. We prove that 8 has a winning strategy in F 5(�), see �gure 3. Inthe initial round 8 plays w and 9 must play a network N0 with N0(0; 1) = w.In the next round 8 plays the triangle move (N0; 0; 1; 2; g0; y) and 9 must playa network N1 �2 N0 with N1(0; 2) = g0; N1(2; 1) = y. In the following round8 plays the triangle move (N1; 0; 1; 3; g�1; y) and 9 must play N2 �3 N1 withN2(0; 3) = g�1; N2(3; 1) = y. 9 must choose an atomic label for the edge (3; 2)of N2. By considering the triangle (2; 3; 0) we see that the identity, a greenatom or a white atom are impossible (see forbidden triples 11, 12). From thetriangle (2; 3; 1) we see that the yellow atom or the black atom are impossible(forbidden triple 13). So 9 must let N2(3; 2) be a red atom, say rmn (somem;n 2 N) and since �1 < 0 we must have m < n (forbidden triple 15). Inthe next move 8 plays the triangle move (N3; 0; 1; 4; g�2; y) and 9 must playN3 �4 N2 such that N3(0; 4) = g�2; N3(4; 1) = y. As before we must haveN3(4; 3) and N3(4; 2) both being red atoms and from the triangle (2; 3; 4) we seethat the indices of these red atoms must match (forbidden triple 16), so we haveN3(4; 3) = rln; N3(4; 2) = rlm , for some l < m 2 N.In the next round 8 plays (N3; 0; 1; 2; g�3; y) and 9 must play N4 �2 N3with N4(0; 2) = g�3; N4(2; 1) = y. In �gure 3, node 2 of N4 is marked 20 todistinguish it from node 2 of N3. This time we get N4(3; 2) = rjl for somej < l 2 N. In this way 8 can force an in�nite descending sequence of naturalnumbers n > m > l > j > : : : . This is impossible. Hence 9 has no winningstrategy.By theorem 33, � 62 At(ScRaCA5). aRecall from de�nition 28 that Hn(�) is the hypernetwork game with n rounds.REMARK 42. It will simplify things a bit if we alter the rules of the gameH(�) slightly so that only strict hypernetworks are played. In the initial round if8 plays a then 9 can always play a strict hypernetwork N0 where nodes(N0) = f0g24



if a � 10 and nodes(N0) = f0; 1g otherwise. In the former case N0(0; 0) = a andin the latter case the edge labelling is completely determined by N0(0; 1) = a.The restrictions we impose on 8's moves are� 8 is only allowed to play a triangle move (N; i; j; k; a; b) if there does notexist l 2 nodes(N ) such that N (i; l) = a and N (l; j) = b.� 8 is only allowed to play transformation moves (N; �) if � is injective.� 8 is only allowed to play an amalgamation move (M;N ) if for all m 2nodes(M ) n nodes(N ) and all n 2 nodes(N ) n nodes(M ) the map f(m;n)g[f(x; x) : x 2 nodes(M ) \ nodes(N )g is not a partial isomorphism. I.e. hecan only play (M;N ) if the amalgamated part is `as large as possible'.If, as a result of these restrictions, 8 cannot move at some stage then he losesand the game halts.It is easy to check that 8 has a winning strategy in H(�) i� he has a winningstrategy with these restrictions to his moves. Also, if 8 plays with these restric-tions to his moves, if 9 has a winning strategy then she has a winning strategywhich only directs her to play strict hypernetworks. The same holds when weconsider Hn(�). We will assume that 8 plays according to these restrictions and9 only plays strict hypernetworks in H(�) and Hn(�).LEMMA 43. 9 has a winning strategy in Hn(�), for any n < !.Proof. In a play ofNn(�), 9 is required to play �0-neat hypernetworks, so shehas no choice about the hyperlabels used for short edges | she must label thesewith �0. 9 uses the default strategy for choosing hyperlabels for long hyperedges,as follows. In response to a triangle move (N; i; j; k; a; b), all long hyperedges notincident with k necessarily keep the hyperlabel they had in N . By remark 42,we are assuming a 6= 10 and b 6= 10. All long hyperedges incident with k in Mare given unique hyperlabels, not occurring as the hyperlabel of any previouslyplayed hypernetwork and not occurring as the hyperlabel of any other hyperedgeinM . We assume we have an in�nite supply of hyperlabels of all �nite arities, sothis is possible. In response to an amalgamationmove (M;N ) all long hyperedgeswhose range is contained in nodes(M ) have hyperlabel determined by M , andthose whose range is contained in nodes(N ) have hyperlabel determined by N . If�x is a long hyperedge of 9's response L where rng(�x) 6� nodes(M ); nodes(N ) then�x is given a new hyperlabel, not used in any previously played hypernetwork andnot used within L as the label of any hyperedge other than �x. This completes thede�nition of her strategy for labelling hyperedges. Condition IV in de�nition 23is clearly satis�ed by this. [In fact, the only function served by these hyperlabelsis to restrict the possible amalgamationmoves that 8 can make in future rounds.]Before we give 9's strategy for edge labelling, we need some more notationand terminology. Every irre
exive edge of any hypernetwork played in the gamehas an owner, 8 or 9. We call such edges 8-edges or 9-edges, as appropriate.And a long hyperedge �x in a hypernetwork N occurring in the play has anenvelope �N (�x) � nodes(N ). We will see that although our hypernetworks areall strict, it is not necessarily the case that hyperlabels label unique hyperedges| amalgamation moves can force the same hyperlabel to label more than onehyperedge. However, we will be able to prove that within the envelope of a25



hyperedge �x of a N , the hyperlabel N (�x) is unique (see the claim, below). Letsexplain this more carefully.In the initial round, if 8 plays a 2 � and 9 plays N0 then all irre
exive edgesof N0 belong to 8. There are no long hyperedges in N0. If, in a later round,8 plays the transformation move (N; �) and 9 responds with N� then ownersand envelopes are inherited in the obvious way: (�(m); �(n)) is a 8-edge of Ni� (m;n) is a 8-edge of N� (any m 6= n 2 dom(�)), and �N (�(�x)) = �N�(�x)(any long hyperedge �x of N�). If 8 plays a triangle move (N; i; j; k; a; b) and 9responds with M then the owner in M of an edge not incident with the newnode k is the same as it was in N and the envelope in M of a long hyperedgenot incident with k is the same as it was in N . By remark 42 we know thata 6= 10 and b 6= 10. The edges (i; k); (k; i); (j; k); (k; j) belong to 8 in M , all edges(l; k); (k; l) for l 2 nodes(N ) n fi; jg belong to 9 in M . If �x is any long hyperedgeof M with k 2 rng(�x) then �M (�x) = nodes(M ).If 8 plays the amalgamation move (M;N ) and 9 responds with L then, form 6= n 2 nodes(L), the owner in L of an edge (m;n) is 8 if it belongs to 8 ineither M or N ; in all other cases (either it belongs to 9 in M or it is not an edgeof M , and either it belongs to 9 in N or it is not an edge of N ) it belongs to 9in L. If �x is a long hyperedge of L then�L(�x) = 8<: �M (�x) if rng(�x) � nodes(M )�N (�x) if rng(�x) � nodes(N ); rng(�x) 6� nodes(M )nodes(M ) otherwiseIn fact the �rst two parts of the following claim show that if �x � nodes(M ) \nodes(N ) then �M(�x) = �N (�x). This completes the de�nition of owners andenvelopes.CLAIM: Let M;N occur in a play of H(�) in which 9 uses the default la-belling for hyperedges. Let �x be a long hyperedge of M and let �y be a longhyperedge of N .1. For any hyperedge �x0 with rng(�x0) � �M(�x), if M (�x0) = M (�x) then �x0 = �x.2. If �x is a long hyperedge of M and �y is a long hyperedge of N and M (�x) =N (�y) then there is a local isomorphism � : �M (�x) ! �N (�y) such that�(xi) = yi, for i < j�xj.3. For any x 2 nodes(M ) n �M(�x) and S � �M(�x), if (x; s) belongs to 8 in M ,for all s 2 S, then jSj � 2.The claim can be proved by a simple induction over the number of rounds takenbefore M and N are played.Now we de�ne 9's strategy for choosing the labels for edges in response to8-moves. Let N0; N1; : : : ; Nr be the start of a play of Hn(�) just before roundr + 1 (where r < n). 9 computes partial functions �s : Z! N, for s � r.Inductively, for each s � r, suppose:I. If Ns(x; y) is green or yellow then (x; y) belongs to 8 in Ns.II. �0 � : : : � �r ,III. dom(�s) = fi 2Z: 9t � s; x; y 2 nodes(Nt); Nt(x; y) = gig.26



a aaa -���������@@@@@@@@@r�(i)�(j)gi gj y y:wf a aaa -���������@@@@@@@@@rf(i)f(j)gi gjy ywf(a) (b)u vx y u vx yFigure 4. Property V and red indicesIV. �s is order preserving: if i < j 2 dom(�s) then �s(i) < �s(j). The range of�s is `widely spaced': if i < j 2 dom(�s) then �s(i); (�s(j) � �s(i)) � 3n�r(n � r is the number of rounds remaining in the game).V. For u; v; x; y 2 nodes(Ns), if Ns(u; v) = r
;�; Ns(x; u) = gi; Ns(x; v) =gj ; Ns(y; u) = Ns(y; v) = y then(a) if Ns(x; y) 6= wf (all f 2 F ) then �s(i) = 
; �s(j) = �,(b) if Ns(x; y) = wf (some f 2 F ) then 
 = f(i); � = f(j).See �gure 4.VI. Ns is a strict �0-neat hypernetwork.To start with if 8 plays a 6= 10 in the initial round then nodes(N0) = f0; 1g,the edge labelling of N0 is determined by N0(0; 1) = a. If 8 plays 10 thennodes(N0) = f0g and N0(0; 0) = 10. If a = gp (some p 2 Z) let �0 = f(p; 3n)g,otherwise let �0 = ;. All properties hold when r = 0.Suppose the properties hold after round r (some r < n). We'll de�ne how 9chooses atoms for new edges and maintains the properties above in response toa 8-move in round r + 1. In response to a transformation move (N; �) 9 hasnothing to do: her response, Nr+1 = N�, is forced. There are no new edgelabels, so she lets �r+1 = �r .In response to a triangle move (Ns; i; j; k; gp; gq) by 8 (some s � r and somep; q 2 Z), 9 must extend �r to �r+1 so that p; q 2 dom(�r+1) (property III)and the gap between elements of its range is at least 3n�r�1 (property IV).Inductively, �r is order-preserving and the gap between elements of its range isat least 3n�r, so this can be maintained. If 8 chooses non-green atoms, greenatoms with the same su�x, or green atoms whose su�ces already belong todom(�r), there would be fewer elements to add to the domain of �r+1 so it onlymakes it easier for 9 to de�ne �r+1. This establishes properties (II{IV) for roundr + 1.To choose edge labels in response to a triangle move by 8, 9 uses her normalstrategy for rainbow algebras. In rough outline: she chooses a white atom ifpossible, else the black atom, and if neither of these is consistent then she choosesa red atom. In the �rst of these cases she chooses a white atom for the new edgeunder the circumstances that this does not complete a triangle where a forbiddentriple of atoms listed under (12) would result. In this case, she could easily choose27
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f = f(p; �); (q; 
)gx kijFigure 5. De�ning the su�x fthe white atom w and avoid all inconsistencies in that round, but because shehas an eye to future 8 moves, she very carefully selects an appropriate atom wffor some f 2 F , avoiding forbidden triples of atoms (14), so as to restrict 8'smoves in later rounds. In the second of these cases it is not consistent to choosea white atom but the black atom is consistent because it does not complete atriangle where a forbidden triple of atoms listed under (13) is exhibited. Thiscase is straight-forward. Finally, if a white atom and the black atom are bothinconsistent then she chooses a red atom. This case is tricky, but she uses thefunctions �s and the su�x f in a label wf to help her choose the su�ces of redatoms for this case.Now we explain this strategy in more detail. Let 8 play the triangle move(Ns; i; j; k; a; b) in round r+1. 9 has to choose labels for the edges f(x; k); (k; x) :x 2 nodes(Ns)nfi; jgg. She chooses the labels for the edges (x; k) one at a time,this then determines the labels of the reverse edges (k; x) uniquely. She selectsthe �rst permissible option below. Property I is clear in all cases since the onlyatoms 9 chooses are white, black or red.1. Suppose it is not the case that Ns(x; i) and a are both green, and it is notthe case that Ns(x; j) and b are both green. Let S = fp 2Z: (Ns(x; i) =gp ^ a = y)_ (Ns(x; i) = y ^ a = gp)_ (Ns(x; j) = gp ^ b = y)_ (Ns(x; j) =y ^ b = gp)g. Clearly jSj � 2. 9 lets Ns+1(x; k) = wf for some f 2 F withdom(f) = S, which we de�ne next. Since dom(f) � S and since 9 does notchoose green or yellow for her edges, this will avoid all forbidden triples ofatoms (12) and (14) and these are the only forbidden triples including awhite atom.Suppose Ns(i; j) = r�;
 (some �; 
 2 N), Ns(x; i) = gp; Ns(x; j) = gq(some p; q 2 Z) and a = b = y, see �gure 5. By property VI and for-bidden triple (15), f = f(p; �); (q; 
)g is an order-preserving function. 9lets Ns+1(x; k) = wf in this case. Similarly, if Ns(i; j) = r�;
 ; Ns(x; i) =Ns(x; j) = y; a = gp; b = gq then 9 lets f = f(p; �); (q; 
)g andNs+1(x; k) =wf (here we use the fact that a; b � r�;
 to prove that f is order-preserving).By de�nition, dom(f) = fp; qg = S, as promised.28
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;� ygpFigure 6. (x; k) is given a red labelIn all other cases (either Ns(i; j) is not red or if it is then is not the casethat Ns(x; i); Ns(x; j) are both green and a = b = y and it is not the casethat Ns(x; i) = Ns(x; j) = y and a; b are both green) 9 lets f : S ! Nbe an arbitrary order-preserving function (e.g. if S = fp; qg and p < q letf(p) = 0; f(q) = 1).Having de�ned f 9 lets Nr+1(x; k) = wf . This maintains property V forround r + 1.The only forbidden triples of atoms involving wf are (12) and (14) ofde�nition 40. Since 9 does not choose green or yellow atoms to label newedges and Nr+1(x; k) = wf , all triangles involving the new edge (x; k) areconsistent in Nr+1, so property VI holds after round r + 1.2. Else, if it is not the case that Ns(x; i) = a = y and it is not the case thatNs(x; j) = b = y, 9 lets Nr+1(x; k) = b. Property V is not applicable in thiscase. The only forbidden triple involving the atom b is (13), so all triangles(x; y; k) are consistent in Nr+1 and property VI holds after round r + 1.3. If neither case above apply, then either Ns(x; i) = gp; a = gq (some p; q)and Ns(x; j) = b = y or Ns(x; i) = a = y and Ns(x; j) = gp; b = gq.Assume the �rst alternative, see �gure 6. 9 lets Nr+1(x; k) = r
;�, where
; � remain to be speci�ed. There are two subcases.(a) Ns(i; j) 6= wf (all f 2 F ). 9 lets 
 = �r+1(p); � = �r+1(q), maintainingproperty Va. The only forbidden triples of atoms involving r
;� are (15)and (16) of de�nition 40. The triple of atoms from a triangle (x; y; k)will not be forbidden by (15) since the only green edge incident withk is (i; k) and since �r+1 is order preserving. To check forbidden triple(16) suppose Ns(x; y); Nr+1(y; k) are both red (some y 2 nodes(Nr)).We have y 62 fi; jg so 9 chose the red label Nr+1(y; k). By her strategy,we must have Ns(i; y) = gt (some t, else she would have chosen a whiteatom) and Ns(j; y) = y (else she would have chosen the black atom).By property (Va) for Nr+1 we have Nr+1(x; y) = r�r+1(p);�r+1(t) andby her strategy Nr+1(y; k) = r�r+1(t);�r+1(q), hence the triple of atomsfrom the triangle (x; y; k) is not forbidden by (16). Thus property VIholds for Nr+1.(b) Ns(i; j) = wf (some f 2 F ). By consistency of Ns and forbiddentriple (14) we have p 2 dom(f) and since 8's move was legal a; b =29



gq; y � Ns(i; j) = wf so q 2 dom(f). 9 lets 
 = f(p); � = f(q),maintaining property Vb for round r+1. As above, the only forbiddentriples of atoms involving r
;� are (15) and (16) of de�nition 40. Since fis order preserving and since the only green edge incident with k is (i; k)in Nr+1, triangles involving the new edge (x; k) cannot give a forbiddentriple of the form (15). For forbidden triple (16), let y 2 nodes(Ns)and suppose Nr+1(x; y); Nr+1(y; k) are both red. As above, by herstrategy, we must have Ns(y; i) = gt for some t and Ns(y; j) = y. Byconsistency of Ns we have t 2 dom(f) and by the current part of herstrategy she let Nr+1(y; k) = rf(t);f(q). By property Vb for Ns we haveNr+1(x; y) = rf(p);f(t). So the triple of atoms from the triangle (x; y; k)is not forbidden by (16). This establishes property VI for Nr+1.Thus 9 can maintain all the properties in round r + 1 in response to a trianglemove by 8.Finally we consider an amalgamation move (Ns; Nt) by 8 in round r + 1.Essentially, the claim above, particularly the third part, reduces this case to acase very similar to the triangle move case. 9 has to choose a label for each edge(i; j) where i 2 nodes(Ns) n nodes(Nt) and j 2 nodes(Nt) n nodes(Ns) (this thendetermines the label for the reverse edge (j; i)).Let �x enumerate nodes(Ns)\nodes(Nt). If �x is short then, by strictness of thehypernetworks, there are at most two nodes in nodes(Ns) \ nodes(Nt) and thiscase is already quite similar to the triangle move case. If �x is long in Ns thenby the claim (2) there is a partial isomorphism � : �Ns(�x)! �Nt(�x) �xing �x. Byremark 42, since we are assuming that 8 only plays `maximal amalgamations',we see that �Ns(�x) = nodes(Ns) \ nodes(Nt) = rng(�x) = �Nt(�x).It remains to label the edges (i; j) in Nr+1 where i 2 nodes(Ns) n nodes(Nt)and j 2 nodes(Nt) n nodes(Ns). Her strategy for labelling these edges is similarto her strategy for dealing with triangle moves. She chooses the labels for edges(i; j) one at a time. As before she chooses a white atom if possible, else the blackatom if possible, otherwise a red atom. Since she never chooses a green atom,she lets �r+1 = �r and properties II, III and IV remain true after round r + 1.She uses the �rst possible of the cases below.1. There is no x 2 nodes(Ns) \ nodes(Nt) such that Ns(i; x) and Nt(x; j) areboth green. If there are u; v 2 nodes(Ns) \ nodes(Nt) such that Ns(u; v) =r�;
 ; Ns(i; u) = gp; Ns(i; v) = gq; Nt(u; j) = Nt(v; j) = y (some �; 
 2N, some p; q 2 Z) or the roles of i and j are swapped, she lets f =f(p; �); (q; 
)g and sets Nr+1(i; j) = wf . Since all the edges labelled bygreen or yellow atoms belong to 8 (property I), we can apply the claim (3)to show that the points u; v are unique, so f is well-de�ned. This isalso true if �x is short, since in this case there are only two nodes innodes(Ns) \ nodes(Nt).If there are no such points u; v as just described then let S = fp 2 Z:9y 2 nodes(Ns) \ nodes(Nt); (Ns(i; y) = gp ^ Nt(y; j) = y) _ (Ns(i; y) =y^Nt(y; j) = gp)g. By the claim (3), jSj � 2. Let f be any order preservingfunction from S intoN. 9 lets Nr+1(i; j) = wf . Property VI holds for Nr+1,as for triangle moves. 30



2. Otherwise, if there is no x 2 nodes(Ns) \ nodes(Nt) such that Ns(i; x) =Nt(x; j) = y, then she lets Nr(i; j) = b. As with triangle moves, all prop-erties are maintained.3. Otherwise, there are x; y 2 nodes(Ns) \ nodes(Nt) such that Ns(i; x) =gk; Nt(x; j) = gl (some k; l 2 N) and Ns(i; y) = Nt(y; j) = y. By theclaim (3), x; y are unique. She labels (i; j) in Nr with a red atom r�;
where:(a) If Ns(x; y) 6= wf , all f 2 F ), then � = �r+1(k); 
 = �r+1(l). Thismaintains property Va.(b) Otherwise Ns(x; y) = wf , for some f 2 F , and � = f(k); 
 = f(l).This maintains property Vb.In either case, we can show that property VI holds for Nr+1, as in the caseof triangle moves.This proves that 9 has a winning strategy in Hn(�). ax6. Non-elementary classes.LEMMA 44. Let A be the rainbow algebra of de�nition 40. There is a count-able relation algebra A0 such that A0 � A and 9 has a winning strategy in H(A0).Proof. We have seen that for n < ! 9 has a winning strategy �n in Hn(A).We can assume that �n is deterministic. Let B be a non-principal ultrapower ofA. We can show that 9 has a winning strategy � in H(B) | essentially she uses�n in the n'th component of the ultraproduct so that at each round of H(B)9 is still winning in co-�nitely many components, this su�ces to show she hasstill not lost. Now use an elementary chain argument to construct countableelementary subalgebras A = A0 � A1 � : : : � B. For this, let Ai+1 be acountable elementary subalgebra of B containing Ai and all elements of B that� selects in a play of H!(B) in which 8 only chooses elements from Ai. Nowlet A0 = Si<!Ai. This is a countable elementary subalgebra of B and 9 has awinning strategy in H(A0). aTHEOREM 45. Let K be any class of relation algebras with Ra(CA!) �K � ScRaCA5. Then K is not closed under elementary subalgebra, hence K isnot an elementary class.Proof. Let A be the rainbow algebra of de�nition 40 and let A0 � A be thecountable elementary extension given in the previous lemma. A0 must belong toRa(CA!), by lemma 44 and theorem 39, hence A0 2 K. But A 62 K (lemma 41)and A � A0. aPROBLEM 46. For n = 3 or 4, is RaCAn elementary? Is ScRaCAn ele-mentary?PROBLEM 47. For 2 � n < m � ! and if NrnCA! � K � ScNrnCAm isit always the case that K is not elementary?We expect a positive answer to this problem (i.e. K is not elementary), atleast for m � 5. Some partial results are known: NrnL is not elementary, for31
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