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Abstract

Andréka and Maddux (1994, Notre Dame Journal of Formal Logic, 35(4)) classified
the small relation algebras — those with at most 8 elements, or in other terms, at
most 3 atomic relations. They showed that there are eighteen isomorphism types
of small relation algebras, all representable. For each simple, small relation algebra
they computed the spectrum of the algebra, namely the set of cardinalities of square
representations of that relation algebra.

In this paper we analyze the computational complexity of the problem of deciding
the satisfiability of a finite set of constraints built on any small relation algebra. We
give a complete classification of the complexities of the general constraint satisfac-
tion problem for small relation algebras. For three of the small relation algebras the
constraint satisfaction problem is NP-complete, for the other fifteen small relation
algebras the constraint satisfaction problem has cubic (or lower) complexity.

We also classify the complexity of the constraint satisfaction problem over fized
finite representations of any relation algebra. If the representation has size two or
less then the complexity is cubic (or lower), but if the representation is square, finite
and bigger than two then the complexity is NP-complete.
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complexity.
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1 Introduction

The study of relation algebra originates in the nineteenth century and con-
stitutes, along with Frege’s quantifier logic, the foundation of modern logic
[1,2]. From the 1970s onwards, computer scientists working in planning [3,4]
and temporal reasoning [5—11] rediscovered relation algebra. Later, scholars
working in the field of Knowledge Representation, and specifically Spatial and
Temporal Knowledge Representation, also used the formalism of relation al-
gebra [10,12-18]. For them, the principal method of reasoning using a relation
algebra was by checking the consistency of a set of constraints over that alge-
bra. So this work became integrated with a wider study of constraint handling
in computer science [19-24]. This problem of determining the satisfiability of a
set of constraints over a given relation algebra is sometimes called the network
satisfaction problem.

Examples of relation algebras include the Point Algebra, the Allen Interval
Algebra, the Region Connected Calculus [25-27] and a Preference Reasoning
Algebra [28]. The point algebra can be used to represent constraints over a
linear flow of time, the Allen Interval Algebra expresses constraints between
intervals in a linear flow of time, and so on.

A number of results were obtained. For some relation algebras, e.g. the point
algebra (see [11, theorem 5.10]), tractable algorithms were obtained and shown
to give a sound and complete method of testing consistency. For many algebras
though, e.g. the Allen Interval Algebra, this consistency checking problem
was shown to be NP-complete [21, theorems 2 and 3]. An investigation, very
relevant to the work conducted here, is in [29] where some ‘small algebras’
are studied 2. Further complexity analysis of various algebras can be found in
[31]. Typically, it seems, the complexity of the constraint satisfaction problem
for many relation algebras is NP-hard. For some pathological, finite relation
algebras the problem can even be undecidable [32].

A systematic analysis of the complexity of the constraint handling for finite
relation algebras is a challenge for those working in the area between algebraic
logic and more practical computer science. So far we have only ad-hoc results.
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The purpose of this paper is to make a start on this complexity analysis by
completely classifying the complexity of the constraint satisfaction problem
for small relation algebras.

We hope this can be used as a criterion for the usability of such algebras. We
handle separately the complexities of two different computational problems:
the general satisfaction problem — roughly, is a given set of constraints (or
equivalently, to use the other terminology, a given network) satisfiable in some
representation of the relation algebra; and secondly, is a given set of constraints
satisfiable in a specified representation of the relation algebra.

The paper is organized as follows: in Section 2 we define the terminology
employed in the rest of the paper; in Section 3 we provide reference to the
relevant literature; Section 4 is the main part, where we provide the results of
the paper — see figure 3 for a summary of the complexity results established
in this paper and elsewhere; Section 5 takes some conclusions and sketches
further developments.

2 Terminology and definitions

Let us shortly recall the three main concepts we are going to use here:

e Relation Algebra;
e Constraint Set;
e Satisfiability Problem.

The very general notion of Relation Algebra we adopt here is based on Tarski

33].

DEFINITION 1 [Tarski] A Relation Algebra A (with domain A) is a nine-
tuple

A: (A7+7_707171I7v7;)

where

(A,+,—,0,1) isa boolean algebra (1)
(z59); 2 =125 (y; 2) (2)
(x+y)z=z;2+y;z (3)
r;l'=x (4)

(z7)" =2 (5)

(6)

(@497 =" +y"



(z39) " =y 52~ (7)
7 —(zy) + —y=—y (8)

Where we consider two different relation algebras (A, B say) and we wish to
distinguish the constants of the two, we may write 04, 1’4, 15 etc. to indicate
which relation algebra we are referring to.

A relation algebra with just one element (#1 below) is called trivial.

We write a e b as an abbreviation of —(—a + —b), we write ¢ < b as an
abbreviation of a + b = b (or, equivalently, « @ b = a) and we write a < b for
a <bAb<a. Theelement 0' = —1'is called the diversity element.

We name atoms (or basic relations) the minimal non-zero elements of a relation
algebra with respect to <. A finite, non-trivial relation algebra always has
atoms, and each element of a finite relation algebra is a finite sum of atoms.

Given two relation algebras, A, B with domains A, B respectively, their direct

product A x B is the relation algebra with domain A x B and operators defined
by

(a,b)+ (", 0)Y=(a+d', b+ 1)
(a,b) — (a’,0Y=(a—d',b—V)
04x5=(04,05)
Laxs = (1a,15)
1£4><B = (1/ ) 123)
(a,b)"=(a",b7)

(a,b);(a',b') = (a;d,b;b")
for all a,a’ € A and b,V € B.

An algebra is said to be simple iff the only congruences over this algebra are
the identity and the total binary relation over the algebra or, equivalently, iff
L;2;1 = 1for all z # 0 in the algebra [34, theorem 4.10]. By [34, theorem 4.14]
a relation algebra is simple iff it is not the direct product of two non-trivial

algebras.

Given an algebra A, and any subset X of the universe of A, we indicate by

SgY X the subalgebra of A which is generated by X

The set of all the relations defined on a set A (along with the operations of set
union for +, set complement for —, the empty set for 0, the universal relation
A? for 1, the identity relation {(z,z) : z € A} for 1’, the converse operator
for = and composition of binary relations | for ;), is henceforth indicated by



ReA. As a special case, for n € N, we write Ren for the relation algebra
of all binary relations over the domain n = {0,1,...,n — 1}, namely (p(n x
n),U,N\,0,nxn, 1,7, |). If Eis any equivalence relation over A we write ReF
for the algebra of all subrelations of E: (p(E),U,N,\,0, £,1',7,|). These uses
of the SRe operator must be distinguished by the context. It is easy to check
that ReA,ReF are relation algebras, for any set A and for any equivalence
relation K.

We say that a relation algebra A is proper (or concrete), iff it is a subalgebra
of Rek for some equivalence relation E. We say that a relation algebra A
is representable iff there is an isomorphism M from A to a subalgebra of
Re L, for some equivalence relation F over some set M. Such an isomorphism
is called a representation of A and M is the domain of the representation.
If F is an equivalence relation with a single equivalence class (i.e. F is the
universal relation over its domain, ¥ = M x M) and M is an isomorphism
from A to a subalgebra of ReF then we say M is a square representation
of A. Every representable simple relation algebra has a square representation
[34, theorems 4.26 and 4.28].°

We follow the model-theoretic convention of identifying a structure with its
domain. Thus we may write x € M to mean that = belongs to the domain of
M. We write |[M]| for the cardinality of the domain of M. When there is a
possibility of ambiguity we may write dom(M) for the domain of M. Ifa € A
we write a™ for the interpretation of @ in M, namely (regarding M as an
isomorphism) M(a).

Two representations M, N of the relation algebra A are said to be base iso-
morphic if there is a bijection ¢ : dom(M) — dom(N') such that for all a € A
and all z,y € dom(M) we have (z,y) € a™ iff (1(z),(y)) € aV.

Let us now define the notion of constraint over a Relation Algebra. In or-
der to make it familiar to the wider computer science community working in
constraints, we take our definition from Tsang’s book [22] and embed it in
Tarski’s theory exposed above. However, a set of constraints, defined next, is
essentially the same as a network, and satisfiability of constraints is the same

3 We restrict to square representations of simple relation algebras for the following
reason. Let h,g be representations of the simple relation algebra A, over domains
M, N respectively. Let AN A’ = (. Define another representation f over the do-
main M U N by f(a) = h(a) U g(a) (e € A). Thus if A has a representation of
size m then it also has representations of size kn for £ = 1,2,3,.... In this sense,
every representable relation algebra has infinite representations. We do not wish to
count these all representations separately as they are not ‘essentially different’. The
disadvantage of the restriction to square representations is that non-simple relation
algebras do not possess square representations, and so, following [30], we do not
define the spectrum of a non-simple relation algebra.



as the satisfiability of a network [31].

DEFINITION 2

(1) Given a Relation Algebra A and a set of variable names X' = {zq, z1,. ..
, Ty, ...}, the logical expression az;z;, where a is an element of A, and z;
and z; are elements of X', is called a constraint over A.

(2) Given a representation M of A, a variable assignment v is a partial map
from X to dom(M). The variable assignment v satisfies the constraint
az;x; ifl z;,z; € dom(v) and (v(x;),v(x;)) € a™.

(3) A set of constraints = over A is M-satisfiable iff there is a variable as-
signment v satisfying all the constraints in =.

(4) The problem of deciding the satisfiability of a finite sets of constraints on
a Relation Algebra A, for a given representation M of A, is henceforth
indicated by M — SAT(A).

(5) The problem, instead, of finding whether a set of constraints over a rela-
tion algebra A can be satisfied in some (i.e. at least one) representation

of A is called the Gen-SAT(.A) problem.

If Az;zj, Bx;xy, and Czixy belong to a set of constraints = then let =/ be the
same as = but with the constraint C'z;zy, replaced by (C o (A; B))x;z. Clearly
= and =’ are equivalent in that a variable assignment satisfies = if and only if
it satisfies ='.

DEFINITION 3 A set of constraints is closed if whenever (i) Az,;x;, Bx;xy
are In the set of constraints there is also a constraint C'z;z; in the set and
C < A;B, (ii) if Az;z; is in the set of constraints then A~ z;z; is also in
the set and (iii) for each variable z; occuring in a constraint in =, there is a
constraint ex;z;, for some e < 17,

The so-called propagation algorithm [6, § 4.1] takes a finite set of constraints,
adds in the constraint 1’xz;x; for each variable z; occuring in a constraint,
replaces the constraint Az;z; by (A ¢ B7)x,x; whenever Az,z; and Bxjz,
are constraints, and then repeatedly replaces a constraint Cz;zx by (C e
(A; B))z;xy, whenever C o (A; B) # C and Az;x; and Bz;xy are in the set,
until we obtain an equivalent, closed set of constraints. If this closed set of
constraints contains a constraint Ox;x; (some variables z;, z;) then it is clearly
unsatisfiable. But if all the constraints are non-zero, we cannot in general be
sure whether the constraints are satisfiable or not. Kautz defined a closed
set of constraints over the Allen Interval Algebra, none of which were zero,
but which nevertheless were unsatisfiable (this set of constraints is in [6, fig-
ure 5]). However, as we shall see, for some representations of some algebras the
propagation algorithm does solve the satisfiability problem. The propagation
algorithm runs in cubic time for finite relation algebras [21, theorem 1], though
for infinite relation algebras the propagation algorithm is not guaranteed to



terminate.

DEFINITION 4 A set of constraints is called non-zero if none of the con-
straints has the form 0zy.

A representation U of a relation algebra A is called universal if every closed,
non-zero set of constraints is satisfiable in .

PROPOSITION 5 Let A be a relation algebra

o Let M be a representation of A. The decision problem M —SAT(A) reduces
in cubic time to the problem of telling whether a closed set of constraints is
satisfiable in M.

o Gen-SAT(A) reduces in cubic time to the problem of telling whether a closed
set of constraints is satisfiable in some representalion of A.

PROOF:
In each case the required reduction is the propagation algorithm. O

LEMMA 6 If a relation algebra A has a universal representation U then
U— SAT(A) and Gen-SAT(A) have at worst cubic complexity.

PROOF:

Take an arbitrary set of constraints = over A. Use the propagation algorithm
to find an equivalent, closed set of constraints ='. This takes cubic time.
Clearly, if any (hence by closure all) constraint in =’ has the form Ozy
then =’ is unsatisfiable in any representation (and by equivalence, = is also
unsatisfiable). If Z' consists of non-zero constraints then by universality, it
is satisfiable in U. Thus = is satisfiable in some representation of A iff it is

satisfiable in ¢/ iff each constraint in =’ is non-zero. O

We will focus on the complexities of the simple relation algebras, partly be-
cause of the following lemma.

LEMMA 7

(1) Let M, N be representations, with disjoint domains, of relation algebras
A, B respectively. The union representation M UN of the direct product
A x B, has as its domain dom(M) U dom(N'), and is defined by

(a,b)MUN — CLM U bN

forae A, beB.
(2) Conversely, let L be a representation of A x B. The domain of L can
be partitioned into two parts, M and N, such that the map a + (a,0)*



(for a € A) is a representation of A over the domain M and the map
b (0,b)° (for b € B) is a representation of B over the domain N. L is
base-isomorphic to M U N .

(3) A representation M of a simple relation algebra A is a disjoint union of
square representations of A. These square representalions are called the
square components of M.

(4) Let M, N be representations of A, B respectively. The complexity of (MU
N) — SAT(A x B) is the mazimum of the complexities of M — SAT(A)
and N' — SAT(B).

(5) The complexity of Gen-SAT(A x B) is the mazimum of the complexities
of Gen-SAT(A) and Gen-SAT(B).

(6) Let A be a simple relation algebra with finitely many simple, non-base-
isomorphic square representations. The complexity of M — SAT(A) is
the mazimum of the complexities of M; — SAT(A) over the square com-
ponents M; of M.

PROOF:

The first three parts are easy to verify, and are well-known (see [35, lemma 3.7]).
For the fourth part, let = be any set of constraints over A x B. Define
an equivalence relation ~ over the variables occuring in = to be smallest
equivalence relation containing all pairs (z;, ;) where there is a constraint
(a,b)z;z; in =. Computing ~ takes linear time. For each equivalence class
a let =, be the restriction of = to the constraints using only variables in
a. Clearly = is satisfiable in M U N iff =, is satisfiable in M U N for each
equivalence class a. Also, Z, is satisfiable in MUN iff either =, is satisfiable
in M or =, is satisfiable in . The reason for this is that if m € M and
n € N then (m,n) ¢ 1MV 5o any variable assignment satisfying =, must
map all the variables occuring in =, into M or all these variables into V.
This proves the fourth part of the lemma. The proof of the fifth part of the
lemma is similar and the last part follows. O

This lemma will allow us to calculate the complexities of algebras #3, #6, #7
and #8, later on.

3 Previous work

In this paper we employ the formalism of relation algebra as used in the
computer science literature. For a general reference to relation algebras see

[35-37).

There exist eighteen isomorphism types of relation algebra with no more than
eight relations. Of these eighteen, one is trivial and four are non-simple. In



their paper [30], Andréka and Maddux have summarized the eighteen types,
and proved that the eighteen isomorphism types of relation algebras with no
more than eight elements are all representable. They established the spectra
of the simple, small algebras, namely the sets of cardinalities of the square
representations, see figure 1.

To describe the small relation algebras, [30] provides:

o A representative of each algebra, namely a representation of the algebra.
This representative will be a representation of the algebra of smallest pos-
sible size.

e The atoms of the algebra.

e The composition table of the atoms.

Figure 1 summarizes the representatives and atoms of the eighteen isomor-
phism types. These results are from [30] where the following notation is adopted
(this notation is not essential for reading the current paper): For any natural
numbers kK < a <w and A < f < w

o P2 ={(M\p): \p<ap—A=k(moda)}
o Q2 =P2U (P2
o QY= {((11,v):(¢.m) + (1,€) € Q2 (vym) € Q3}

Figure 2 gives the composition tables of the 18 small relation algebras and is

taken from [30].

4 Computational analysis of small relation algebras

We have two complexity issues to consider. In this section we firstly check
the complexity of M — SAT(A) for a square reprsentation M of a relation
algebra A. For finite M this turns out to be easily characterised, see theorem 9
below. For infinite M the problem remains open. Secondly, we will check the
complexity of Gen-SAT(A) for each of the eighteen small relation algebras.

Lets start with the very small relation algebras.

LEMMA 8 Fach of the following algebras has a square, universal represen-
tation (see definition 4). In each case this representation is unique up to base
isomorphism, i.e. every square representation of the relation algebra is base
isomorphic to the given universal representation: algebras #1, #2, #4 and

Re2.

Hence, by lemma 6, Gen—S AT () has at worst cubic complexily for these alge-
bras. In fact, Gen-S AT (#1) can be solved in constant time and Gen-S AT (#2)



No. Representative Atoms  Spectrum
#1 Re0 No atoms {0}

#2 Rel K {1}

#3 Rel x Rel €0, €1 -

#4 &g 1,0 {2}

45 BgRA 1,0 {k:k >3}
#6 Rel x Rel x Rel €0, €1, —

#7 Rel x BgTg €, €1,00  —

#8 el x B3 o, €1,00  —

#9 g™ {PY} la,a” {3}

#10 &P " a,a7 {k:k >N}
#11 gPPTUPTUPI} 1,a,a~ {7}U{r:x>9}
#12 gD Q1) ,a,b  {rk:k>6}
#13 &g Q8) 1" a,b {k:k>6}
#14 &g Q8) 1,a,b {2k :k >3}
#15 6g"{Q3} a6 {r:r>9}
#16 6g"{Q]} a6 {5}

#17 6gPIQIUQTY  1,ab {k:ik>8}
#18 &g LQ]] ab  {x:r>9}

Fig. 1. The eighteen isomorphisms types with one representative, list of atoms and
spectrum, from [30].

takes linear time.
PROOF:

The notion of a representation for algebra #1 is pathological — the only
representation for this algebra has an empty domain. There aren’t any non-
zero constraints over this algebra (it has only one element and that element
is zero) so the only non-zero closed set of constraints is the empty set of
constraints, which is satisfiable. Any non-empty set of constraints is un-
satisfiable for the trivial reason that we cannot assign the variables to any
points in the domain. Checking if a set of constraints is empty takes just
constant time.

If M is a square representation of algebra #2 then it has just one point in

10



, #3 € €1 #4 1/ 0/
Algebragt1 #2|1 1 o
has no atoms 111 0 =0
€1 0 €1 0/ OI 1/
#6 €po €1 €9 #7 €pg €1 0/ #8 €g €1 0/
#5110
€o |€o 00 €o |€o 00 €o |€o 0 0
1/ 1/ 0/
€1 0 €1 0 €1 0 €1 0/ €1 0 €1 0/
00 1
€2 0 0 €2 0/ 0 0/ €1 O/ 0 0/ 61—|—0/
HN T a a | |#10| 1 aa| |#11| 1" a a| |#12|1" a b
|1 a a 1" [1 aa~ |1 aa” 1" |11"a b
ala a1 a |a a 1 a |a 0 1 a lal b
a’la” 1 a a” la”1la | |a"|la” 1 0 b |b b —b

H13|1 a b | |#141 a b|  |#15]1" a b| |#16]1 a b
' [1"a b| | 1" |l"ab 1 |1" a b 111" a b
a |a —b b a lalb a |a —=bb a |a —a 0
b |b b —bl | b|bbl b |b b1 b |b 0 —b

#1711 a b #18(1" a b
" 11" a b 1" 11" a b

a |la —a a la 10

b |b 0 1 b |b0 1

Fig. 2. The composition tables for the atoms of the 18 small relation algebras, from

[30].

its domain [30, theorem 1]. Any non-zero set of constraints is closed and is
satisfiable in M — just map all variables to the single point in the domain
of M. Checking to see if all constraints in a set of constraints are non-zero
takes just linear time.

Algebra #4 has just one square representation, M say (up to base iso-
morphism) [30, theorem 1]. Let the domain of this representation be {0, 1}.

11



We show that M is a universal representation of algebra #4. So, let =
be any closed, non-zero set of constraints over algebra #4. Define an as-
signment h to the variables, satisfying all the constraints, as follows. Let
h(zo) = 0. Suppose we have defined h on zg, z1,..., 251 (some k < n) such
that all constraints involving just these first k variables are satisfied. Next
we define h on zj. If there is a constraints 1'zzz; or 'z (some j < k)
then let h(xx) = h(z;). This is well-defined, because if 1'z;z and 1"z}
(some i,j < k) then since = is closed we must have a constraint 1'z;z; in
=, and so h(x;) = h(x;). Similarly, if there is 7 < k and a constraint 0'z;z
or 0'zix; then define h(xy) to be the unique domain element not equal to
h(z;). Again, this is well-defined by closure of Z. If there are no such con-
straints involving z; and z; (some j < k) then, arbitrarily, let h(zy) = 0.
Thus we can define & on all the variables and satisfy all the constraints in
=. This shows that = is satisfiable in M, so M is a universal representation
of algebra #4.

The algebra fRe2 also has just one square representation (itself) upto
base-isomorphism. As in the previous case, we show that this is a univer-
sal representation. The domain of our representation is {0,1}. Let = =
{Cijx;xj 1 1,7 < n} be a closed, non-zero set of constraints over the vari-
ables zg,..., 2,1, where C;; € Re2 for 1,7 < n. (If there is no constraint
between z; and z; for some i,5 < n we just let C;; = 1.) Closure of the
constraints means that Cj;; Cjp > Cig, for 1,7,k < n. We must show that
these constraints are satisfiable in fRe2, considered as a representation of
itself. Suppose, inductively, that we have defined an assignment h on the
variables z; : ¢ < k (some k < n) such that all constraints C;;z;z; 14,7 < k
are satisfied by h. We must now define h on x;. The two alternatives are 0
and 1. If A(x;) = 0 is consistent with all constraints Cjp(x;,25) € Z': j < k
then we let h(zy) = 0. Otherwise, there is a constraint Cji(z;, x%) such that

(h(z;),0) ¢ O (9)

In this case we let h(z;) = 1. We claim that (h(z;),1) € C}! for all i < k.
If this were false, there would be 7 < k and

(h(x:),1) ¢ CK' (10)

But then (h(z;),h(z;)) € (Cix; Cr;)™ implies there exists z € {0,1} with
(h(z;),2) € C{t and (2, h(z;)) € C,?f. The possibility z = 0 is contradicted
by equation 9, while z = 1 is contradicted by equation 10. Thus we can
extend h, one variable at a time, till it is defined on all n variables, and all
constraints in = will be satisfied. Hence Re2 is a universal representation of
itself.

O

We can now deal with M —SAT(A) for all finite representations of any relation
algebra A.

12



THEOREM 9 Given a representable relation algebra A and a finite repre-
sentation M of A:

(1) if IM]| <2, then M —SAT(A) is solvable in cubic time. More specifically,
M — SAT (#1) can be solved in constant time, M — SAT (#2) and M —
SAT (#3) can be solved in linear time, and M — SAT (#4) and M —
S AT (Re2) can be solved in cubic time, for any M with |M| < 2.

(2) if M is square (so A is simple) and |M| > 2 then M — SAT(A) is
NP-complete.

PROOF:

Suppose that A is a relation algebra and assume that M is a finite repre-
sentation of 4. We prove the points of the claim separately.

Point 1
For point 1, observe that the only relation algebras with representations of
size two or less are #1, #2, #3, #4 and Re2 . By lemma 8, Gen-SAT (#1)
can be solved in constant time. Since algebra #1 has a unique (empty)
representation M, M — SAT(#1) also can be solved in constant time.
Similarly, lemma 8 proves that Gen-SAT(#2) and M — SAT(#2) can be
solved in linear time, for any representation M of algebra #2. Lemmas 8
and 6 show that Gen-SAT(#4), M — SAT(#4), Gen-S AT ($Re2) and M —
S AT (Re2) can be solved in cubic time, for any square representaiton M of
either algebra. A non-square representation of either of these two algebras
must have size at least four.

Algebra #3 is the direct product SRel x PRel. Lemma 7 shows that Gen-
SAT(#3) is solvable in linear time.

Point 2

To prove point 2 let |[M| = k > 2. We reduce the graph k-colourability
problem to M — SAT'. Since k-colourability of graphs is known to be NP-
complete for k& > 3 [38] or [39, page 191], this will prove that M — SAT is
NP-hard. It is easy to see that M-SAT is in NP, thus it will follow that
M — SAT is NP-complete.

An instance of the k-colourability problem is an undirected graph G. G
is a yes-instance if it is possible to assign each node ¢ of G one of k colours,
col(i) € {0,1,...,k — 1}, in such a way that if (i, j) is an edge of GG then
col(1) # col(y). G is a no-instance otherwise. For the reduction, let GG be a
graph. We reduce (@ to a set of constraints =(G). To write these constraints
we use a distinct variable z; for each node 7 of (5. Let

[1]

(G) = {(0'z;z;) : (4,7) is an edge of G’}

We can check that this is a correct reduction by identifying the &k colours
with the points in the domain of M. O

13



From theorem 9:
COROLLARY 10

(1) The following are NP-complete: M — SAT (#9), M — SAT (#12), M —
SAT (#16), for any representation M.

(2) The following are NP-complete: M — SAT (#5), M — SAT (#11), M —
SAT (#13), M — SAT (#14), M — SAT (#15), M — SAT (#17), M —
SAT (#18), for any finite representation of the algebra.

(3) The following are NP-complete: Gen-SAT (#9), Gen-SAT (#12), Gen-
SAT (#16).

PROOF:

The first two parts are direct from theorem 9.

For the last part, observe that each of the following algebras has only one
square representation, up to base isomorphism: #9 [30, theorem 1], #12 [30,
theorem 4(i)], #16 [30, theorem 5]. It follows, for each of these algebras, that
M — SAT(#n) is identical to Gen-S AT (#n).

O

LEMMA 11 Any infinite representation of algebra #5 is universal.

PROOF:

Let = be a closed, non-zero set of constraints and let M be any infinite
representation. Suppose inductively that £ is an assignment of the variables
To, ..., Tk (some k) into M such that all the constraints in = involving
only these k variables are satisfied. We extend h to z;. If = contains a
constraint 1'z,z), (some ¢ < k) let h(zy) = h(z;). This is well-defined, by
closure of =. Otherwise, let h(z;) be any point in the domain of M, with
h(zy) ¢ {h(x;) : @ < k}. Since M is infinite, this can be done. Clearly,
constraints from = involving xq, ...,z are still satisfied by this. So we can
extend h until it is defined on all the variables and satisfies all of =. O

Hence by lemma 6, if M is an infinite representation of algebra #5 then

M — SAT(#5) and Gen-SAT(#5) have cubic complexities.

The complexity of algebra #10 has been analyzed in various papers in partic-
ular in the Temporal Reasoning community (see [19,21,40]).

THEOREM 12 ([11, theorem 4.1]) Fuvery representation of algebra #10
s elementarily equivalent to the representative based on the rational numbers,
given in figure 1. Gen-SAT (#10) and M — SAT (#10) (any representalion

M) are solvable on deterministic machines in cubic time.
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We will construct universal representations of algebras #11, #17 and #18. In
each case the universal representation will be based on a random graph.

PROPOSITION 13 Countable graphs R, T and N ezist with the following

properties.

R is an undirected graph. Fvery finite undirected graph embeds into R. R
is ultrahomogeneous — every finite partial isomorphism® from R to ilself
extends to an automorphism of R.

T is a tournament (i.e. a directed graph with no reflexive edges such that for
all pairs of distinct nodes x,y € T exactly one of (z,y) and (y, ) is an edge
of T ). Every finite tournament embeds in T. T is ultrahomogenous.

N is an undirected, triangle-free graph. Fvery finite triangle-free graph embeds
into N. N is ultrahomogeneous.

PROOF:

These graphs can be constructed in two ways — as random constructions or

as Fraissé limils. See [41, §7.1 and §7.4] or [42, §2.10] for a discussion about

these constructions. In the former approach, we can construct the graph R

as follows. Start with countably many nodes. For each pair of nodes = and

y, include (z,y) as an edge with probability % The resulting graph will be

isomorphic to R with probability 1. The tournament T can be constructed

as a random tournament in this way too. The triangle-free graph N can also
be constructed randomly, but you have to be careful with the construction
and fix it so that no triangles are included.

Here we outline in slightly more detail the second approach. To construct
R as a Fraissé limit, you have to check that the class F of all finite, undi-
rected graphs has the following three properties.

Hereditary Property If A € F and B is an induced subgraph of A (more
generally A is a finite substructure of B) then B € F

Joint Embedding Property If A, B € F then there is C' € F such that
A and B embed in ('

Amalgamation Property If A, B,C € F and there are embeddings e :
A — Band f: A— C then thereis D € F and embeddings g : B — D
and h : C' = D such that ge = hg.

Fraissé’s theorem [41, theorem 7.1.2] states that if K is a class of finitely

generated (for graphs this is just finite) structures with the Hereditrary

Property, the Joint Embedding Property and the Amalgamation Property,

then there is an ultrahomogeneous, countable structure X into which every

member of K embeds, furthermore the only finitely generated structures
which embed into X are the members of K. So Fraissé’s theorem proves

4 A finite partial isomorphism of a graph is a partial 1-1 map, whose domain and
range are finite sets of nodes of the graph, taking edges and non-edges to edges and
non-edges respectively.
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that a countable, undirected, ultrahomogenous graph exists and every finite
graph embeds into it, as required by this proposition.

Similarly, it is easy to check that the class of all finite tournaments and
the class of all finite triangle-free graphs have the hereditary property, the
joint embedding property and the amalgamation property. Fraissé’s theorem
yields the required graphs T and N. O

We can use these graphs to provide the universal representations we need.

LEMMA 14 Gen-SAT (#11), Gen-SAT (#17) and Gen-SAT (#18) have uni-

versal representations.
PROOF:

We define a universal representation 7 of algebra #11, based on the tourna-
ment T of proposition 13. The domain of T is the (countable) set of nodes
of T. We interpret the atoms of algebra #11 by letting

(17 ={(z,z) : x is a vertex of T}
a” ={(z,y) : * # y and (z,y) is an edge of T}
(aV)T: {(z,y) : * # y and (y,z) is an edge of T}

Having defined the interpretation of the three atoms, it is easy to extend
this to all eight elements of algebra #11.

ol = U{ﬁT : 3 < a, Bis an atom}

for any element o €#11. The fact that none of 17,47, (a™)7 are empty
is enough to show that this defines a 1-1 map from algebra #11 into
MRe(nodes(T)), and the fact that T is ultrahomogenous. Indeed the much
weaker fact that for every partial isomorphism p of T of size two and every
node ¢ € T there is a partial isomorphism p* extending p with ¢ € dom(p™))
is enough to show that (z;y)”7 = 27|y7 for any z,y belonging to alge-
bra #11. To illustrate how this works, we show that (a;a)” = a7 |a”. Well

(z,y) € a’|a” &3z (z,2) € al A (z,y) € aT)
& 3z ((z,2),(z,y) are both edges of T)

=z #y
& (z,y) € (0) = (a;0)7

The third (one-way) implication holds because T is a tournament, so you
cannot have both of (z,z) and (z,2) being edges of T. This implication
may be reversed. Suppose ¥ # y € T. Since T is a tournament, either
(z,y) or (y,z) is an edge. Without loss, assume the former. Since all fi-
nite tournaments embed in T, there are three nodes z’,v’,z’ € T and
(' y"), (2", 2"), (2", y’) are edges of T. By ultrahomogeneity (or the weaker
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property described above) the partial isomorphism {(z', z), (v',y)} extends
to a partial isomorphism {(z',z), (v, y),(%',2)} for some node z € T. So
(x,z) and (z,y) are edges of T. This reverses the third implication. Since
this implication can be reversed, we have (z,y) € a”|a” < (z,y) € (a;a)”,
as required. Similarly, other products of elements are correctly represented.
This is the critical point in showing that 7 is indeed a representation of the
algebra.

For universality, let {Cj;z,2; : 4,7 < n} be some closed, non-zero set
of constraints over algebra #11. Suppose for contradiction that these con-
straints are not satisfiable in 7. Further, suppose that the number, n, of
distinct variables occuring in the set of constraints is least possible for such
a situation.

Ifthere are k # 1 < nand Cy = 1", then {Cjjx;xj 10,5 <n, k#14, k# 5}
is a non-zero, closed set of constraints not satisfiable in 7 with a smaller
set of variables, contrary to assumption.

Hence we can assume, for all 1 # 5 < n, that either a < Cj; or a™ < (5.
Closure of the constraints implies that C;; = €7, s0o a < Cyj & a™ < O,
for i # j < n. Define a tournament C with nodes {0,1,...,n—1} by letting
(1,7) be an edge of C (for each i < j < n) iff a < C};, and (j,1) is an edge
of C iff (z,7) is not an edge of C.

Every finite tournament embeds into T, so let ¢+ be an embedding of
C into T. This embedding determines a variable assignment v, given by
v(x;) = u(2), for 1 < n. We have to check that v satisfies all the constraints.
Let Cj;xz;x; be one of the constraints and suppose ¢ < 5. If @ < (5 then
(1,7) is an edge of C and hence (¢(2),¢(j)) is an edge of T. Therefore,
(v(2:),v(z;)) = (1(2),e(j)) € a” C CZ If a £ C;; then a— < Cyj, (7,17) is
an edge of T and (¢(j),¢(¢)) is an edge of T. So (¢(2),¢(7)) is not an edge
of T, hence (v(z;),v(z;)) = (¢(2),¢(y)) € (a )TCC'T If <1 < n then
(v(z;),v(zi)) € C’T = (v(z;),v(z;)) € C’T Thus all constraints are satisfied
by v.

This proves that 7 is universal.

In a very similar way we can construct universal representations A/, R of
algebras #17 and #18 respectively. For the former we let

(1Y ={(x,2) : x is a vertex of N}
aV = {(z,y): x # y and (z,y) is an edge of N}
W= {(z,y) : * # y and (z,y) is not an edge of N}

and for the latter we let

(1R ={(z,z) : z is a vertex of R}
a®={(z,y): x #y and (z,y) is an edge of R}
bR ={(z,y): x # y and (z,y) is not an edge of R}

As with the first case, the fact that all atoms have non-empty interpretation
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plus the ultrahomogeneity of the graph is enough to prove that A and R
are representations of algebras #17 and #18 respectively. And the fact that
every finite triangle-free graph embeds in IN (respectively, every finite graph
embeds in R) suffices to show that these are universal representations. O

LEMMA 15 Algebra #13 has a universal representation.

PROOF:

A universal representation M of algebra #13 can be constructed by taking
as a domain the disjoint union of two countably infinite sets X and Y. To
interpret the atoms,

™M ={(2,2):2€ XUY}
M ={(z,2):x# 2" € X} U{(y,y):y#y €Y}
bM:{(;c,y),(y,;z:):;c eX,yeVY}

so bM is a bipartite graph over X,Y. To see that this is indeed a repre-
sentation, just check that composition of the binary relations just defined
corresponds exactly to the composition table given for algebra #13. For uni-
versality, let {C;;(zi, ;) : 4,7 < n} be a non-zero closed set of constraints.
We claim that these constraints are satisfiable in M.

For the claim, define constraints B;; over algebra #4 by letting B;; >
1/alg.#4 iff C;; @ (—b) # 0, and B;; > O/alg.#él iff C; > b, for all 1,5 < n.
Since (—b);(—b) = b;b = —b and (—b);b = b;(—b) = b, it follows that
{Bjjz;z; 1,5 < n} is a closed, non-zero set of constraints over algebra #4.
By lemma 8 these constraints are satisfiable in the universal, two element
representation M of algebra #4. Let the two elements of M be {0,1},
say, and let A be a variable assignment into M satisfying the constraints
{Bijzix; 1,7 < n}. Let Iy ={i < n:h(it) =0} and I = {1 < n:
h(1) = 1}. Define new constraints {D;;(x;, ;) : 1,7 € Io} over algebra #5
by D;; = C;; @ (—b). This is a closed set of non-zero constraints and so, by
lemma 11, there is a variable assignment f, from the variables {z; : 7 € Iy}
into a model, whose domain we may as well take to be X, satisfying all these
constraints. Similarly, we can define constraints { Fj(x;, 2;) 14,5 € I} over
algebra #5 in exactly the same way, and thus find a variable assignment f;
from {z; : i € I;} into a representation whose domain is Y. The variable
assignment f = fo U f; is defined on all variables {z; : i < n} and satisfies
all the constraints {C;; : 1,7 < n}.

O

LEMMA 16 Algebra #1/ has a universal representation.
PROOF:

Let the domain M = {n,n’ : n € N}, i.e. take two disjoint copies of the
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natural numbers. To interpret the atoms of algebra #14 let

1M = {(n, ), (W', ") : n € N}
aM = {(n, 1), (n',n) : n € N}
M =1M\ (1M U ™)
As with the previous lemma, you can check that this defines a representation

by comparing the composition of the binary relations just defined with those
in the composition table for algebra #14. We must check that it is universal.

So let = = {C;; : 4,7 < n} be any non-zero, closed set of constraints.
The element —b = 1 + a is an equivalence element, i.e. —b > 1',(—=b)~ =
(=b); (=b) = —b. Let ~ be the binary relation over the set of variables

occuring in = defined by z; ~ z; iff C;; < —=b, for 1,7 < n. By closure of
the constraints, ~ is an equivalence relation over the set of variables. The
restriction of algebra #14 to the elements below —b is a relation algebra
isomorphic to algebra #4. So, for each ~-equivalence class a, the restriction
=, of = to the constraints using only variables in « is a non-zero, closed
set of constraints over algebra #4. By lemma 8 there is an assignment A,
to the variables in =, into a representation of algebra #4. Since the only
square representation of this algebra has size two, we can take the domain
of the representation to be {n,n’'}, for some n = n(a) € N, and we can
assume that n(a) = n(f) = a = 3, for any equivalence classes a and .
Now for any variables x;, x; where ¢ o¢ j we have b < C; (else i ~ 7). So
I =def Uequiv. classes o Pra 18 @ variable assignment satisfying all of =.

O

LEMMA 17 Algebra #15 has a universal representation.
PROOF:

For the domain take N x N. Interpret that atoms by

1" ={(p,p) : pe Nx N}
a“'={((m,n),(m',n)) :m,m';n €N, m #m'}
WM ={((m,n),(m’,n')) : m,m',n,n’ €N, n #n'}

Let = = {Cjjxz;x; : 1,5 < n} be a non-zero closed set of constraints over
algebra #15. The element 1"+ a = —b is an equivalence element. Define an
equivalence relation ~ over the variables in = by z; ~ z; iff C;; < —b. This
is indeed an equivalence relation, by the closure of the constraints. As in the
previous lemma, if we restrict algebra #15 to the elements below —b we get
a relation algebra isomorphic, this time, to algebra #5. So, if we restrict =
to those constraints using only variables occuring in a given ~-equivalence
class a, we get a non-zero, closed set of constraints =, over algebra #5.
By lemma 11 there is a variable assignment h, satisfying =,. We can take
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the domain of the representation of algebra #5 to be {(m,n) : m € N},
for some integer n = n(«), since this is an infinite set, and we can assume
that n is unique to a (i.e. n(a) = n(B) = a = [ for any equivalence classes
a,3). Then h =45 U, h, is a variable assignment satisfying all of =.

O

No. Gen-SAT M — SAT

41 01)  O(1)
#2 O(n)  O(n)
43 O(n)  O(n)
#4 0" O(n?)

#5 O(n®) { O(n”) M infinite, square

NPC M finite

#6 O(n) O(n)

#7100 o)

45 O {O(n3) M infinite, square
NPC M finite

#9 NPC  NPC

#10 0(n®)  O(n®)

#110(n®)  NPC if M is finite

#12 NPC  NPC

#13 0(n®)  NPC if M is finite

#14 0(n®)  NPC if M is finite

#15 0(n®)  NPC if M is finite

#16 NPC ~ NPC

#17 0(n®)  NPC if M is finite

#18 0(n®)  NPC if M is finite

Fig. 3. Summary of results. The eighteen isomorphisms types with complexity re-
sults. Only representations obtained by taking the disjoint union of one square
representation for each simple component are considered here.

Pulling all this together:

THEOREM 18 The complexities of Gen-SAT (#1)-Gen-SAT (#18) are as
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given in figure 3.
PROOF:

The first four complexities are given in lemma 8. The complexity of Gen-
SAT(#5) is given in lemma 11. Algebra #6 is the direct product #2 x
#2 x #2, so Gen-SAT(#6) has the same complexity as Gen-SAT(#2), by
lemma 7, namely O(n). Similarly, algebra #7 is isomorphic to #2 x #4 so by
lemma 7 its complexity is O(n?). Algebra #8 is isomorphic to #2 x #5 so its
complexity is O(n?). Gen-SAT(#9), Gen-SAT (#12) and Gen-SAT(#16)
are NP-complete, by corollary 10. Gen-SAT(#10) has cubic complexity,
by theorem 12. Gen-SAT(#11), Gen-SAT (#17) and Gen-SAT(#18) have
cubic complexity, by lemma 14 and lemma 6. The complexities of Gen-
SAT(#13), Gen-SAT(#14) and Gen-SAT(#15) are cubic, by lemma 6
and lemmas 15, 16 and 17, respectively. O

5 Conclusions and further work

We have analyzed the computational complexity of the Gen-SAT problem
on the eighteen small relation algebras classified by Maddux and Andreka in
[30]. This analysis provides a complete computational account for the small
relation algebras.

Some problems about computational complexity of the constraint satisfaction
problem for small relation algebras over specified representations remain open.
We still need to establish whether the M — SAT problems are tractable for
infinite models (other than those used for the above analysis).

Another important problem arising from the applications is to restrict Gen-
SAT(A) to a specified subset S of the relation algebra A. That is, we want to
know if a set of constraints {o;;2;x; : 4,7 < n}, where o;; € S for i,5 < n, is
satisfiable in a representation of A. It can happen that the complexity of this
restricted problem is lower than that of Gen-SAT(A). The analysis of subsets
has been studied for many algebras used, in particular, for knowledge repre-
sentation as in the case of Allen’s algebra [43-46], for the Region Connection
Calculus [47-49], for the congruence algebra [50], but a general solution is still
a long way off.

Finally, an observation about our results, leading to two further problems. For
any small relation algebra A we have seen that the complexity of Gen-SAT(A)
is either cubic (because A has a universal representation) or NP-complete.
Two problems arise.
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PROBLEM 1 Find a relation algebra A with no universal representalion
but where the complexity of Gen-SAT(A) is polynomial.

PROBLEM 2 Find a relation algebra A such that the complexity of Gen-
SAT(A) is polynomial, but worse than cubic.
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