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Abstract. It is known that a lattice is representable as a ring of sets iff the lat-
tice is distributive. CRL is the class of bounded distributive lattices (DLs) which
have representations preserving arbitrary joins and meets. jCRL is the class of DLs
which have representations preserving arbitrary joins, mCRL is the class of DLs
which have representations preserving arbitrary meets, and biCRL is defined to be
jCRL∩mCRL. We prove

CRL ⊂ biCRL = mCRL∩ jCRL ⊂mCRL 6= jCRL ⊂ DL
where the marked inclusions are proper.

Let L be a DL. Then L ∈mCRL iff L has a distinguishing set of complete, prime
filters. Similarly, L ∈ jCRL iff L has a distinguishing set of completely prime filters,
and L ∈ CRL iff L has a distinguishing set of complete, completely prime filters.

Each of the classes above is shown to be pseudo-elementary hence closed under
ultraproducts. The class CRL is not closed under elementary equivalence, hence it
is not elementary.

1. Introduction

An atomic representation h of a boolean algebra B is a representation
h : B → ℘(X) (some set X) where h(1) =

⋃
{h(a) : a is an atom of B}. It is

known that a representation of a Boolean algebra is a complete representation
(in the sense of a complete embedding into a field of sets) if and only if it is
an atomic representation and hence that the class of completely representable
Boolean algebras is precisely the class of atomic Boolean algebras, and hence
is elementary [6]. This result is not obvious as the usual definition of a com-
plete representation is thoroughly second order. The purpose of this note is
to investigate the possibility of corresponding results for the class of bounded,
distributive lattices. The situation is a little more complex in this case as in
the absence of Boolean complementation a representation of a (distributive)
lattice may be complete with respect to one of the lattice operations but not
the other.

It turns out (theorem 3.2) that the class CRL of completely representable
bounded, distributive lattices is not elementary, however, building on early
work in lattice theory by Birkhoff [1], and Birkhoff and Frink [2] it is possible
to characterise complete representability of a lattice in terms of the existence
of certain prime filters (or dually using prime ideals). Using this characterisa-
tion an alternative proof of the identification of the completely representable
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Boolean algebras with the atomic ones is provided. It is also shown that CRL,
and the classes of (bounded, distributive) lattices that have representations re-
specting either or both arbitrary infima and suprema are pseudoelementary,
and thus closed under ultraproducts. Using the well known fact that a class
is elementary if and only if it is closed under isomorphism, ultraproducts and
ultraroots it follows that CRL is not closed under ultraroots. The question
of whether this holds for the other classes of lattice under consideration, and
thus whether they are elementary, remains open at this time and is the subject
of ongoing investigation.

2. Representations of bounded, distributive lattices

Definition 2.1 (Representation). Let L be a bounded, distributive lattice. A
representation of L is an embedding h : L → P(X) for some set X, where
P(X) is considered as a ring of sets, under the operations of set union and
intersection. When such a representation exists we say that L is representable.

For simplicity we shall assume that our representations h : L → P(X)
are ‘irredundant’, that is, for all x ∈ X there is some a ∈ L with x ∈ h(a).
For irredundant representations h : L → P(X) the ‘inverse image’ h−1[x] =
{a ∈ L : x ∈ h(a)} of any point x ∈ X is a prime filter, with closure under
finite meets coming from finite meet preservation by the representation, and
primality coming from finite join preservation. Upward closure can be derived
from either of these preservation properties using the equivalent definitions of
the order relation in a lattice. Conversely, any set K of prime filters of L with
the property that for every pair a 6= b ∈ L there exists f ∈ K with either a ∈ f
and b 6∈ f or vice versa determines a representation hK : L → P(K) using
hK(a) = {f ∈ K : a ∈ f} (note that for f ∈ K we have h−1

K (f) = f). For
ease of exposition later we introduce a definition for sets of sets generalising
the condition for filters given above.

Definition 2.2. A set S ⊆ P(L) is distinguishing over L iff for every pair
a 6= b ∈ L there exists s ∈ S with either a ∈ s and b 6∈ s or vice versa.

Using this definition we state the results of the preceding discussion as a
simple theorem:

Theorem 2.3. A bounded distributive lattice L is representable if and only if
it has a distinguishing set of prime filters.

As a consequence of the prime ideal theorem for distributive lattices we
have:

Theorem 2.4. A bounded lattice is representable if and only if it is distribu-
tive.

Henceforth, all lattices under consideration are bounded and distributive.
We now discuss representations preserving arbitrary meets and/or joins.
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Definition 2.5 (Meet-complete map). A lattice map f : L1 → L2 is meet-
complete if for all S ⊆ L1 where

∧
S exists in L1 we have f(

∧
L1
S) =∧

L2
f [S].

A similar definition is made for join-complete. When a map is both meet-
complete and join-complete we say it is complete. When a bounded, distribu-
tive lattice has a meet-complete representation we say it is meet-completely
representable, and we make similar definitions for join-complete and complete
representations. We shall call the class of all bounded, distributive lattices DL,
the class of all completely representable lattices CRL, the classes of meet and
join-completely representable lattices mCRL and jCRL respectively, and the
class of lattices with both a meet-complete and a join-complete representation
biCRL.

Theorem 2.6. A lattice L has a meet-complete representation iff its order
dual Lδ has a join-complete representation.

Proof. If h : L → P(P ) is a representation, where P is some distinguish-
ing set of prime filters of L, then the map h̄ : Lδ → P(P ), a 7→ −h(a) is
also a representation. If h is meet-complete then by De Morgan h̄(

∨
δ S) =

−h(
∧
S) = −

⋂
h[S] = −

⋂
−h̄[S] =

⋃
h̄[S] (here ‘−’ denotes set theoretic

complement). □

Definition 2.7 (Complete ideal/filter). An ideal I of a lattice L is complete
if whenever

∨
S exists in L for S ⊆ I then

∨
S ∈ I. Similarly a filter F of L

is complete if whenever
∧
T exists in L for T ⊆ F then

∧
T ∈ F .

Definition 2.8 (Completely prime ideal/filter). A prime ideal I of L is com-
pletely prime if whenever

∧
T ∈ I for some T ⊆ L then I ∩ T 6= ∅. Similarly,

a prime filter F of L is completely prime if whenever
∨
S ∈ F for some S ⊆ L

then F ∩ S 6= ∅.

Lemma 2.9. If F is a prime filter of L and I = L \ F is its prime ideal
complement then F is complete iff I is completely prime, and I is complete iff
F is completely prime.

Proof. Using I = L \ F we can rewrite the definition of completeness of I as∨
S ∈ F =⇒ F ∩ S 6= ∅. Similarly we can write completeness for F as∧
T ∈ I =⇒ T ∩ I 6= ∅. □

Theorem 2.10. Let L be a bounded, distributive lattice. Then:
(1) L has a meet-complete representation iff L has a distinguishing set of

complete, prime filters,
(2) L has a join-complete representation iff L has a distinguishing set of

completely-prime filters,
(3) L has a complete representation iff L has a distinguishing set of complete,

completely-prime filters,
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Proof. We prove 1), the rest follows from theorem 2.6 and lemma 2.9. For the
left to right implication, let h be an irredundant meet-complete representation
of L over some domain D. Since h is an irredundant representation, {h−1[d] :
d ∈ D} is a distinguishing set of prime filters. Also, if S ⊆ h−1[d] then
d ∈

⋂
h[S] and by completeness of h if

∧
S exists then d ∈ h(

∧
S) so

∧
S ∈

h−1[d], hence each of these prime filters is complete. Conversely, let K be a
distinguishing set of complete, prime filters. Define a map h : L → ℘(K) by
h(l) = {p ∈ K : l ∈ p}. Because K is a distinguishing set of prime filters, h
is a representation. Furthermore, since each p ∈ K is complete, if S ⊆ L and∧
S exists then for all p ∈ K,

p ∈ h(
∧
S) ⇐⇒

∧
S ∈ p

⇐⇒ S ⊆ p
⇐⇒ p ∈

⋂
h[S]

so h(
∧
S) =

⋂
h[S] and h is a complete representation.

□

In the light of lemma 2.9 it’s straightforward to prove an analogous result
to theorem 2.10 using ideals in place of filters.

We briefly turn our attention to the special case of Boolean algebras. Recall
that a bounded lattice (L, 0, 1,∧,∨) is complemented iff for all s ∈ L there is
s′ ∈ L such that s∨s′ = 1 and s∧s′ = 0. Since there can be at most one
complement to an element, we may write −s instead of s′.

Lemma 2.11. If L is complemented then its prime filters are precisely its
ultrafilters, moreover the following are equivalent:
(1) U is a principal ultrafilter of L,
(2) U is a complete ultrafilter of L,
(3) U is a completely-prime ultrafilter of L.

Proof. It’s easy to see that the ultrafilters of a BA are precisely its prime filters.
Clearly 1) =⇒ 2). Let U be an ultrafilter. If U is complete it must contain a
non-zero lower bound s and thus be principle (otherwise it would contain the
complement of that lower bound, but s ≤ −s⇒ s = 0), so 2) =⇒ 1). For any
S ⊆ L we write −S for {−s : s ∈ S}. The infinite De Morgan law for Boolean
algebras (see e.g. [10, section 19]) gives −

∨
S =

∧
−S so if U is complete

then S ∩ U = ∅ =⇒ −
∨
S ∈ U =⇒

∨
S /∈ U , so 2) =⇒ 3). Similarly, if

U is completely-prime then
∧
S /∈ U =⇒ −

∧
S ∈ U =⇒

∨
−S ∈ U =⇒

−s ∈ U for some s ∈ S =⇒ S 6⊆ U , so 3) =⇒ 2). □

We have as a corollary the following result (see [6, corollary 6] for the
equivalence of the first two parts).

Corollary 2.12. For a Boolean algebra B the following are equivalent:
(1) B is atomic,
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(2) B is completely representable,
(3) B is meet-completely representable,
(4) B is join-completely representable.

Turning our attention back to the lattice case we now give some examples
to illustrate the relationships between the classes we have defined.

Example 2.13. A distributive lattice both meet-completely representable and
join-completely representable but not completely representable.
Let L = [0, 1] ⊆ ℝ. Then by taking {[x,∞) : x ∈ L} we obtain a distinguishing
set of complete, prime filters, and by taking {(x,∞) : x ∈ L} we obtain a
distinguishing set of completely-prime filters.
However, if F is a complete filter of L then

∧
F ∈ F (by completeness prop-

erties of L and F ) and, since
∧
F =

∨
{x ∈ L : x <

∧
F}, F cannot be

completely prime.

Example 2.14. A distributive lattice neither meet-completely nor join-completely
representable.
In view of corollary 2.12 we can take any Boolean algebra that fails to be
atomic.

Example 2.15. A distributive lattice join-completely representable but not
meet-completely representable.
Let L be the lattice (ℕ × ℕ) ∪ {0} shown in figure 1, where ℕ is the set of
non-positive integers under the usual ordering and the element 0 is a lower
bound for the whole lattice. Then L has no complete, prime filters, but all
it’s filters are completely-prime, hence by theorem 2.10 it has a join-complete
representation but no meet-complete representation.

Examples 2.13, 2.14 and 2.15 (and its dual) give us the following:

CRL ⊂ biCRL = mCRL∩ jCRL ⊂mCRL 6= jCRL ⊂ DL (†)

There is a relationship between the existence of types of complete represen-
tation and the join and meet-densities of the sets of join and meet-irreducibles
of L, which we make precise in the following proposition.

Proposition 2.16. Let L be a bounded, distributive lattice. Define J(L) and
M(L) to be the sets of join-irreducible and meet-irreducible elements of L
respectively, and J∞(L) and M∞(L) to be the sets of completely join/ meet-
irreducibles of L respectively, then:
(1) If the set J(L) is join-dense in L then L has a meet-complete representa-

tion, dually if the set M(L) is meet-dense in L then L has a join-complete
representation. When L is complete then if L has a meet/join-complete
representation the sets J(L)/M(L) are join/meet-dense in L.

(2) If either J∞(L) is join dense in L or M∞(L) is meet dense in L then
L has a complete representation. When L is complete it is also true that
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Figure 1. The lattice (ℕ× ℕ) ∪ {0}

whenever L has a complete representation J∞ and M∞ are join and meet
dense in L respectively.

Proof. For the first part of 1, we just take the sets of principle filters/ideals
generated by the join/meet irreducibles respectively, for the second we note
that the generator of each filter/ideal must be join/meet irreducible. For
the first part of 2 we note that if we take the sets of principle filters/ideals
generated by J∞(L) and M∞(L) respectively we obtain distinguishing sets of
completely-prime filters/ideals, and for the second part the generator of each
filter/ideal will be completely join/meet-irreducible. □

Note that the full converses to proposition 2.16 (i.e. when L is not complete)
do not hold, so e.g. in a completely representable lattice L, J∞(L) need not
be join dense, as the following example illustrates.

Example 2.17. L is the lattice with domain (ℕ×ℕ)∪ℕ as shown in figure 2,
where ℕ is the set of non-positive integers under their usual ordering and each
element of ℕ is less than each element of (ℕ×ℕ). For −n ∈ ℕ, the set [−n, 0]×
ℕ is a complete, completely prime filter (with no infimum) and similarly ℕ×
[−n, 0] is also complete, completely prime. Hence L has a distinguishing set
of complete, completely-prime filters but J∞(L) = J(L) = ℕ is not join dense
in L.

We end this section with a note about canonical extensions.

Lemma 2.18. A complete lattice L is completely representable if and only if
it is doubly algebraic (a complete lattice is algebraic if every element can be
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Figure 2. The lattice (ℕ× ℕ) ∪ ℕ

written as a join of compact elements, a complete lattice is doubly algebraic if
both it and it’s order dual are algebraic).

Proof. It is known, see e.g. [4], that a lattice L is doubly algebraic if and
only if it is complete, completely distributive, and J∞(L) and M∞(L) are
join/meet dense. When L is completely representable it inherits complete
distributivity from its representation and, by proposition 2.16, has the required
density properties. Conversely, by the same proposition, the density properties
of algebraicity and dual algebraicity are both sufficient conditions for complete
representability. □

Corollary 2.19. The canonical extension of any bounded distributive lattice
is completely representable.

Proof. The canonical extension Lσ of a bounded distributive lattice L can be
defined as a doubly algebraic lattice into which L embeds in a certain way (see
e.g. [5, theorem 2.5] for details). □
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3. HSP, elementarity and pseudoelementarity

Since a subalgebra of an atomic BAO need not be atomic we know that
none of the classes in (†) is closed under subalgebras, and thus cannot be
varieties, or even quasivarieties. Similarly, given an atomic Boolean algebra
B we can define an equivalence relation R on B by xRy ⇐⇒ |{a ∈ At(B) :
a ≤ x}4{a ∈ At(B) : a ≤ y}| < |ω|, that is, if and only if the symmetric
difference of the sets of atoms beneath each element is finite. It can easily be
shown that R is a congruence, and in the case where B is the complete, atomic
Boolean algebra on ω generators the resulting B

R is isomorphic to the countable
atomless Boolean algebra, and thus none of classes in (†) can be closed under
homomorphic images. We can say something positive about closure under
direct products, which we express in the following lemma.

Lemma 3.1. The classes in (†) are all closed under taking direct products.

Proof. We do the proof for mCRL, the others are similar. Suppose {Li}I is
a family of lattices in mCRL. Let f 6= g ∈

∏
I Li, then we can choose j ∈ I

with f(j) 6= g(j), and by the assumption of meet-complete representability
there is a complete, prime filter γ distinguishing f(j) and g(i). Define sets
Si ⊆ Li by Sj = γ and Si = Li for all i 6= j, then S =

∏
I Si is a complete,

prime filter distinguishing f and g. □

As ‘being atomic’ is a first order property for Boolean algebras, it follows
immediately from corollary 2.12 that the class of completely representable
Boolean algebras is elementary. The aim here is to investigate to what extent
similar results hold for the classes in (†). Our first result is negative.

Theorem 3.2. CRL is not closed under elementary equivalence.

Proof. The lattice L = [0, 1] ⊆ ℝ from example 2.13 is not in CRL, however
the lattice L′ = [0, 1] ∩ ℚ is in CRL as for every irrational r the set {a ∈
L′ : a > r} is a complete, completely-prime filter. L and L′ are elementarily
equivalent as ℝ and ℚ are. □

We can, however, show that all the classes in (†) are at least pseudoele-
mentary. In particular we shall demonstrate that mCRL is precisely the first
order reduct of the class of models of a theory in two-sorted FOL, and thus
is pseudo-elementary (the proof can be readily adapted for the other classes).
We proceed as follows.

Definition 3.3. (Pseudoelementary class) Given a first order signature L , a
class C of L structures is pseudoelementary if there are
(1) a two sorted language L +, with disjoint sorts A and S, containing A

sorted copies of all symbols of L , and
(2) an L + theory U
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with C = {MA ↾L : M |= U}, where MA is a structure in the sublanguage of
L + containing only A sorted symbols whose domain contains only A sorted
elements, MA ↾L is the L reduct of MA obtained easily by identifying the
symbols of L with their A sorted counterparts in L +, and {MA ↾L : M |= U}
being thus the class of A sort L reducts of models of U .

See [7, section 9] for more information on this definition, and for proof of
its equivalence with single sorted definitions of pseudoelementarity.

Now, let L = {+, ·, 0, 1} be the language of bounded, distributive lattices
in FOL. Define the two-sorted language L + = L ∪{∈}, where ∈ is a binary
predicate whose first argument takes variables of the A sort and whose sec-
ond takes variables of the S sort. Let the original functions of L be wholly
A-sorted in L + (the A sort is meant to represent lattice elements and the S
sort sets of these elements). Define binary A sorted predicates ≤ and ≥, and
binary S sorted predicate ⊆ in L + in the obvious way. For simplicity we will
write xA ∈ sS for ∈ (xA, sS), and similar for ≤, ⊆ etc.

Define additional predicates P , I and C as follows:
• P (sS) if and only if each of the following properties hold:

(1) ∀ xA yA
((

(xA ∈ sS) ∧ (yA ≥ xA)
)
→ (yA ∈ sS)

)
(2) ∀ xA yA

((
(xA ∈ sS) ∧ (yA ∈ sS)

)
→ (xA · yA ∈ sS)

)
(3) ∀ xA yA

(
(xA + yA ∈ sS)→

(
(xA ∈ sS) ∨ (yA ∈ sS)

))
P is meant to capture the property of being a prime filter.

• I(xA, sS) if and only if

∀ yA
(

(yA ∈ sS)→ (xA ≤ yA)
)
∧∀ zA

((
(yA ∈ sS)→ (zA ≤ yA)

)
→ (zA ≤ xA)

)
.

I corresponds to the notion of an element being the infimum of a set.
• C(sS) if and only if ∀ tS ∀ xA

((
(tS ⊆ sS) ∧ (I(xA, sS)

)
→ (xA ∈ sS)

)
, so C

specifies a limited form of completeness.
Now, let T be the L theory of bounded, distributive lattices. Define T+ as the
natural translation of T into the language L + plus the following additional
axioms:
(I) ∀ xA yA

(
xA 6= yA → ∃ sS

((
P (sS) ∧ C(sS)

)
∧
((

(xA ∈ sS) ∧ (yA /∈ sS)
)
∨(

(yA ∈ sS) ∧ (xA /∈ sS)
))))

(II) ∀ xA ∃ sS ∀ yA
(

(yA > xA)↔ (y ∈ sS)
)

(III) ∀ sS tS ∃ uS ∀ xA
((

(xA ∈ sS) ∧ (xA ∈ tS)
)
↔ (xA ∈ uS)

)
The first of these axioms forces the S sort into providing a distinguishing set of
‘complete’ (with respect to S) prime filters, and the second and third force the
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existence of sufficiently many elements of S that this notion of completeness is
equivalent to actual completeness, as the lemma below demonstrates.

Lemma 3.4. The class {MA ↾L : M |= T+} of L -reducts of models of T+ is
precisely the class of meet-completely representable bounded, distributive lat-
tices.

Proof. Clearly if L is in mCRL its elements satisfy T , and (L,P(L),∈) satisfy
T+, where ∈ is ordinary set membership. Conversely, if A = MA ↾L for some
model M of T+ then by axiom I of T+ the (interpretation of) the ∈ predicate
naturally defines a distinguishing set K of prime filters of A. We claim that
each prime filter in K is complete. For the claim, let p ∈ K and s ⊆ p with
x =inf(s). We must show that x ∈ p. If x ∈ s then this is immediate, so we
suppose not: x 6∈ s. We consider the following cases:
(1) x =inf{y : y > x}: then s ⊆ {y : y > x} ∩ p ⊆ {y : y > x} so

x =inf(s) ≥inf({y : y > x} ∩ p) ≥ x and thus inf({y : y > x} ∩ p) = x, but
clearly {y : y > x}∩p ⊆ p and by axioms II and III of T+ also corresponds
to an element of the S sort. Therefore, by definition of the predicate C
we have x ∈ p, as required.

(2) x 6=inf{y : y > x}: Let z be a lower bound for {y : y > x}, suppose
z 6≤ x. Then x ∨ z is a lower bound for {y : y > x} and is contained in
{y : y > x}. In the light of this assume wlog that inf{y : y > x} = z > x.
Then, as x =inf(s), we have s ⊆ {y : y > x} and thus {y : y > x} has z
as a lower bound, but this a contradiction as x < z, so this case cannot
arise.

We deduce that x ∈ p, so p is complete, as claimed. Since T+ demands A be
a bounded, distributive lattice we have A ∈mCRL, by theorem 2.10(1). □

We have now proved the following.

Theorem 3.5. mCRL is pseudoelementary.

Proof. Lemma 3.4 shows the condition of definition 3.3 hold for mCRL. □

It is not difficult to see how analogous results can also be proved for jCRL,
biCRL and CRL using a similar method.

4. Ultraproducts and ultraroots

We begin this section by stating two well known facts from model theory:

Fact 4.1. A class C of similar structures is elementary iff it is closed isomor-
phism, ultraproducts and ultraroots.

Fact 4.2. C is pseudoelementary =⇒ C is closed under ultraproducts.
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For proof of the first see e.g. [8, corollary 9.5.10] or [3, theorem 4.1.12 and corol-
lary 4.3.13]. The proof of the second is simple, see e.g. [3, exercise 4.1.17].

In view of the facts above and the material in the preceding section, since
CRL is pseudoelementary, and closed under isomorphism, but is not elemen-
tary, it cannot be closed under ultraroots. mCRL, jCRL and biCRL will be
elementary if and only if they are closed under ultraroots. Note that mCRL
is elementary iff jCRL is elementary (by duality), and therefore mCRL is
elementary =⇒ biCRL is elementary (as biCRL = mCRL∩ jCRL). It
is not known which, if any, of biCRL, mCRL and jCRL are closed under
ultraroots but it is possible to state some conditions on a lattice L which
must necessarily hold if L 6∈ X but an ultrapower of L belongs to X (where
X = biCRL,mCRL or jCRL).

First of all in order for the ultraproduct
∏

U L to be meet-completely rep-
resentable L must be ∨(

∧
)-distributive, i.e. for a ∈ L, S ⊆ L if both sides of

the equation below are defined then they are equal

a ∨
∧
S =

∧
s∈S

(a ∨ s)

as we shall see in the next proposition. Note that the converse to this is false
as, for example, every BA is ∨(

∧
)-distributive (see e.g. [9, theorem 5.13]

for a proof) but not necessarily atomic, so not necessarily meet-completely
representable by corollary 2.12. We will use the following notation and lemma:

• For a ∈ L define ā ∈
∏
I L by ā(i) = a for all i ∈ I.

• Fix some ultrafilter U over I. For x ∈
∏
I L we write [x] for {y ∈

∏
I L :

{i : x(i) = y(i)} ∈ U}.
• For S ⊆ L define S∗ = {[x] ∈

∏
U L : {i ∈ I : x(i) ∈ S} ∈ U}.

• For T ⊆
∏

U L define T∗ = {a ∈ L : [ā] ∈ T}.

Lemma 4.3. Let S ⊆ L and suppose
∧
S exists in L. Then

∧
(S∗) exists in∏

U L and equals [
∧
S].

Proof. This can be proved by defining an additional predicate ‘S’ in the lan-
guage of lattices meant to correspond to ‘being an element of the set S’, the
result then following easily from  Loś’ theorem. An alternative algebraic proof
is as follows. Clearly [

∧
S] is a lower bound for S∗. Suppose [z] is another

such lower bound and [z] 6≤ [
∧
S]. Then {i ∈ I : z(i) 6≤

∧
S} ∈ U , so

{i ∈ I : ∃si ∈ S with z(i) 6≤ si} ∈ U , = u say (as
∧
S is the greatest lower

bound of S). Define x by x(i) = si for i ∈ u and x(i) =
∧
S otherwise. Then

[x] ∈ S∗ but [z] 6≤ [x], but this contradicts the assertion that [z] is a lower
bound. □

Corollary 4.4. The class of ∨(
∧

)-distributive bounded lattices is closed under
ultraroots.
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Proof. By lemma 4.3 if there is some A ∪ {b} ⊆ L with b ∨
∧
A 6=

∧
(b ∨ A)

then
∧
A∗ ∨ [b̄] = [

∧̄
A] ∨ [b̄] = [(

∧
A)∨b] 6= [(

∧
(A ∨ b)] =

∧
(A∗ ∨ [b̄]), so if L

is not ∨(
∧

)-distributive then neither is
∏

U L. □

Proposition 4.5. If
∏

U L has a meet-complete representation then L is
∨(
∧

)-distributive.

Proof. This follows from corollary 4.4 and the fact that when
∏

U L is in
mCRL it inherits ∨(

∧
)-distributivity from its representation. □

By duality a similar result holds for jCRL, and hence for biCRL. In order
for

∏
U L to be in mCRL but L not to be it turns out L must satisfy an

infinite density property, which we make precise in the next proposition.

Proposition 4.6. If
∏

U L has a meet-complete representation but L does not
then there is a pair x < y such that for every pair a < b ∈ [x, y] there is some
c with a < c < b.

Proof. If L is not in mCRL then there is a pair x, y,∈ L that cannot be
distinguished by a complete prime filter. Wlog assume x < y. Since

∏
U L

is in mCRL, for each pair a < b ∈ [x, y] there is a complete, prime filter γ
distinguishing [ā] and [b̄]. It’s easy to show that γ∗ is a prime filter of L with
b ∈ γ∗ and a /∈ γ∗ (and thus y ∈ γ∗ and x /∈ γ∗). Let a < b and (a, b) = ∅ and
suppose S ⊆ γ∗. Then for each [z] ∈ S∗ we have must have [z]∨ [ā] = [b̄], and
thus by primality S∗ ⊆ γ. So by lemma 4.3

∧
S ∈ γ∗, and so γ∗ is complete,

which is a contradiction as we assumed x and y could not be distinguished by
a complete, prime filter. □

Again by duality the same result holds for join-complete representations.
Note that if we could find a counter example (L,ΠU ) where ΠUL ∈mCRL, L 6∈
mCRL, we could restrict to the sublattice bounded by x and y, so we lose
nothing by assuming that x and y are the lower and upper bounds respectively,
and that the whole lattice therefore has this density property.

We have seen that the class of completely representable boolean algebras is
atomic (indeed finitely axiomatisable) and that the class CRL of completely
representable lattices is not.

Conjecture 4.7. None of the classes jCRL,mCRL, biCRL is elementary.

We intend to prove this in a subsequent article.
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