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Abstract

Let G = (V,E) be a graph and let C be a finite set of colours. An
edge C-colouring of G is a function λ : E → C. If G is symmetric and
λ(x, y) = λ(y, x), for all (x, y) ∈ E, then we say that λ is a symmetric
edge C-colouring.

Let n be a natural number and let Cn = {f, ci : i < n} be a set of
n+1 colours. Using a probabilistic construction and an application of the
Local Lemma we prove that there is a complete irreflexive graph Gn with
at least two nodes and a symmetric edge Cn-colouring λn of Gn such that
for any edge (x, y) of Gn and any β, γ ∈ Cn,

f ∈ {λn(x, y), β, γ} ⇐⇒ ∃z ∈ Gn (β = λn(x, z) ∧ γ = λn(y, z))

Moreover, such a graph exists of size
(
3k−4

k

)
provided k is large enough so

that

n2

(
1− 1

n2

)(k−2)2
(

1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2)
≤ 1

e
(1)

Equivalently, for k satisfying this inequality, the symmetric integral
relation algebra with n + 1 diversity atoms one of which is flexible but
where all inflexible diversity triangles are forbidden has a representation
over a base of size

(
3k−4

k

)
.

This significantly reduces the size of the smallest known edge-labelled
graph satisfying these conditions.

1 Introduction and Preliminaries

We consider a certain combinatorial problem that arises in the study of repre-
sentations of relation algebras but we present it here as a graph edge-colouring
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problem. Many of the familiar edge-colouring problems ask for graphs whose
edges are coloured in such a way as to avoid specified structures, for example
the Ramsay number R(c0, c1, . . . , cn−1) is one more than the size of the largest
complete irreflexive graph where each undirected edge has one of n colours and
there is no complete subgraph of size ci whose edges all have the i’th colour
(for i < n). We are asked to find a graph, as large as possible, satisfying some
universally quantified constraints.

The problem we consider here is typical of another class of problems, where we
seek graphs satisfying specified universal-existential conditions; if such graphs
exist then we want to know whether a finite graph satisfying the conditions exists
and if so we would like bounds on the smallest possible size. Model theorists
have considered this kind of problem for some time now and have succeeded in
proving, for example, that for finite m, a Km free graph G and a sequence of
partial isomorphisms of G may be extended to a finite Km-free graph in which
the partial isomorphisms are induced by automorphisms [5]. Applications of this
include a proof that finite relation algebras have finite relativized representations
[2], that various fragments of modal logic have the finite model property (e.g.
[8]); however the finite models given by these results tend to be large. The
techniques employed in this paper allow us to reduce the upper bound on the
smallest solution, at least for one rather specific problem of this kind.

Consider the following graph problem: find the smallest triangle-free symmetric
graph G = (V,E) where for all x, y ∈ V with (x, y) 6∈ E there is w ∈ V with
(x,w) ∈ E, (w, y) 6∈ E and there is z ∈ V with (x, z), (z, y) ∈ E. A solution,
given in [1], has vertices consisting of the ten three-element subsets of a set of
size five and with an edge between such subsets iff their intersection has at most
one element (see section 6 below). We will consider a family of generalisations
of this problem to edge coloured graphs where for all vertices x, y and any
consistent choice of colours, witness nodes, like w, z above, must exist with
edges labelled by the chosen colours (see definition 1.2). Alm et. al. devized
probabilistic constructions of edge coloured graphs to solve these edge colouring
problems, but their solutions are rather large. Here we apply the Local Lemma
to significantly reduce the upper bound on the size of the smallest solution.

Definition 1.1 (Labelled Graph). A labelled graph (G,λ) consists of a graph G
with vertices V (G) and edges E(G) ⊆ V (G)×V (G), and a function λ : E(G)→
C, for some set C of colours. We say that (G,λ) is a symmetric labelled graph if
G is symmetric and if (x, y) ∈ E(G)⇒ λ(x, y) = λ(y, x) (and we may say that
the labelling λ is symmetric).

Next we define our edge colouring problems. The graphs we use here are all
complete (either reflexive or irreflexive), whereas the labelled graphs mentioned
in the abstract were not assumed to be complete. The discrepancy is resolved
later by introducing a special colour (f) that can be thought of as the colour of
”non edges”.

Definition 1.2 (Edge Colouring Problems). We define three edge colouring
problems: (i) symmetric labellings of irreflexive complete graphs, (ii) directed
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labellings of irreflexive complete graphs and (iii) directed labellings of reflexive
complete graphs. An instance (C, T ) of the first problem consists of a finite set
C of colours and a set T ⊆ C3 of consistent triangles closed under permutations,
i.e. if (c1, c2, c3) ∈ T then (c2, c1, c3), (c3, c1, c2) ∈ T . A solution (G,λ) of (C, T )
is a complete symmetric irreflexive labelled graph (G,λ) such that

{(λ(x, y), λ(y, z), λ(x, z)) : (x, y), (y, z), (x, z) ∈ E(G)} = T (2)

and for all (x, y) ∈ E(G)

(c1, c2, λ(x, y)) ∈ T ⇒ ∃z ∈ G (λ(x, z) = c1 ∧ λ(z, y) = c2). (3)

The set T tells us which triangles are permitted in a solution, the conditions
above imply that permitted triangles are also obligatory, as Roger Maddux once
put it. If property 3 holds for a certain edge (x, y) we say that (x, y) is witnessed.
In model-theoretic terms, (2) says that (G,λ) is universal over T and (3) says
that (G,λ) is 3-homogeneous, i.e. for any partial isomorphism p of (G,λ) of size
strictly less than 3 and any x ∈ G there is a partial isomorphism p+ extending
p and with x included in its domain.

An instance (C,^, T ) of the directed irreflexive edge colouring problem is defined
similarly, but here ^ : C → C is any function such that (c^)^ = c (all c ∈ C)
and T has to be closed under Peircean Transforms, i.e. (c1, c2, c3) ∈ T ⇒
(c2, c

^
3 , c

^
1 ), (c3, c

^
2 , c1) ∈ T . A solution is a complete irreflexive labelled graph

(G,λ) (but the labelling λ is not necessarily symmetric) satisfying (2), (3) and
in addition, for all (x, y) ∈ E(G) we have

λ(x, y) = (λ(y, x))^. (4)

Finally, an instance (C, Id,^, T ) of the reflexive directed edge colouring problem
has as an argument a specified subset Id ⊆ C. As before, T must be closed
under Peircean Transforms, also for all c ∈ C there is a unique st(c) ∈ Id such
that (st(c), c, c) ∈ T and (c1, c2, c3) ∈ T ⇒ st(c1) = st(c3). A solution (G,λ) is
a directed reflexive complete graph satisfying (2), (3), (4) and in addition, for
all x, y ∈ G we have λ(x, y) ∈ Id ⇐⇒ x = y.

For each of the three problems above, if there is a solution we may also wish to
know the size of the smallest solution.

2 Equivalence with Representations of Relation
Algebras

Solutions to these problems are related to representations of certain finite rela-
tion algebras, as we explain in outline next. The reader who is more interested
in graph colouring problems than relation algebra might prefer to skip to the
next section. Further references on relation algebras include [9, 7, 10].
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Definition 2.1. A relation algebra A = (A, 0, 1,−,+, 1′,^, ; ) consists of a
set A, constants 0, 1, 1′ ∈ A, unary functions −,^ and binary functions +, ;
on A, satisfying certain equational axioms [7, definition 3.8], which state that
(A, 0, 1,−,+) is a boolean algebra (A, 1′,^, ; ) is an involuted monoid, the op-
erators ^, ; are normal and additive, and the algebra obeys the Peircean law. A
representation h of A is a map h : A→ ℘(X ×X) (some base set X) such that
h(0) = ∅, h(−a) = h(1) \ h(a), h(a + b) = h(a) ∪ h(b), h(1′) = IdX , h(a^) =
{(x, y) : (y, x) ∈ h(a)} and h(a; b) = {(x, y) : ∃z ∈ X, (x, z) ∈ h(a), (z, y) ∈
h(b)}, for all a, b ∈ A. The representation problem for finite relation algebras
is to determine whether an arbitrary finite relation algebra is representable or
not.

An atom ofA is a minimal non-zero element with respect to the boolean ordering
a ≤ b ⇐⇒ a+ b = b. A relation algebra is integral if the identity 1′ is itself an
atom. A is atomic if every non-zero element of A is above some atom.

Observe that every finite relation algebra is atomic.

Theorem 1. The following decision problems are undecidable: the reflexive di-
rected edge colouring problem and the irreflexive directed edge colouring problem.

Proof. The representation problem for finite relation algebras is known to be un-
decidable [6, theorem 8]. We reduce that problem to the reflexive directed edge
colouring problem. Given a finite relation algebra A = (A, 0, 1,−,+, 1′,^, ; )
let C be the set of atoms of A, let Id be the set of atoms below the identity
1′, let ^ be obtained from the converse operator on A by restriction to C (it is
easy to check that the converse of an atom is an atom and if an atom is below
the identity then it is self-converse), and let T = {(a, b, c) : a, b, c ∈ C, a; b ≥ c}
(it follows from the relation algebra axioms that T is closed under Peircean
Transforms). The map that sends A to (C, Id,^, T ) can be shown to be a re-
duction, in fact every solution to (C, Id,^, T ) determines a representation of A
and every representation of A determines a solution to (C, Id,^, T ). Hence the
first decision problem in the theorem is undecidable.

There is a reduction of the reflexive directed edge colouring problem to the
irreflexive one. An instance (C, Id,^, T ) of the reflexive directed edge colouring
problem is mapped to (C \ Id,^, T ∩ (C \ Id)3). Obviously if (C, Id,^, T ) is a
yes instance, say (G,λ) is a solution, then by restricting λ to irreflexive edges of
G we get a solution of (C \ Id,^, T ∩ (C \ Id)3), so the latter is a yes-instance.
Conversely, if (C \ Id,^, T ∩ (C \ Id)3) has an irreflexive solution (G,λ) then
let G+ be the reflexive closure of G and extend λ to the labelling λ+ of G+ by
letting λ+(x, x) = e ⇐⇒ ∃y ∈ G e = st(λ(x, y)) (the identity condition on
instances of the reflexive problem ensures that e is uniquely determined). Now
check that (G+, λ+) is a solution to (C, Id,^, T ).

It is not known whether the symmetric edge colouring problem is decidable,
although there is a known finite symmetric relation algebra (due to Maddux)
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which is representable but has no representation over a finite base [7, § 11.4(2)].
It is also not known if the problem of determining whether a finite relation
algebra has a representation over a finite base is decidable, hence if we modify
our edge colouring problems so that solutions are additionally required to be
finite, then we do not know whether the finite edge colouring problems are
decidable, though it seems unlikely.

Although the representation problem for finite relation algebras is undecidable,
there are certain cases where finite relation algebras are known to have represen-
tations. An example of such a case is where the integral relation algebra A has a
flexible atom f, an atom that is consistent in any non-identity triangle — for all
non-identity atoms a, b of A we have a; b ≥ f. Given an arbitrary finite integral
relation algebra with a flexible atom f it is fairly easy to construct an infinite
representation in a set-by-step manner, using f as the default label (see [7, ex-
ercise 11.4(1)]). Hence if (C, T ) is an instance of the irreflexive symmetric edge
colouring problem and there is a flexible colour f ∈ C such that for all a, b ∈ C
we have (a, b, f) ∈ T , then (C, T ) is a yes-instance (similarly if (C,^, T ) is an
instance of the irreflexive directed edge colouring problem such that there is a
flexible colour f ∈ C then (C,^, T ) is a yes-instance). However, it is not known
if every finite integral relation algebra with a flexible atom has a representation
over a finite base (see [7, problem 21(21)]), This problem remains unsolved, but
it is hoped that the techniques used here may eventually be used to help solve
it.

3 The colouring problem Mn

We now focus on a special case of the symmetric edge colouring problem. Let
n ≥ 1, and let our colours be C = {f, c0, . . . , cn−1}. Let Mn = (C, T ), where
T = C3 \ {(ci, cj , ck) : i, j, k < n}, i.e. T is the set of triangles in which at least
one edge is f. A solution (G,λ) toMn is a 3-homogeneous complete symmetric
irreflexive labelled graph in which triangles involving f are allowed, but no other
triangles.

Existing results

It was shown in [1] that finite solutions for Mn exist for all n ≥ 1 using proba-
bilistic methods and gave a bound for their size. In particular they proved the
following theorem.

Theorem 2. Given n ≥ 1, if k is large enough such that

ρ(n, k) ·H(k) < 1 (5)

5



where

ρ(n, k) = n2(1− 1

n2
)(k−2)

2

(6)

H(k) =
1

2

(
3k − 4

k

)2

(7)

then there exists a graph with
(
3k−4
k

)
vertices which is a solution for Mn.

The result of this paper is to provide a bound in the same form as above but
replacing H(k) with a function that takes much lower values for any given k,
thus obtaining a lower upper bound on the minimum size of a solution forMn.

4 The main result

Theorem 3. Given n ≥ 1, if k is large enough such that

ρ(n, k) · L(k) < 1 (8)

where

L(k) = e

(
1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2
)

(9)

(here e is the base of the natural logarithm) then there exists a graph with
(
3k−4
k

)
verticies which is a solution for Mn.

5 The local lemma

To prove this result we will follow a similar procedure to the proof given in [1]
but employ a result from probabilistic graph theory, the local lemma, to reduce
the bound.

The Local Lemma [4] lets us assert that given a set of events there is a pos-
itive probability that none of these occur if they each occur with low enough
probability and are sufficiently independent.

Definition 5.1. Given events {A1, . . . , An} in a probability space, the depen-
dency graph is the symmetric graph with vertices {A1, . . . , An} and where there
is an edge between Ai, Aj if Ai is dependent on Aj .

Lemma 4 (The Local Lemma — Symmetric Version). Let {A1, . . . , An} be
events in a probability space having a dependency graph with maximum degree
d. Suppose that

P (Ai) <
1

e(d+ 1)
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for all i ∈ 1, . . . , n. Then P (A1 ∩ . . .∩An) > 0 (the probability that none of the
events happen is non-zero).

There are more general versions of the lemma, this one is the simplest to apply.

Proof. See [3, Theorem 13.14].

6 Sketch of proof of theorem 2

To prove theorem 3 we will first have to review the proof Alm et al. gave of
theorem 2 in [1].

Let n ≥ 1 and k > 3. Let Vk = [3k − 4]k denote the set of k-subsets of
{1, . . . , 3k − 4} and let Gk be the complete irreflexive graph with vertices Vk.
Define a random edge colouring λk,n : E(G)→ {f, c0, . . . , cn−1} by

λk,n(X,Y ) =

{
uniform random choice from {c0, . . . , cn−1} if 0 ≤ |X ∩ Y | ≤ 1

f otherwise

for X 6= Y ∈ Vk. If |X ∩ Y | ≤ 1 we call (X,Y ) a randomly labelled edge.

Alm et al. showed that (Gk, λk,1) is a solution for M1 (n = 1 makes the
colouring non-random) when k ≥ 3. For n > 1 it is easy to see that (Gk, λk,n)
will not contain forbidden triangles since λk,n defines the same set of flexible
edges as λk,1. We must check that there is a non-zero probability that (2) and
(3) hold. Since f is a flexible colour, for arbitrary colours c, d, the triangle (f, c, d)
is consistent. If (Gk, λk,n) satisfies (3) and λk,n(x, y) = f then there must be z
such that λk,n(x, z) = c and λk,n(z, y) = d, hence (2) holds too. So it suffices
to prove that there is a non-zero probability that (3) holds.

We say that an edge (X,Y ) fails to be witnessed if (3) fails on (X,Y ); failure
occurs because there are two colours c, d such that f ∈ {c, d, λk,n(X,Y )} but
there is no Z with λ(X,Z) = c and λ(Z, Y ) = d. Since the edges of Gk are
mostly labelled by f it can be checked that if (X,Y ) is a randomly labelled
edge then it is very unlikely that (3) fails on such an edge. So we concentrate
instead on the case where λk,n(X,Y ) = f and there are i, j < n but there is
no Z such that λk,n(X,Z) = ci and λk,n(Z, Y ) = cj . Given X,Y, Z such that
|X ∩ Z|, |Y ∩ Z| ≤ 1 (so |X ∩ Y | > 1), the probability that λk,n(X,Z) = ci
and λk,n(Z, Y ) = cj is 1

n2 , so the probablity that Z does not witness ci, cj is
1 − 1

n2 . The numbers of vertices Z such that |X ∩ Z|, |Y ∩ Z| ≤ 1 is at least
(k − 2)2, hence the probability that there is no Z such that λ(X,Z) = ci and

λ(Y,Z) = cj is at most (1 − 1
n2 )(k−2)

2

. There are n inflexible colours, so the
probability that there are ci, cj such that there is no Z with λx,n(X,Z) = ci
and λx,n(Y,Z) = cj is at most n2(1 − 1

n2 )(k−2)
2

= ρ(n, k). Thus, for any edge
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ε, the probability Pε that (3) fails at ε is at most ρ(n, k). Since |Vk| =
(
3k−4
k

)
,

the number of edges of Gk is at most 1
2

(
3k−4
k

)2
. Using the union bound the

probability that some edge of Gk fails to be witnessed is

P ≤ 1

2

(
3k − 4

k

)2

︸ ︷︷ ︸
=H(k)

. ρ(n, k) (10)

For a fixed n they show we can find k big enough such that P < 1 therefore
Mn has a solution of size |V | =

(
3k−4
k

)
.

7 Proof of theorem 3

Let n ≥ 1 and k ≥ 3. We will use the same labelled random graph, (Gk, λk,n),
as in the proof of theorem 2 and demonstrate that it will be a representation
for Mn given that k is large enough, but the bound on k will be lower than
the one used in theorem 2. We will use the local lemma to show that there is
a non zero probability that all edges in Gk are witnessed, where in the proof of
theorem 2 the more coarse union bound was used. We will use the probabilities
for edge witnessing shown in the sketch proof of theorem 2.

We will have to identify events and their dependencies. The events we wish to
avoid are edges failing to be witnessed, which happens with probability Pe ≤
ρ(n, k). The dependency graph is a little trickier to work out (it is not Gk), if
a randomly labelled edge is adjacent to ε and also adjacent to ε′ then their may
be a dependency between the witnessing of ε and the witnessing of ε′, but if
there is no randomly labelled edge adjacent to both ε and ε′ then the two event
must be independent.

Let Wx,y denote the randomly labelled edges adjacent to x or y, that is

Wx,y = {(x, z) : z ∈ Vk, λk,n(x, z) 6= f} ∪ {(z, y) : z ∈ Vk, λk,n(z, y) 6= f}. (11)

The witnessing of edges (x, y), (u, v) are independent events if

Wx,y ∩Wu,v = ∅.

Each vertex is adjacent to no more than(
2k − 4

k

)
︸ ︷︷ ︸
|X∩Y |=0 edges

+ k

(
2k − 5

k − 1

)
︸ ︷︷ ︸
|X∩Y |=1 edges

other vertices through randomly labelled edges. So each edge witnessing event
is dependent on no more than
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D =

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2

other edge witnessing events.

We can now apply the local lemma, where P (Ai) ≤ ρ(n, k) and maximum
dependency degree d ≤ D. The probability that no edges fail to be witnessed
(no Ai’s happen) is greater than 0 if

ρ(n, k) <
1

e(1 +D)
≤ 1

e(1 + d)
(12)

So, there is a solution (Gk, λk,n) for Mn if

e ·

(
1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2
)

︸ ︷︷ ︸
=L(K)

· ρ(n, k) < 1

8 The new bound is significantly lower

Theorems 2 and 3 both give bounds upper bounds on the size of the smallest
representation forMn. All that remains is to show that the bound of theorem 3
is significantly lower than that of theorem 2. One simply needs to check that
L(k) < H(k).

This is clearly true if you look asymptotically

e

(
1 +

(
2

(
2k − 4

k

)
+ 2k

(
2k − 5

k − 1

))2
)
∈ O

((
2k − 4

k

)2
)

(
3k − 4

k

)2

/∈ O

((
2k − 4

k

)2
)

So there exists some K such that for all k ≥ K we have L(k) < H(k).

In fact it is clear from figure 1, that L(k) < H(k) for all k and an inspection of
the second graph in this figure shows that log10(H(k) ≈ 1.41×log10(L(k)), hence
H(k) ≈ L(k)1.41. Figure 2 shows the number of vertices in the smallest solution
forMn given by theorems 2 and 3. For each n < ω, let Alm(n) be the size of the
smallest graph where theorem 2 proves a non-zero probability and let M(n) be
the size of the smallest graph where theorem 3 proves a non-zero probability. By
inspection of figure 2, we have log10(Alm(n)) ≈ 1.3×log10(M(n)), so Alm(m) ≈
M(n)1.3.
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Figure 1: Logarithmic plots of L(k) and H(k). It follows that the new upper
bound on the smallest representation sizes obtained is asymptotically far lower
than the previously attained results.
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Figure 2: Logarithmic plot of the number of vertices in the smallest graph
(Gk, λk,n) that has a non-zero probability of being a solution forMn according
to theorems 2 and 3 for various values of n.
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