
Complexity of Logics with Bounded Modalities

Robin Hirsch, Evan Tzanis

August 17, 2009

Abstract

For n ∈ N, we define the following modal operators: �=n, �≤n, �≥n, �∗, � with intended
meanings ‘at every point n steps away’, ‘at every point within n steps’, ‘at every point at least n
steps away’, ‘at every point from now on’, and ‘at every point’, respectively. L(�=n, � : n ∈ N)
is the modal language of modal propositional formulas built using � and any �=n, for n ∈ N,
for example. Modal logics using these operators can be very concise, because the superscripts
of the modal operators are binary encoded. We consider the complexity of the satisfiability
problems over arbitrary Kripke frames and over linear discrete frames. We consider a number
of variants of PDL where binary encoded program iterators =n,≤n are allowed, as well as pro-
gram operators ∪,∩, ; , ∗ for union, intersection, composition and reflexive transitive closure,
and consider the complexity of the satisfiability problem. We have obtained the following
results.

Language (Range) Complexity

Arbitrary Frames

L(�=n, �≤n : n ∈ N) EXPSPACE-complete

L(�=n, � : n ∈ N)− L(�=n, �≥n, �≤n, � : n ∈ N) 2-EXPTIME-complete

L(�=n, �∗ : n ∈ N)− L(�=n, �≤n, �≥n, �∗ : n ∈ N) 2-EXPTIME-complete

Frame (N, <)

L(�=n, �∗ : n ∈ N)− L(�=n, �≤n, �≥n, �∗ : n ∈ N) EXPSPACE-complete

Dynamic Logics

P(∩,∪,≤n : n ∈ N) EXPSPACE-complete

P1(=n,≤n : n ∈ N)− P(∩,∪, ; , =n,≤n : n ∈ N) EXPSPACE-complete

P(∪, =n, ∗ : n ∈ N)− P(∪, ; , =n,≤n,≥n, ∗ : n ∈ N) 2-EXPTIME-complete

P(∩,∪, ; , ∗)− P(∩,∪, ; , =n,≤n,≥n, ∗ : n ∈ N) 2-EXPTIME-complete

Keywords: Modal Logic, Complexity, Satisfiability Problem, Alternating Time Au-
tomata.

1 Introduction

The topic of this article is the complexity of various modal logics with ‘bounded modalities’. These
bounded modalities can express, for example, that a property will continue to hold at all points
within n steps. Since we are interested in the complexity of such logics, it is convenient to represent
this bound n as a binary number. This can make our formulas very concise, so we might expect a
computational cost incurred by the use of these binary encoded bounds. This turns out to be the
case, the logics we consider have fairly high complexities, and we will provide a detailed analysis.

For each modal logic dealt with here we can define a Kripke-like semantics and consider the
complexity of the satisfiability problem for the logic over arbitrary frames. We will also consider
the case of discrete, linear (non-branching) semantics.

The use of binary encoded bounds on modalities is not new. In this section we will briefly
review the syntax and semantics of a number of well-known modal and branching logics which
adopt this kind of binary encoded bounds, and consider the complexity of the satisfiability problem
for each of them. In the following section we will introduce new modal logics which use bounded

1

unary modalities, making them in this respect more simple than some of the previously considered
logics. We will establish the complexity of their satisfaction problems.

Figure 1 summarises the main known languages and their complexities, but may need some
illumination. First we explain the syntax of these logics. In each case, except for the final two, a

Name Atoms Unary C. Binary Connectives Complexity Citation
State Based Semantics

Modal Prop � PSPACE-C [L77]
Modal
Universal

Prop �,� EXPTIME-C [Hem96]

CTL Prop EX,AX EU,AU EXPTIME-C [EMH82]
RCTL≤ Prop EX,AX EU,AU,EU≤n,AU≤n EXPTIME-C [EMSS92]
RCTL≥ Prop EX,AX EU,AU,EU≥n,AU≥n EXPTIME-C [EMSS92]

EU≤n,AU≤n

RCTL= Prop EX,AX EU,AU,EU=n,AU=n 2-EXPTIME-C [EMSS92]
Linear Path Based Semantics

PLTL Prop X U PSPACE-C [SC82]
TPTL Prop,

τ1 ≤ τ2,
τ1 ≡d τ2

x.
X

U EXPSPACE-C [AH94]

State and Path Based Semantics
CTL+ Prop E,X U 2-EXPTIME-C [JL03]
CTL∗ Prop E,X U 2-EXPTIME-C [VS85, EMJ86]

Figure 1: Summary of various modal, branching logics, their semantics and the complexity of their
satisfaction problems.

formula is defined recursively by

φ := atom|¬φ|(φ1 ∧ φ2)|Un(φ)|Bin(φ1, φ2)

where ‘atom’ is the set of atoms, which always includes a countable set Prop of propositions, Un
is any of the listed unary connectives and Bin is any of the listed binary connectives. The final
cases, CTL+ and CTL∗ are two-sorted logics, with state formulas φ and path formulas ψ, defined
by:

CTL+ CTL∗

φ = Prop|¬φ|(φ1 ∧ φ2)|Eψ φ = Prop|¬φ|(φ1 ∧ φ2)|Eψ
ψ = Prop|¬ψ|(ψ1 ∧ ψ2)|Xφ|U(φ1, φ2) ψ = φ|¬ψ|(ψ1 ∧ ψ2)|Xφ|U(φ1, φ2)

We use standard abbreviations: Fφ = U(φ,>), and Gφ = ¬F¬φ, .
For TPTL there is more than one kind of atom. This language has terms

τ = c|x+ c

where x is a variable and c is a binary string. An atom is either a proposition p ∈ Prop, an
inequality τ1 ≤ τ2 or a congruence τ1 ≡d τ2 where d is a non-zero binary string. The intended
meaning of τ1 ≡d τ2 is that τ1 is congruent to τ2 modulo d.

The binary strings c, d represent natural numbers. The superscripts of EU≥n,EU≤n and
EU=n are any natural numbers written in binary. This means that the formulas of these languages
can be very short. Thus, for example |EU=n(φ1, φ2)| = 1 + dlog2 ne+ |φ1|+ |φ2| i.e. we charge 1
for the modality EU=, dlog2 ne for the binary representation of the bound n plus the lengths of
formulas φ1 and φ2. Note that throughout the paper we do not count brackets and commas when
calculating the length of a formula. We will use standard abbreviations ♦φ = ¬�¬φ, �φ = ¬�¬φ,

2

etc. For the semantics, state based formulas are evaluated at points w in Kripke structures
S = (W,R, V). Here W is a set of worlds, R ⊆ W × W is an accessibility relation and V :
Props → ℘(W) is a valuation assigning a set V (p) of worlds to each proposition p. We write w
to denote a countably infinite sequence from W , and it is implicit that w = (w0, w1, . . .) ∈ ωW .
If (wi, wi+1) ∈ R, for all i < ω, then we call w and R-path and we may write ρ(w). To evaluate a
formula,

S, w |= p ⇐⇒ w ∈ V (p)
S, w |= ¬φ ⇐⇒ S, w 6|= φ
S, w |= (φ1 ∧ φ2) ⇐⇒ S, w |= φ1&S, w |= φ2

S, w |= �φ ⇐⇒ ∀w′ ∈W ((w,w′) ∈ R→ S, w′ |= φ)
S, w |= �φ ⇐⇒ ∀w′ ∈W S, w′ |= φ
S, w |= EX(φ) ⇐⇒ ∃w [ρ(w) ∧ (w = w0) ∧ S, w1 |= φ]
S, w |= EU(φ1, φ2) ⇐⇒ ∃n ∈ N, ∃w [ρ(w) ∧ (w = w0) ∧ S, wn |= φ2∧∧

i<n S, wi |= φ1]
S, w |= AU(φ1, φ2) ⇐⇒ ∀w[(ρ(w) ∧ w0 = w)→

∃n ∈ N, S, wn |= φ2 ∧
∧
j<n S, wj |= φ1]

S, w |= EU≤n(φ1, φ2) ⇐⇒ ∃k ∈ N, k ≤ n, ∃w [ρ(w) ∧ (w0 = w)
∧S, wk |= φ2 ∧

∧
i<k S, wi |= φ1]

S, w |= AU≤n(φ1, φ2) ⇐⇒ ∀w[(ρ(w) ∧ w0 = w)→
∃k ∈ N, k ≤ n, S, wn |= φ2 ∧

∧
i<k S, wi |= φ1]

S, w |= EU=n(φ1, φ2) ⇐⇒ ∃w [ρ(w) ∧ (w0 = w)∧
S, wn |= φ2 ∧

∧
i<n S, wi |= φ1]

S, w |= AU=n(φ1, φ2) ⇐⇒ ∀w[(ρ(w) ∧ w0 = w)→
S, wn |= φ2 ∧

∧
i<n S, wi |= φ1]

S, w |= EU≥n(φ1, φ2) ⇐⇒ ∃k ∈ N, k ≥ n, ∃w [ρ(w) ∧ (w0 = w)
∧S, wk |= φ2 ∧

∧
i<k S, wi |= φ1]

S, w |= AU≥n(φ1, φ2) ⇐⇒ ∀w[(ρ(w) ∧ w0 = w)→
∃k ∈ N, k ≥ n, S, wn |= φ2 ∧

∧
i<k S, wi |= φ1]

Note that EU is treated as a single binary connective and EU(φ1, φ2) means “there is a branch
and along that branch φ1 is true until φ2”. We abbreviate AXφ = ¬EX¬φ.

With path based semantics, we can still use a Kripke structure S = (W,R, V) but we evaluate
a formula at an R-path w. For i ∈ N we write wi for the R-path (wi, wi+1, . . .). PLTL formulas
are evaluated by

S, w |= p iff w0 ∈ V (p)
S, w |= ¬ϕ iff S, w 6|= ϕ

S, w |= ϕ ∧ ψ iff S, w |= ϕ and S, w |= ψ

S, w |= Xϕ iff S, w1 |= ϕ

S, w |= φUψ iff ∃j(S, wj |= ψ and ∀k (k < j → (S, wk |= φ)))

The semantics of TPTL are slightly more complicated because we have variables and terms.
TPTL is interpreted over linear, discrete models: (N, <, V, T) where N is the natural numbers,
< is the accessibility relation, V is a valuation, V : Prop → ℘(N), and T is an assignment that
maps constants to themselves (recall that constants are binary encodings of natural numbers)
and variables to natural numbers, clearly T can then be extended to all terms. Given a model
S = (N, <, V), an assignment T and an index i ∈ N we evaluate formulas as follows:

S, T, i |= p iff i ∈ V (p)
S, T, i |= π1 ≤ π2 iff T (π1) ≤ T (π2)
S, T, i |= π1 ≡d π2 iff T (π1) = T (π2) (mod d)

S, T, i |= ¬ϕ iff S, T, i 6|= ϕ

3

S, T, i |= ϕ ∧ ψ iff S, T, i |= ϕ and S, T, i |= ψ

S, T, i |= Xϕ iff S, T, i+ 1 |= ϕ

S, T, i |= φUψ iff ∃j (S, T, j |= ψ and ∀k, (k < j → (S, T, k |= φ)))
S, T, i |= x.φ iff S, T [x := i], i |= φ

where T [x := i] denotes the assignment that agrees with the assignment T on all variables except
x, and maps x to i ∈ N.

Finally, CTL+ and CTL∗ have semantics for states and paths, so the semantics is based on
mutual recursion. Let S = (W,R, V) be a Kripke structure, let w ∈ W and let w be an R-path.
Let φ1, φ2 be state formulas and let ψ be a path formula. Then S, w |= Eψ iff there is a R-path
w = (w0, w1, . . .) such that w0 = w and S, w |= ψ. And S, w |= U(φ1, φ2) iff there is k ∈ N such
that S, wk |= φ2 and for all j with j < k we have S, wj |= φ1.

It is clear from figure 1 that the more expressive the modal logic is, the higher the complexity of
the satisfaction problem for the logic is, but also a logic with the same expressive power as another
but with a more concise notation tends to have a higher complexity. It seems that there are several
different factors which might potentially be contributing to the higher complexity. There is the
use of the universal modality, the use of path based semantics and path quantifiers, there is the use
of the Until connective, which is strictly more expressive than � and there is the use of a binary
encoding for the restricted Until connectives U=n and U≤n. It would be helpful to separate out
these issues in order to analyse the source of the higher complexity. The use of binary encodings
for restricting modalities and the effect of this on the complexity of the satisfaction problem is the
main focus of this paper. To this end, we concentrate on state based Kripke semantics and we use
only unary modalities for the logics we define.

The outline of this article is as follows. We start by defining the syntax of some new state based
modal logics which use a binary encoding for superscripts to �. In section 3 we prove some easily
derived upper bounds regarding the complexity of their satisfiability problems. In section 4.1 we
give the definition and summarise the complexity results for Alternating Turing Machines and
in section 4.2 we use our modal languages to describe the computations of Alternating Turing
Machines thereby establishing lower complexity bounds for our logics. Complexity results for
the modal logics introduced in this paper are proved in section 4.3. In section 5 we focus on
linear and discrete structures and we prove that the satisfiability problem of a language between
L(�=n,�∗ : n ∈ N) and L(�=n,�≥n,�≤n,�∗ : n ∈ N) are EXPSPACE-complete. In section 6
we establish the complexity of the satisfiability problem for variants of PDL where binary encoded
iterations of programs are permitted.

2 Binary Encoded Modal Logics

In this section we introduce ‘binary encoded bounded modalities’ and three modal logics logics
which adopt them.

Definition 1 (Languages) Given a sequence (∗i : i ∈ I) where each ∗i is a unary modal oper-
ator (e.g. �,♦) we let L(∗i : i ∈ I) be the language defined by

φ = p | ¬φ | (φ1 ∧ φ2) | ∗i(φ) : i ∈ I

where p is an arbitrary propositional letter.
For n ∈ N, when we write �≤n our convention is that n is written using the binary notation, so

that |�≤nφ| = 1 + dlog2 ne+ |φ|. The languages we consider in this paper use the following unary
modal operators: {�,�=n,�≥n,�≤n,�∗,� : n ∈ N}. We use standard abbreviations ∨,→,♦ etc.
defined by (φ ∨ ψ) = ¬(¬φ ∧ ¬ψ), (φ→ ψ) = (¬φ ∨ ψ), ♦φ = ¬�¬φ, ♦≤nφ = ¬�≤n¬φ, ♦=nφ =
¬�=n¬φ,♦≥nφ = ¬�≥n¬φ ,♦∗φ = ¬�∗¬φ and �φ = ¬ �¬φ.

4

Definition 2 (Models) A structure S for any of our languages is a Kripke structure S =
(W,R, V) such that W is a non-empty set of possible worlds, V : Props → ℘(W) assigns a set
of worlds to each proposition and R is a binary relation on W . For n ∈ N we define the binary
relation Rn over W inductively. Let xR0y hold if and only if x = y. For n > 0 let xRny hold if
and only if there is z ∈ W such that xRn−1z and zRy. The binary relations R∗, R≥n and R≤n

are defined to be R∗ =
⋃
n<ω R

n, R≥k =
⋃
k≤n<ω R

n and R≤k =
⋃
n≤k R

n. Formulas of these
logics can be evaluated as follows:

S, x |= p iff x ∈ V (p)
S, x |= ¬ϕ iff S, x 6|= ϕ

S, x |= ϕ ∧ ψ iff S, x |= ϕ and S, x |= ψ

S, x |= �φ iff ∀v ∈W (xRy → S, y |= φ)
S, x |= �≤nφ iff ∀y ∈W, (xR≤ny → S, y |= φ)
S, x |= �≥nφ iff ∀y ∈W, (xR≥ny → S, y |= φ)
S, x |= �=nφ iff ∀y ∈W (xRny → S, y |= φ)
S, x |= �∗φ iff ∀y ∈W, (xR∗y → S, y |= φ)
S, x |= �φ iff ∀y ∈W, S, y |= φ

If S is a structure, φ is a formula and S, x |= φ then (S, x) is a model of φ. If S, x |= φ for
all x ∈ W and all structures S then we say that φ is valid. Dually, if there is some x in some
model S such that S, x |= φ then φ is satisfiable. Given any two formulas φ, ψ we write φ ≡ ψ if
(φ↔ ψ) is valid.

The table of complexities in the abstract summarises the complexity of the satisfaction problem
for these languages. The results for arbitrary Kripke frames are all established in theorems 8
and 18 and may usefully be compared to those in figure 1. The slightly unusual result is the
EXPSPACE-complete complexity of L(�=n,�≤n : n ∈ N)-SAT which does not correspond to
any of the known results in figure 1.

3 Upper Bounds

Next, we quote some well known complexity results for the satisfiability problem for some ele-
mentary modal logics. We use these results to prove natural upper bounds to the satisfiability
problems for sublanguages of L(�=n,�≥n,�≤n,�∗,� : n ∈ N).

Proposition 3

1. The satisfiability problem for L(�) is PSPACE-complete [L77].

2. The satisfiability problem for L(�,�∗) is EXPTIME-complete [HM92, theorem 5.1].

3. The satisfiability problem for L(�,�) is EXPTIME-hard (by theorem 16, or the proof of
[Hem96, theorem 5.1]).

The following theorem seems to be very well known, but we had difficulty in finding a published
proof.

Theorem 4 The satisfiability problem for L(�,�) is in EXPTIME.

PROOF:

Let φ a formula of L(�,�). For
⊗
∈ {�,�,�,♦} we have

⊗
�ψ ≡ �ψ and⊗

�ψ ≡ �ψ. Hence, in linear time, we can replace φ by an equivalent formula φ′, built
from propositions using negations, disjunctions, conjunctions, �,♦’s or �,�s, where

5

negations only occur immediately above propositions and there are no modal operators
above any occurrence of � or �.

We check the satisfiability of φ′ by filtration over {�,�}-free subformulas of φ′.
Let X be the set of subformulas of φ′ not involving � or � and let Y by the closure of
X under single negations. A maximally consistent set (MCS) is a subset S of Y such
that

• exactly one of ψ and ¬ψ belongs to S, for each ψ ∈ X,

• if the conjunction α ∧ β is in S then so are α and β, and

• if the disjunction α ∨ β is in S then so is either α or β.

If S, T are MCSs let (S, T) ∈ R iff for all formulas �θ ∈ S we have θ ∈ T .
In exponential time, we can replace φ′ by an equivalent φ”, a disjunction of con-

junctions of formulas of the form �α,�β or γ, where α, β, γ are subformulas of φ′

not involving � or �. Conjunctions �(α1) ∧�(α2) can be replaced by the equivalent
�(α1 ∧ α2). To check the consistency of φ” it suffice to check the consistency of each
conjunctive clause, and the number of clauses is bound by an exponential function.
To check the consistency of one conjunctive clause �α ∧

∧
i<k �βi ∧ γ, it suffices to

check that for each i < k, �α ∧ �βi is consistent and �α ∧ γ is consistent (if each of
these formulas is satisfiable then a model of the original clause can then by found as
the disjoint union of their models) and the number of such conjuncts is again bound
above by an exponential function. To check if �α ∧ �βi is consistent in exponential
time, let Z be the set of all MCSs that include α and check whether βi belongs to an
MCS in Z. The case � ∧ γ is entirely similar.

�

Corollary 5 The satisfiability problem for L(�,�) is EXPTIME-complete.

PROOF:

By proposition 3 and theorem 4. �

Definition 6 The translation g maps formulas of L(�=n,�≤n,�≥n,�∗,� : n ∈ N) to formulas
of L(�,�∗,�). It is defined by g(p) = p, g(¬φ) = ¬g(φ), g(φ1 ∧ φ2) = g(φ1) ∧ g(φ2), g(�∗φ) =
�∗g(φ), g(�φ) = �g(φ) and:

g(�=nφ) =

n︷ ︸︸ ︷
�� . . .� g(φ)

g(�≥nφ) =

n︷ ︸︸ ︷
�� . . .� �∗g(φ)

g(�≤nφ) =
∧
i≤n

g(�jφ)

The use of superscripts in �=n,�≤n was already introduced, as an abbreviation, in Ladner’s
seminal work [L77] where he proved the PSPACE-completeness of the satisfiability problem for
L(�) (i.e. the basic modal logic K). However, in Ladner’s work there is no binary encoding of the
superscripts. Our use of a binary encoding for these superscripts in the current paper makes our
formulas more concise and pushes the complexity up.

Since the superscripts of �=n,�≥n,�≤n are encoded in binary, the last three cases can produce
exponentially longer formulas, but not worse.

Lemma 7 If φ ∈ L(�=n,�≥n,�≤n,�∗,� : n ∈ N) then φ ≡ g(φ) and |g(φ)| ≤ 2|φ|
2
.

PROOF:

6

The equivalence φ ≡ g(φ) derives directly from the definition of our semantics and
the definition of g. Let φ ∈ L(�=n,�≥n,�≤n,�∗,� : n ∈ N) and let k be the number
of occurrences of �≤n (any n) in φ, clearly k < |φ|. We prove by induction over k that
|g(φ)| ≤ 2(k+1)·|φ|. If k = 0 there are no occurrences of �≤n in φ. When calculating

g(φ) we replace each occurrence of �=n (which has length 1 + dlog2 ne) by

n︷ ︸︸ ︷
�� . . .�

(which has length n) and each occurrence of �≥n by

n︷ ︸︸ ︷
�� . . .� �∗ (which has length

n+ 1). It follows that |g(φ)| ≤ 2|φ| when k = 0, proving the base case. Now let k > 0
and suppose for j < k that if ψ has only j occurrences of operators �≤n then g(ψ)
has length at most 2(j+1)·|ψ|. Consider a formula ψ = �≤nθ (some n ∈ N) where θ has
only k − 1 occurrences of operators �≤n. We have g(�≤nθ) =

∧
i≤n g(�=iθ). By the

induction hypothesis, |g(�≤nθ)| ≤ n× (|g(�=nθ|)) ≤ n× (2k·|θ|). But log2 n ≤ |ψ| so
n ≤ 2|ψ|, hence |g(ψ)| = |g(�≤nθ)| ≤ 2|ψ| · 2k·|ψ| ≤ 2(k+1)·|ψ|, proving the induction
step.

For an arbitrary formula ψ ∈ L(�=n,�≥n,�≤n,�∗,� : n ∈ N), the number of
occurrences of operators �≤n in ψ is less than |ψ|, hence |g(ψ)| ≤ 2|ψ|·|ψ|, as required.
�

Theorem 8

1. The satisfiability problem for L(�=n,�≤n : n ∈ N) is in EXPSPACE.

2. The satisfiability problem for L(�=n,�≥n,�≤n,� : n ∈ N) is in 2-EXPTIME.

3. The satisfiability problem for L(�=n,�≥n,�≤n,�∗ : n ∈ N) is in 2-EXPTIME.

PROOF:

1. To determine whether φ ∈ L(�=n,�≤n : n ∈ N) is satisfiable we first compute,
in exponential time, the translation g(φ) ∈ L(�). By lemma 7, |g(φ)| ≤ 2|φ|

2
.

By proposition 3 there is a polynomial p such that the satisfiability of g(φ)
can be solved in space p(|g(φ)|) ≤ p(2|φ|

2
). Hence the satisfiability problem

for L(�=n,�≤n : n ∈ N) can be solved in EXPSPACE.

2. For φ ∈ L(�=n,�≥n,�≤n,� : n ∈ N) we know that g(φ) ∈ L(�,�) and we can

solve the satisfiability of g(φ) in time 2p(|g(φ)|) ≤ 2p(2
|φ|2), for some polynomial p,

by proposition 3. Thus the satisfiability problem of L(�=n,�≥n,�≤n,� : n ∈ N)
is in 2-EXPTIME.

3. Similarly, for φ ∈ L(�=n,�≥n,�≤n : n ∈ N) we can solve g(φ) ∈ L(�,�∗) in
exponential time, in terms of |g(φ)|, i.e. double exponential time in terms of |φ|.

�

4 Lower Complexity Bounds and Alternating Turing Ma-
chines

4.1 Basic definitions and results

In this section we introduce the needed notation and definitions regarding Alternating Turing
Machines of [CKS81], in order to prove tight lower complexity bounds for our logics. Our basic
notation and definitions mostly come from [LL05]. An alternating Turing Machine M is of the
form M = (Q,Σ, q0, qacc, qr, δ), where Q is the set of states, Σ is the alphabet which contains a
blank symbol, and q0, qacc, qr ∈ Q the starting, the accepting and the rejecting state respectively.

Q is partitioned into Q = Q∃ ∪Q∀ ∪ {qacc, qr}. The transition δ is a quintic relation:

7

δ ⊆ Q× Σ×Q× Σ× {L,R}

We also write (q′, b,m) ∈ δ(q, a) to denote (q, a, q′, b, x) ∈ δ for q, q′ ∈ Q, a, b ∈ Σ and
x ∈ {L,R}.

A configuration (w, i, q) of a Turing Machine consists of a word w ∈ Σ∗, an integer i < |w|
and a state q ∈ Q. It represents the state of the Turing Machine when w is on the tape (followed
by blanks), the tape head is in position i and the machine is in state q. We write wj for the jth
character of w.

For each configuration (w, i, q) and each instruction (p, b,L) ∈ δ(q, wi) we can obtain a succes-
sor configuration (w[i/b], i − 1, p) where w[i/b] is obtained from w by replacing wi by b and for
each (p, b,R) ∈ δ(q, wi) we obtain another successor configuration (w[i/b], i+ 1, p). No other con-
figurations are successor configurations to (w, i, q). An initial configuration has the form (w, 0, q0)
for some w ∈ Σ∗, where q0 is the start state.

A finite computation path of an ATM M on a word w is a finite sequence of configurations
c0, c1, . . . , cn such that c0 = (w, 0, q0), if cn = (w′, j, q) then q ∈ {qacc, qr}, and for i < n ci+1 is
a successor configuration to ci and ci = (w′, j, q) → q 6∈ {qacc, qr}. An infinite computation path
is an infinite sequence of configurations c0, c1, . . . with the same properties as finite computation
paths, except that none of the states occurring in the configurations belongs to {qacc, qr}. All the
ATMs considered in this paper have the property that all computation paths are finite. Hence,
we define the acceptance for an ATM with finite computation paths, the general case was given
in [CKS81].

Definition 9 Let M be an ATM with finite computation paths. The acceptance of a configura-
tion (w, i, q) depends on the sort of the state q and:

• If the state q is qacc then the configuration is accepting (so if q = qr then the configuration
is not accepting).

• If q ∈ Q∃, then the configuration is accepting iff at least one of its successors is accepting.

• If q ∈ Q∀, then the configuration is accepting iff all of its successors are accepting.

Since all computation paths are finite this definition is well founded. A Turing Machine accepts
input w if the configuration (w, 0, q0) is accepting. We write L(M) for the language accepted by
M, that is, L(M) = {w ∈ Σ∗| M accepts w}. We write APTIME for the class of problems
that can be solved by an alternating Turing Machine in polynomial time, etc. The following
proposition was proved in [CKS81, corollary 3.6].

Proposition 10

APTIME = PSPACE

APSPACE = EXPTIME

AEXPTIME = EXPSPACE

Definition 11 Given an ATM M with finite computation paths, an acceptance tree T =
(T, F, λ) consists of a set T of nodes, a binary relation F over T defining a tree with root r ∈ T ,
and a function λ mapping nodes to acceptance configurations, such that:

• For the root node r ∈ T we have λ(r) = (w, 0, q0), for some w ∈ Σ∗.

• If (τ, τ ′) ∈ F then λ(τ ′) is a successor configuration to λ(τ).

• For all τ ∈ T , it is not the case that λ(τ) = (w, i, qr).

• For all τ ∈ T , if λ(τ) = (w, i, q) where q ∈ Q∃ then there is τ ′ ∈ T with (τ, τ ′) ∈ F .

8

• For all τ ∈ T , if λ(τ) = (w, i, q) where q ∈ Q∀ and (w′, i′, q′) is any successor configuration
to (w, i, q) then there is τ ′ ∈ T with (τ, τ ′) ∈ F and λ(τ ′) = (w′, i′, q′).

Lemma 12 ([LL05]) Let M be an ATM with only finite computation paths. Then there exists
an acceptance tree T of M on w iff M accepts w.

4.2 Reducing Alternating Turing Machines to Modal Languages

In this section we define a polynomial time reduction of the inputs to an exponential space ATM
M to formulas of L(�=n,� : n ∈ N), for various modalities � ∈ {�,�∗,�≤n : n ∈ N}. This will
allow us to prove hardness results for various modal languages L(�=n,� : n ∈ N). For example, we
will deduce that the satisfiability problem for L(�=n,� : n ∈ N) is 2-EXPTIME-hard. For the
case whereM is known to run in EXPTIME we will be able to prove that L(�=n,�≤n : n ∈ N)-
SAT is EXPSPACE-hard. Further restrictions on the computation ofM yield lower complexity
bounds on a number of other modal logics.

Let M = (Q,Σ, q0, qacc, qr, δ) be an an exponential space bounded ATM and let p be a
polynomial such that the space used by M on any input of size n is bound by 2p(n). Let w =
w0, . . . , wn−1 ∈ Σ∗ be an input for M. In the following, all configurations will have length
m = 2p(n) (configurations may include blank symbols). We will define a formula φM,w(�,m),
where � ∈ {�,�∗,�≤n : n ∈ N} and m is the configuration size. We will substitute different
operators for �, depending on the particular complexity result we wish to obtain.

The models of the formula φM,w(�,m) (if any) will represent acceptance trees. Each world in
such a model will represent a cell in one of the accepting configurations. The position of the cell
within the configuration will be determined by the truth of the space propositions si (i < p(n) at
that world. If the position of the cell is strictly less than m − 1 then the only accessible world
will represent the next cell in the same configuration. If the position of the cell is m− 1 then the
successor worlds will represent the initial cells in successor configurations.

We will use the following propositions telling us everything about the ATM.

Q ∪ Σ ∪ {si : i < p(n)} ∪ {pfirst, pseen}

The intended interpretations are:

• q ∈ Q means that the tape head is at the current cell and M is in state q. We will use
formula h =

∨
q∈Q q, which means that the tape head is on the current cell.

• a ∈ Σ means that a is the symbol in the current cell.

• sp(n)−1, . . . , s0 represent a counter in binary code for counting the m = 2p(n) tape cells of a
configuration. The counter value will be 0 in the leftmost and m− 1 in the rightmost tape
cell, for instance.

• pfirst should be true at each cell of the initial configuration, but need not be true elsewhere.

• pseen should be true at each cell of any configuration to the right of the tape head position,
but need not be true to the left or at the tape head position.

We need formulas expressing particular space counter values. Let k < m and let ki be the ith bit
of a binary representation of k, for i < p(n), so k =

∑
i<p(n) ki × 2i.

χS=k =
∧

i<p(n), ki=1

si ∧
∧

i<p(n), ki=0

¬si

Observe that χS=0, χS=m−1 express that the space counters represent the leftmost and rightmost
cells of a configuration, respectively. Let

χS≤n =
∨
k≤n

χS=k

9

Note that the length of χS≤n is bound by a polynomial (O(p(n)2)) in terms of |w| = n. Let

inc(s, i) = (¬si ∧
∧
j<i

sj)→ (�(si ∧
∧
j<i

¬sj) ∧
∧

i<j<p(n)

((sj → �sj) ∧ (¬sj → �¬sj))

For i < p(n), inc(s, i) says that if si is true but for j < i, sj is false then at any successor the last
i+ 1 space counters flip, but the other space counters are unchanged. Let

inc(s) =
∧

i<p(n)

inc(s, i) ∧ (
∧

i<p(n)

si → �
∧

i<p(n)

¬si) (1)

inc(s) says that the space counters at a successor cell represent one more (modulo m) than the
space counters at the current cell.

Now we define the formula φM,w(�,m) ∈ L(�=n,� : n ∈ N):

φM,w(�,m) = φstart(w)∧
�(φfirst ∧ φseen ∧ inc(s) ∧ φhead ∧ φconf ∧ φacc ∧ φδ ∧ φ∀ ∧ φ∃)

(2)

where

φstart(w) = χS=0 ∧ q0 ∧ pfirst ∧ w0 ∧�(w1 ∧�(w2 ∧ . . . ∧�(wn−1 ∧� � (pfirst → blank) . . .)

φfirst = (pfirst → �(pfirst ∨ χS=0))
φseen = (h ∨ pseen)→ �(χS=0 ∨ pseen)

φconf = (
∨
a∈Σ

a) ∧
∧

a,b∈Σ,b 6=a

¬(a ∧ b) ∧
∧

q,q′∈Q,q 6=q′
¬(q ∧ q′)

φhead = ¬(pseen ∧ h)
φacc = ¬qr
φδ =

∧
a∈Σ

[((¬h ∧ a)→ �=ma) ∧∧
q∈Q, a∈Σ

((q ∧ a)→ �=m−1(
∨

(q′,a′,L)∈δ(q,a)

(q′ ∧�a′) ∨
∨

(q′,a′,R)∈δ(q,a)

�(a′ ∧�q′))]

φ∀ =
∧

q∈Q∀, a∈Σ

((q ∧ a)→
∧

(q′,a′,L)∈δ(q,a)

♦=m−1(q′ ∧ ♦a′) ∧
∧

(q′,a′,R)∈δ(q,a)

♦=m(a′ ∧ ♦q′))

φ∃ =
∧

q∈Q∃, a∈Σ

((q ∧ a)→
∨

(q′,a′,L)∈δ(q,a)

♦=m−1(q′ ∧ ♦a′) ∨
∨

(q′,a′,R)∈δ(q,a)

♦=m(a′ ∧ ♦q′))

The first part φstart says that we start with space counter zero and the first n cells on any
path starting from the root defines the non-blank part of the starting configuration (w, 0, q0).
The formula φfirst ensures that pfirst holds throughout the initial configuration, so φstart in
conjunction with φfirst ensures that after the nth cell there are only blanks on the tape in the
initial configuration. The formula φseen ensures that if h is true at a cell of a configuration then
pseen is true at each cell to the right within that configuration. In conjunction with φhead it
ensures that the head of the Turing Machine cannot be in more than one cell of a configuration.
inc(s) ensures that the space counters correctly represent the position of a cell. It expresses that
the value of the space counter increases by one (modulo m) when you move to a successor. φconf
expresses the fact that at each world there is exactly one tape symbol and at most one state. φacc
makes sure that no computation path ends in the rejecting state. φδ requires that any successor
configuration can be obtained from the current configuration by some δ-transition. φ∀ ensures
that all successor configurations to a universal configuration can be found. And finally, φ∃ says
that some successor configuration to any existential configuration can be found.

Theorem 13 LetM be an exponential space ATM, then φM,w(�,m) is satisfiable iff w ∈ L(M).

10

PROOF:

For the right to left implication suppose w ∈ L(M) and let T = (T, F, λ) be an
acceptance computation tree. Let W = T ×m and

R = {((τ, i), (τ, i+ 1)) : τ ∈ T , i < m− 1} ∪ {((τ,m− 1), (τ ′, 0)) : (τ, τ ′) ∈ F}

Let the valuation V be defined by

V (pfirst) = {(τ0, i) : i < m} where τ0 is the initial configuration
V (pseen) = {(τ, j) : τ = (w, i, q) ∈ T, j > i}

V (q) = {(τ, i) : τ ∈ T, λ(τ) = (w, i, q) some w}
V (a) = {(τ, j) : λ(τ) = (w, i, q), wj = a}
V (si) = {(τ, j) : τ ∈ T , bit i of binary code for j is 1}

Now it is just a routine exercise to check that (W,R, V) |= φM,w(�,m), so φM,w(�,m)
is satisfiable.

For the left to right implication, suppose S, r0 |= φM,w(�,m) for some structure
S = (W,R, V) and some r0 ∈ W . Since S, r0 |= �inc(s), for all y ∈ W we can define
the position

pos(y) =
∑

i<p(n),S,y|=si

2i

Since S |= �inc(s), for any x, y ∈ W if xRy then either pos(x) = m − 1, pos(y) = 0
or pos(y) = pos(x) + 1. Define T ⊆Wm by

T =
{

(x0, x1, . . . , xm−1) : pos(xi) = i, xiRxi+1 for i < m− 1
∧∃i < m, M, xi |= h

}
(3)

We write x for (x0, . . . , xm−1). Define F ⊆ T × T by letting (x, y) ∈ F iff xm−1Ry0.
For each x ∈ T and each i < m, since S |= �φconf there is a unique symbol a ∈ Σ such
that S, xi |= a and there is at most one state symbol q ∈ Q such that S, xi |= q. Since
S |= �φhead and by definition of T , there is exactly one i < m such that S, xi |= h. It
follows that each y ∈ T defines a unique configuration (w, i, q) where S, yj |= wj , for
j < m, and S, yi |= q. We denote this configuration as conf(y).

We claim that T = (T, F, conf) is an acceptance tree for M, w. For any x ∈ T
with x0 = r0, since S, r0 |= φstart(w) ∧ �φfirst we have conf(x) = (w, 0, q0), the
initial configuration. Since (W,R, V) |= �φδ, if (x, y) ∈ F then conf(y) is a successor
configuration to conf(x). Since (W,R, V) |= �φ∃, if x ∈ T, conf(x) = (w, i, q) and
q ∈ Q∃ then there is y ∈ T such that (x, y) ∈ F . Finally, since (W,R, V) |= �φ∀,
if x ∈ T conf(x) = (w, i, q) where q ∈ Q∀, and γ is any successor configuration to
conf(x) then there is y ∈ T such that (x, y) ∈ F and conf(y) = γ.

Hence (T, F) is an acceptance tree. By lemma 12, M accepts w. �

Theorem 14 φM,w(�,m) is satisfiable if and only if φM,w(�∗,m) is satisfiable.

PROOF:

The formula �ψ → �∗ψ is valid, so any model of φM,w(�,m) is also a model of
φ(M,w)(�∗,m), proving the left to right implication. Conversely, suppose (W,R, V), r0 |=
φM,w(�∗,m). Let W0 ⊆W consist of all those worlds which can be reached from r0 by
a chain of R steps and let R0, V0 be obtained from R, V by restricting to this set. Since
the deletion of inaccessible worlds cannot affect the truth of L(�=n,�≤n,�∗ : n ∈ N)
formulas, we have (W0, R0, V0), r0 |= φM,w(�∗,m). Since all worlds in W0 are now
accessible from r0, we have (W0, R0, V0), r0 |= �∗ψ → �ψ for all ψ ∈ L(�=n,�≤n :
n ∈ N), hence (W0, R0, V0), r0 |= φM,w(�,m). This proves the right to left implication.
�

11

Now we consider the case where the run-time ofM is bounded by m = 2p(n) for some polyno-
mial p (we lose no generality by taking m to be a bound on both the space and the time used by
M).

Theorem 15 LetM be an exponential time ATM and let w ∈ Σ∗. φM,w(�≤m
2
,m) is satisfiable

iff w ∈ L(M).

PROOF:

By theorem 13 we know that φM,w(�,m) is satisfiable iff w ∈ L(M). Any model
for φM,w(�,m) is also a model for φM,w(�≤m,m), since �ψ → �≤kψ is valid, for
any k ∈ N, so if φM,w(�,m) is satisfiable then so is φM,w(�≤m

2
,m). Conversely,

let S, r0 |= φM,w(�≤m
2
,m) be any model of φM,w(�≤m

2
,m), say S = (W,R, V).

As before, since φM,w(�≤m
2
,m) does not involve �, we can assume that for each

x ∈ W there is an R-path from r0 to x. Because the run time of M is bounded by
m = 2p(n), the maximum possible length of a computation path for w is m. Hence
the maximum length of an R-path from r0 is at most m2 (m configurations, each of
length m). Hence S, r0 |= �≤m

2
ψ → �ψ, for all ψ ∈ L(�=n,�≤n : n ∈ N), and

therefore S, r0 |= φM,w(�,m). We have now shown that φM,w(�≤m
2
,m) is satisfiable

iff φM,w(�,m) is satisfiable. This proves the theorem. �

We continue by supposing that M runs using only polynomial space.

Theorem 16 L(�,�) is EXPTIME-hard.

PROOF:

By proposition 10, APSPACE=EXPTIME. LetM be a polynomial space ATM,
let q be a polynomial and suppose a computation of M on an input of size n uses at
most q(n) space. We reduce the language accepted byM to the satisfiability problem
for L(�,�). Let w ∈ Σ∗ have size n. We map w to g(φM,w(�, q(n))) ∈ L(�,�).
Consult the definition of φM,w(�, q(n)) in (2). Each occurrence of �=k occurring in
φM,w(�, q(n)) has superscript k ≤ q(n). Hence the translation g given in definition 6
runs in polynomial time. By theorem 13, φM,w(�, q(n)) is satisfiable iff w ∈ L(M). By
lemma 7, this holds iff g(φM,w(�, q(n))) is satisfiable. Hence the reduction is correct
and can be computed in polynomial time. �

If M is known to run in PTIME (say time p(n)) we can modify the reduction of theorem 16 so
as to eliminate all occurrences of � and produce a formula in L(�).

Theorem 17 Let M be an polynomial time ATM, let p be a polynomial bound on the run-time
of M, and let w ∈ Σ∗. Let m = p(|w|) — this is a bound on both the time and space of any
M-computation. Then g(φM,w(�≤m

2
,m)) ∈ L(�) can be computed in polynomial time and it is

satisfiable iff w ∈ L(M).

PROOF:

Similar. �

This shows that the satisfiability problem for L(�) is PSPACE-hard. Looking back to figure 1,
we have now gone in a complete circle by reproving Ladner’s result that the satisfiability problem
for the basic modal logic K is PSPACE-complete.

12

4.3 Complexity Results for Branching Modal Logics

Theorem 18

1. If L(�=n,� : n ∈ N) ⊆ L ⊆ L(�=n,�≥n,�≤n,� : n ∈ N) then L-SAT is 2-EXPTIME-
complete.

2. If L(�=n,�∗ : n ∈ N) ⊆ L ⊆ L(�=n,�≥n,�≤n,�∗ : n ∈ N) then L-SAT is 2-EXPTIME-
complete.

3. L(�=n,�≤n : n ∈ N)-SAT is EXPSPACE-complete.

PROOF:

The upper complexity bounds for all cases are established in theorem 8. We now
prove the lower bounds.

1. To prove that L(�=n,� : n ∈ N)-SAT is 2-EXPTIME-hard, let A be an arbi-
trary 2-EXPTIME decision problem. By proposition 10, A can be solved by an
ATM M using exponential space. Let w ∈ Σ∗ be an instance of A. In polyno-
mial time we can compute φM,w(�,m), where m is an exponential bound on the
space used by M on input w. By theorem 13, the map w 7→ φM,w(�,m) is a
polynomial time reduction of A to L(�=n,� : n ∈ N)-SAT. Hence this problem
is 2-EXPTIME-hard.

2. By theorem 14, φM,w(�∗,m) is satisfiable iff φM,w(�,m) is satisfiable. Hence the
map w 7→ φM,w(�∗,m) is a polynomial time reduction, so L(�=n,�∗ : n ∈ N)-
SAT is 2-EXPTIME-hard.

3. If A is a decision problem in EXPSPACE then by proposition 10, there is
an exponential time ATM M that solves A. By theorem 15 the map w 7→
φM,w(�≤m

2
,m) is a polynomial time reduction of A to L(�=n,�≤n : n ∈ N)-

SAT, so this problem is EXPSPACE-hard.

�

5 Linear Discrete Time

So far we have been considering unrestricted Kripke semantics. We now turn our attention to linear
discrete frames. We show that the satisfiability problem for languages between L(�=n,�∗ : n ∈ N)
and L(�=n,�≥n,�≤n,�∗ : n ∈ N) on the linear frame (N, <) are EXPSPACE-complete. To
prove that, we use the same approach as we did in the last section but work this time with
Deterministic Turing Machines (DTMs). Note that DTMs can be considered as a special case
of Alternating Turing Machines (ATMs): a deterministic Turing Machine is an ATM where
all its states are existential and the transition function δ is single valued. The semantics of
L(�=n,�≥n,�≤n,�∗ : n ∈ N) on (N, <) follow:

Definition 19 Formulas of L(�=n,�≥n,�≤n,�∗ : n ∈ N) are interpreted with respect to linear
discrete models: (N, <, V). Given S = (N, <, V) and an index i ∈ N we evaluate formulas as
follows:

S, i |= p iff i ∈ V (p)
S, i |= ¬ϕ iff S, i 6|= ϕ

S, i |= ϕ ∧ ψ iff S, i |= ϕ and S, i |= ψ

S, i |= �=nφ iff S, i+ n |= φ

S, i |= �≥nφ iff ∀k, i+ n ≤ k → (S, k |= φ)

13

S, i |= �≤nφ iff ∀k, i ≤ k ≤ i+ n → (S, k |= φ)
S, i |= �∗φ iff ∀k ≥ i (S, k |= φ)

Definition 20 The translation f maps formulas of L(�=n,�≥n,�≤n,�∗ : n ∈ N) to formulas
of TPTL and is defined by f(p) = p, f(¬φ) = ¬f(φ), f(φ1 ∧ φ2) = f(φ1) ∧ f(φ2) and

f(�=nφ) = x.G(y.(y = x+ n→ f(φ)))
f(�≥nφ) = x.G(y.(y ≥ x+ n→ f(φ)))
f(�≤nφ) = x.G(y.(y ≤ x+ n→ f(φ)))

f(�∗φ) = Gf(φ)

where x, y are new variables, not occurring in f(φ).

Proposition 21 ([AH94]) The satisfiability problem for formulas of TPTL formulas over (N, <
) is EXPSPACE-complete.

Lemma 22 Let φ ∈ L(�=n,�≥n,�≤n,�∗ : n ∈ N),

1. |f(φ)| ≤ 8 · |φ|.

2. (N, <) |= f(φ)↔ φ.

PROOF:

Substrings �≥n,�≤n,�=n of φ of length 1 + dlog2 ne are replaced by at most
8 + dlog2 ne characters in f(φ), so at most 7 additional characters for each of these
operators. We count any variable x. as single character and we charge 3 for G = ¬F¬.
The equivalence of φ and f(φ) over (N, <) is direct from the definition of the semantics.
�

Theorem 23 The satisfiability problem for formulas of L(�=n,�≥n,�≤n,�∗ : n ∈ N) can be
solved in EXPSPACE.

PROOF:

To determine whether φ ∈ L(�=n,�≥n,�≤n,�∗ : n ∈ N) is satisfiable in (N, <)
we first compute, in polynomial time, the translation f(φ) ∈ TPTL. By lemma 22,
|f(φ)| ≤ 8 · |φ|. By proposition 21 there is a polynomial p such that the satisfiability
of f(φ) can be solved in space 2p(|f(φ)|) ≤ 2p(8·|φ|). Hence the satisfiability problem for
L(�=n,�≥n,�≤n,�∗ : n ∈ N) over (N, <) can be solved in EXPSPACE. �

For the lower bound, we take an exponential space DTMM and an input w to the machine.
In order to avoid prematurely terminating runs, it is convenient to assume that the transition
function δ : Q× Σ→ Q× Σ× {L,R} of M is always defined (if q is a final state and a ∈ Σ then
we may let δ(q, a) = (q, a,L) except at a marker . for the leftmost cell where δ(q, .) = (q, .,R),
so M stays in this final state forever). Note that although runs of M are infinite, computation
paths are still finite, according to the definition we gave just before definition 9, because on any
infinite run, M enters a final state after finitely many steps. In polynomial time we compute the
formula φM,w(�∗,m) of (2).

Theorem 24 φM,w(�∗,m) is satisfiable over (N, <) iff w ∈ L(M).

PROOF:

14

If φM,w(�∗,m) is satisfiable in (N, <) then of course it is satisfiable. So by theo-
rems 13 and 14,M has an accepting run on input w (in fact, sinceM is deterministic,
there is a unique run of M on w and M accepts w).

Conversely, suppose M accepts w. By theorems 13 and 14 there is a structure
S = (W,R, V) and a world v ∈ W such that S, v |= φM,w(�∗,m), though this model
may not be linear. As in the proof of theorem 13 we can define the position pos(x)
of each world w ∈ S, we can define T ⊆ Wm using (3) and we can make T into
the base of an acceptance tree for M. Since M is deterministic, the conjuncts φ∀
and φ∃ of φM,w(�∗,m) demand at most only a single successor configuration for each
configuration. We can now restrict S to S−, say, by starting with m worlds representing
the initial configuration and then appending only a single successor configuration to
each configuration, and φM,w(�∗,m) will still be true in S−. This restricted structure
S− is clearly isomorphic to a structure (N, <, V).

HenceM accepts w iff φM,w(�∗,m) is satisfiable iff φM,w(�∗,m) is satisfiable over
(N, <). �

Theorem 25 The satisfiability problems for any language between L(�=n,�∗ : n ∈ N) and
L(�=n,�≥n,�≤n,�∗ : n ∈ N) over (N, <) is EXPSPACE-complete.

PROOF:

We have already seen in theorem 23 that satisfiability of L(�=n,�≥n,�≤n,�∗ :
n ∈ N) over (N, <) is in EXPSPACE. We prove that satisfiability of L(�=n,�∗ : n ∈
N) over (N, <) is EXPSPACE-hard. Let A be an arbitrary EXPSPACE decision
problem, that is, A can be solved by a DTM M using exponential space. Let w
be an instance of A, coded into the alphabet of M. In polynomial time we can
compute φM,w(�∗,m). By theorem 24, the map w 7→ φM,w(�∗,m) is a polynomial
time reduction of A to the satisfiability problem for L(�=n,�∗ : n ∈ N) over (N, <).
Hence this problem is EXPSPACE-hard. �

6 PDL with Bounded Modalities

In this section we introduce bounded iteration operators in the context of Propositional Dynamic
Logic (PDL) [FL79]. There are two main differences between these dynamic logics and the
modal logics we have previously considered. Firstly, dynamic logics usually include more than one
modality. Note that the satisfiability problem for the multi-modal generalisation of K remains
PSPACE-complete [HM92], so the extra modalities by themselves do not account for the increase
in complexity. The other differences is that dynamic logics include operators that produce new
modalities from old ones. In the context of dynamic logics, the modalities are usually called
programs.

Definition 26 (PDL) Let Prop be a countable set of propositions and let A be a set of atomic
program names. Formulas φ and programs π of PDL are defined by the following syntax rules:

φ := p (p ∈ Prop) | ¬φ | φ ∧ ψ | [π]φ
π := a (a ∈ A) | π1 ∪ π2 | π1;π2 | π∗

where A is a countably infinite set of atomic programs. We write 〈π〉φ as an abbreviation of
¬[π]¬φ. We write π+ for π;π∗. Formulas of IPDL are defined similarly, but the definition of a
program becomes

π := a (a ∈ A) | π1 ∪ π2 | π1 ∩ π2 | π1;π2 | π∗

Formulas of PDL/∗, IPDL/∗ are obtained from PDL, IPDL (respectively) by omitting π∗ from
the definition of program.

15

Operators Complexity of Satisfiability Problem Reference
P(∪,∩, ;) PSPACE-complete [F01]
P(∪, ; , ∗) EXPTIME-complete [FL79, PR79]
P(∪,∩, ; , ∗) 2-EXPTIME-complete [LL05, D84]

Figure 2: Complexity of Propositional Dynamic Logics with bounded modalities

Formulas of these languages may be evaluated at a point of a multimodal Kripke structure
S = (W, 〈Ra : a ∈ A〉, V), where each Ra is a binary relation over W (corresponding to the
program a ∈ A) and the valuation V maps propositions to subsets of W . For each a ∈ A let
aS = Ra and let (π1 ∪ π2)S , (π1 ∩ π2)S , (π1;π2)S , (π∗)S be defined to be (π1)S ∪ (π2)S , (π1)S ∩
(π2)S , (π1)S |(π2)S , (πS)∗, respectively, where | denotes composition of binary relations and ∗ de-
notes the reflexive, transitive closure of a binary relation. Formulas are evaluated at a world
w ∈W of a structure S = (W, 〈Ra : a ∈ A〉) by,

S, w |= p ⇐⇒ w ∈ V (p)
S, w |= ¬φ ⇐⇒ w 6|= φ

S, w |= φ1 ∧ φ2 ⇐⇒ S, w |= φ1 and S, w |= φ2

S, w |= [π]φ ⇐⇒ ∀v ((w, v) ∈ πS → S, v |= φ)

A formula φ is satisfiable if there is a multimodal Kripke model such that φ is true at some world
in the model.

Proposition 27

1. The satisfiability problem for IPDL/∗ is PSPACE-complete ([F01]).

2. The satisfiability problem for PDL is EXPTIME-complete ([FL79, PR79]).

3. The satisfiability problem for IPDL is 2-EXPTIME-complete ([LL05, D84]).

We now augment these dynamic logics by adding programs π=n, π≤n, π≥n : n ∈ N. As before, the
superscripts are encoded in binary, so |π=n| = 1 + dlog2 ne. For the semantics, we let (π=n)S =

n︷ ︸︸ ︷
πS |πS | . . . |πS , (π≤n)S =

⋃
i≤n(π=i)S and (π≥n)S =

⋃
n≤i<ω((π=i)S). Let Un ⊆ {∗,=n,≤n,≥n}

and Bin ⊆ {∪,∩, ; }. We write P(Un∪Bin) for the dynamic logic whose programs are defined by

π := a (a ∈ A) | πu (u ∈ Un) | B(π1, π2) (B ∈ Bin)

where A is a countably infinite set of generator programs. We write Pk(Un ∪ Bin) for the case
where the set A of programs has at most k elements (so Pω(Un ∪ Bin) = P(Un ∪ Bin)). Thus
PDL = P(∗,∪, ;) and IPDL= P(∗,∪,∩, ;), etc. Figure 2 summarises known complexity results
for dynamic logics and the table in the abstract summarises our new results, we prove the new
results in theorems 30, 33, 35, 38 and corollary 34.

Definition 28 The translation t maps programs of P(∪,∩, ; ,=n,≥n,≤n, ∗ : n ∈ N) to programs of
P(∪,∩, ; , ∗) = IPDL. Given a program π of P(∪,∩, ; ,=n,≥n,≤n, ∗ : n ∈ N) we obtain t(π) by re-

placing each occurrence of π=n by
n︷ ︸︸ ︷

π;π; . . . ;π, each occurrence of π≥n by
n︷ ︸︸ ︷

π;π; . . . ;π;π∗ and each oc-
currence of π≤n by

⋃
i≤n π

=i. We can apply this translation t to formulas of P(∪,∩, ; ,=n,≥n,≤n, ∗ :
n ∈ N) by replacing each program π occurring in a formula by t(π).

Lemma 29 Let φ ∈ P(∪,∩, ; ,=n,≥n,≤n, ∗ : n ∈ N). We have |t(φ)| ≤ 2|φ|
2

and t(φ) ≡ φ. Let
X ⊆ {∪,∩, ; , ∗}. If φ ∈ P(X ∪ {=n,≥n,≤n : n ∈ N}) then t(φ) ∈ P(X).

16

PROOF:

Similar to the proof of lemma 7 �

Theorem 30

• The satisfiability problem for P(∩,∪, ; ,=n,≤n : n ∈ N) is in EXPSPACE.

• The satisfiability problem for P(∪, ; ,=n,≥n,≤n, ∗ : n ∈ N) is in 2-EXPTIME.

PROOF:

For a formula φ ∈ P(∩,∪, ; ,=n,≤n : n ∈ N) we know that t(φ) ∈ P(∩,∪, ;) =
IPDL/∗, and we can solve the satisfiability of t(φ) in space p(|t(φ)|) ≤ p(2|φ|

2
), for

some polynomial p, by proposition 27 and lemma 29. Hence the satisfiability problem
for P(∩,∪, ; ,=n,≥n,≤n) is in EXPSPACE.

Similarly, if φ ∈ P(∩,∪, ; ,=n,≥n,≤n, ∗ : n ∈ N) we know that t(φ) ∈ P(∪, ; , ∗) =

PDL, and we can solve the satisfiability of t(φ) in time 2p(|t(φ)|) = 2p(2
|φ|2), i.e. in

double-exponential time.
�

Definition 31 Let a be the single generator for P1(=n,≥n,≤n, ∗ : n ∈ N). Let φ ∈ L(�=n,�≥n,�≤n,�∗ :
n ∈ N). The formula h(φ) ∈ P1(=n,≥n,≤n, ∗ : n ∈ N) is obtained from φ by replacing each occur-
rence of �=n,�≥n,�≤n,�∗ by [a=n], [a≥n], [a≤n], [a∗], respectively.

Lemma 32

1. h can be computed in linear time.

2. A formula φ ∈ L(�=n,�≥n,�≤n,�∗ : n ∈ N) is satisfiable iff h(φ) is satisfiable.

3. Hence h is a polynomial time reduction of L(�=n,�≥n,�≤n,�∗ : n ∈ N) to P1(=n,≥n,≤n, ∗ :
n ∈ N).

The proof is obvious and we omit it.

Theorem 33 The satisfiability problem for P1(=n,≤n : n ∈ N) is EXPSPACE-hard.

PROOF:

By theorem 18(3) and lemma 32. �

Corollary 34 Let k ≥ 1 and let {=n,≤n : n ∈ N} ⊆ X ⊆ {∩,∪, ; ,=n,≥n,≤n : n ∈ N}. The
satisfiability problem for Pk(X) is EXPSPACE-complete.

PROOF:

By theorems 30 and 33. �

Theorem 35 The satisfiability problem for any language between P(∪,=n, ∗ : n ∈ N) and P(∪, ; ,=n,≥n,≤n, ∗ :
n ∈ N) is 2-EXPTIME-complete.

PROOF:

The satisfiability problem for P(∪, ; ,=n,≥n,≤n, ∗ : n ∈ N) is in 2-EXPTIME, by
theorem 30. By theorem 18 and lemma 32, the satisfiability problem for P(∪,=n, ∗ :
n ∈ N) is 2-EXPTIME-hard. �

Theorem 36

17

1. There is a polynomial time reduction from the satisfiability problem for P(∩,∪, ; ,≥n,≤n,=n, ∗ :
n ∈ N) to that of P(∩,∪, ; , ∗).

2. There is a polynomial time reduction from the satisfiability problem for P(∩,∪, ; ,≤n,=n :
n ∈ N) to that of P(∩,∪, ; ,≤n : n ∈ N).

PROOF:

1. For the first part, let φ ∈ P(∩,∪, ; ,≥n,≤n,=n, ∗ : n ∈ N). We will define the
reduction by defining a formula

φ′ = φ1 ∧ [∆∗]θ1 ∈ P(∩,∪, ; , ∗) (4)

where ∆ is the union of all the atomic programs occurring in φ. Since the deletion
of worlds not reachable by ∆∗ in any structure does not affect the truth of a
formula, we will restrict our attention to generated structures. Let η be a new
program. θ1 will include a conjunct ([η]⊥), so η will be interpreted as the empty
program, in any model of [∆∗]θ1. Let e = η∗. This program e will be interpreted
as the identity over the domain of any model of θ1.
Suppose π�n occurs in φ, for some program π, some � ∈ {≥,≤,=} and some
n ∈ N. We can assume that n is even, as we can replace π≥n by π;π≥n−1, π≤n

by e ∪ π;π≤n−1 and π=n by π;π=n−1 if n is odd. For each n and π such that
π�n occurs in φ, for some �, let k = dlog2

n
2 e. We introduce propositional space

counters r, si : i < k and programs ρ, ρ, σi, σi : i < k, unique to n, π. Loosely
speaking, the propositions si : i < k (together with corresponding programs
σi, σi : i < k) suffice to count the distance from one point to another, modulo n

2 ,
but we need the other proposition r (and corresponding programs ρ, ρ) to dispense
with the ‘modulo n

2 ’ and measure the true distance from one point to another, so
long as the distance does not exceed n.
In more detail, the propositional space counters define the position posSs (v) of any
world v in a structure S, by posSs (v) =

∑
{2i : i < k,S, v |= si}. Let m < 2k and

define

χs=m =
∧

bit(i,m)=1

si ∧
∧

bit(i,m)=0

¬si

χs<m =
∨

bit(i,m)=1

[¬si ∧
∧

i<j<k, bit(j,m)=0

¬si]

Clearly, S, v |= χs=m ⇐⇒ posSs (v) = m and S, v |= χs<m ⇐⇒ posSs (v) < m.
θ1 will include, under the scope of [∆∗], a conjunct inc(s), defined to be

(¬χs=n
2−1 →

∧
i<k[(¬si ∧

∧
j<i si)→ ([π](si ∧

∧
j<i ¬si) ∧

∧
i<j<k(sj → [π]sj ∧ ¬sj → [π]¬sj))]

∧
χs=n

2−1 → [π]χs=0)

Observe that if S, v |= inc(s), posSs (v) < n
2 and u is any successor of v then

posSs (u) = posSs (v) + 1(mod n
2).

θ1 will include under [∆∗] a further conjunct Alts =

(r → [π]((¬χs=0 ∧ r) ∨ (χs=0 ∧ ¬r)) ∧ (¬r → [π]((¬χs=0 ∧ ¬r) ∨ (χs=0 ∧ r))))

If S, w |= χs<n
2
∧ Copys ∧ Alts and w is any w-path of π transitions, then the

position posSs (wi) must increment by one modulo n
2 every time you increment i,

the proposition r must stay constant (either it must stay true, or it must stay

18

false) every time you increment the position, except when the position goes from
n
2 −1 to 0 and in this case the truth of r is flipped. We call a sequence of n2 worlds
v0, v1, . . . vn2−1 a block if (vi, vi+1) ∈ πS (all i < n

2 − 1) and either S, vi |= r (all
i < n

2 − 1) or S, vi |= ¬r (all i < n
2 − 1). In the former case we may call it an

r-block and in the latter a ¬r-block.
Let σ′i = σ ∩ e, ρ′ = ρ ∩ e, σ′i = σ ∩ e and ρ′ = ρ ∩ e, for i < k. The reflexive
programs σi, ρ, σi, ρ : i < k are intended to mirror the corresponding propositions
si, r : i < k. θ1 will also include under [∆∗] a final conjunct:

Copys = (
∧
i<k

(si → 〈σ′i〉>∧¬si → 〈σ′i〉>∧[σ′i∩σ′i]⊥)∧(r → 〈ρ′〉>∧¬r → 〈ρ′〉>)∧[ρ′ ∩ ρ′]⊥)

If S, v |= Copys then propositions si, r are true at v iff σ′i, ρ
′ hold at the reflexive

edge (v, v) and negative literals ¬si,¬r hold at v iff σ′i, ρ
′ hold at (v, v), for i < k.

Thus these reflexive programs exactly match the corresponding propositions and
their negations.
Let

θ1 =
∧

s=s(π,n)

χs<n
2
∧ inc(s) ∧ Copys ∧Alts

Define programs

Same =
⋂
i<k

((σi;π∗;σ′i) ∪ (σ′i;π
∗;σ′i))

Left =
⋃
i<k

[(σ′i;π
∗;σ′i) ∩

⋂
i<j<k

[(σ′i;π
∗;σ′i) ∪ (σ′i;π

∗;σ′i)]]

Right =
⋃
i<k

[(σ′i;π
∗;σ′i) ∩

⋂
i<j<k

[(σ′i;π
∗;σ′i) ∪ (σ′i;π

∗;σ′i)]]

We will see that if (u, v) ∈ SameS (∈ LeftS , ∈ RightS respectively) then
posSs (u) = posSs (v) (posSs (u) < posSs (v), posSs (u) > posSs (v)).
We are now ready to replace occurrences of π=n, π≤n and π≥n in φ. For � ∈ {=,≤
,≥} we define a program π�n using only {∩,∪, ; , ∗} and of polynomial length (in
terms of the length of π�n). In models of inc(s)∧Copys ∧Alts, π�n will evaluate
to the same binary relation as π�n. Let

π=n = [[(ρ′;π)+; (ρ′;π)+; (ρ′;π)∗; ρ′] ∪ [(ρ′;π)+; (ρ′;π)+; (ρ′;π)∗; ρ′]] ∩ Same
π≤n = [[(ρ′;π)∗; (ρ′;π)∗] ∪ [(ρ′;π)∗; (ρ′;π)∗]∪

(Left ∩ ([(ρ′;π)∗(ρ′;π)∗; (ρ′;π)∗] ∪ [(ρ′;π)∗; (ρ′;π)∗; (ρ′;π)∗]))
]

π≥n = [([(ρ′;π)+; (ρ′;π)+; (ρ′;π)+] ∪ [(ρ′;π)+; (ρ′;π)+; (ρ′;π)+]) ∩Right];π∗

Claim 1: Suppose T , w |= χs<n
2
∧ [∆∗](inc(s)∧Copys∧Alts) and suppose every

world of T is ∆-reachable from w. Then πT�n = (π�n)T .
We prove the first case of the claim, � is =, the other cases are similar. Consider
π=n. Suppose (u, v) ∈ πT=n, both u and v are ∆-reachable from w. Since (u, v) ∈
Same we have u ∈ sTi ⇐⇒ v ∈ sTi for i < k, hence posSs (u) = posSs (v).
By definition of π=n, there is a π-sequence λ = (u = u0, u1, . . . , up = v) from
u to v and since all worlds in λ satisfy inc(s) ∧ Copys ∧ Alts, λ must consist
of a final segment of an r-block concatenated with a ¬r-block and an initial
segment of an r-block, or similar with r,¬r reversed. Hence v is two blocks
after u. Since posSs (u) = posSs (v) it follows that the length of λ is exactly n,
so (u, v) ∈ (π=n)T . Similarly for the converse, suppose (u, v) ∈ (π=n)T and let
λ = (u = u0, u1, . . . , un = v) be the π-path from u to v. Since each world satisfies
χs<n

2
∧inc(s)∧Copys∧Alts, as we increment through the sequence λ the positions

19

increment by one each time, and we pass from a block to the next block but one,
hence (u, v) ∈ πT=n. This proves the (first case of the) claim.
Claim 2: If S, w |= φ and ∆S is a tree with root w, then there is a structure S ′
such that S ′, w |= φ ∧ χs<n

2
∧ [∆∗](inc(s) ∧ Copys ∧Alts).

Proof of claim 2 Define a structure S ′ with the same worlds as S and all
propositions and programs have the same interpretation in S ′, except the new
programs ρ, ρ, σi, σi : i < k and propositions r, si : i < k. Hence S ′, w |= φ. The
space counters si are given a valuation so that whenever (u, v) ∈ πS we have
posSs (u), posSs (v) < n

2 and posSs (v) = posSs (u)+1(mod n
2). Since ∆S is a tree, this

can be done. r is given a valuation so that π-paths form blocks, i.e. if (u, v) ∈ πS
and posSs (u) < n

2 − 1 then u ∈ rS
′ ⇐⇒ v ∈ rS

′
and if posSs (u) = n

2 − 1
then u ∈ rS

′ ⇐⇒ v 6∈ rS
′
. The new programs are interpreted as reflexive

relations such that (u, u) ∈ σS′i ⇐⇒ u ∈ sS′i ⇐⇒ (u, u) 6∈ σS
′

i and similarly
(u, u) ∈ ρS

′ ⇐⇒ u ∈ rS
′ ⇐⇒ (u, u) 6∈ ρS

′
. From this definition, we have

S ′, u |= inc(s) ∧ Copys ∧ Alts, at each world u of S ′. The claim follows, since
S ′, w |= φ.
We are now ready to define φ′. Let φ1 be obtained from φ by replacing each
occurrence of π=n, π≤n, π≥n by π=n, π≤n, π≥n respectively. φ′ is now defined by
(4). To see that this reduction is correct, suppose S, w |= φ, where ∆S is a tree
with root w. By claim 2, there is a structure S ′ such that S ′ |= φ∧

∧
s=s(π,n) χs<n

2
∧

[∆∗](inc(s) ∧Copys ∧Alts). By claim 1 we have πS
′

�n = (π�n)S
′
, hence S ′, w |= φ

implies that S ′, w |= φ1, so S ′, w |= φ′. Conversely if T , w |= φ′ and ∆T is a tree
with root w then by claim 1 T , w |= φ. This proves that the reduction is correct.

2. The proof of the second reduction is similar. Let φ ∈ P(∩,∪, ; ,≤n,=n : n ∈ N).
The reduction maps φ to φ′ = φ2∧[∆∗]θ2 ∈ P(∩,∪, ; ,≤n : n ∈ N). This time, the
task is to eliminate all occurrences of π=n from φ. Here we let k = dlog2 ne. As
before, we use space propositions si : i < k and corresponding programs σi, σi :
i < k, for each occurrence of π=n in φ, but we do not need r, ρ or ρ as we can use
π≤n to restrict the distance to a point. This time we define the identity program
by e = π≤0, where π can be any program and we let σ′i = σi ∩ e, σ′i = σi ∩ e,
for i < k. For m < 2k, let χs=m, χs<m, inc(s) be the same as in the previous
part,though we have changed the definition of k here. The definition of Copys is
slightly simpler, as we are not using proposition r,

Copys =
∨

i≤p(n)

[(si → 〈σ′i〉>) ∧ (¬si → 〈σ̄′i〉>) ∧ [σ′i ∩ σ̄′i]⊥]

Let θ2 =
∧
s=s(π,n) χs<n∧inc(s)∧Copys. We now define a program π=n, intended

to replace π=n.

π=n =
⋂
i<k

([σ′i;π;π≤n−1;σ′i] ∪ [σ′i;π;π≤n;σ′i])

Observe, for any structure S where all points satisfy θ2, that if (v, w) ∈ πS=n then
all space counters have the same value at u and v, and there is a π-path of length
at most n and length at least one, from u to v, hence the length of the path is
exactly n and (u, v) ∈ (π=n)S . The other containment (π=n)S ⊆ (π=n)S also
holds, similarly. Let φ2 be obtained from φ by replacing each occurrence of π=n

by π=n. The reduction maps φ to φ2 ∧ [∆∗]θ2. By the foregoing, if all points of a
structure S satisfy θ2 then (π=n)S = (π=n)S , hence the reduction is correct.

�

Corollary 37 Let X be a signature containing {∪,∩, ; , ∗} and contained in {∪,∩, ; ,=n,≤n,≥n :
n ∈ N}. Then the satisfiability problem for P(X) is double exponential time complete.

20

PROOF:

By proposition 27 and theorem 36(1). �

Theorem 38 The satisfiability problem for P(∩,∪, ; ,≤n : n ∈ N) is EXPSPACE-complete.

PROOF:

P(∩,∪, ; ,≤n : n ∈ N) is in EXPSPACE, by theorem 30. To prove EXPSPACE-
hardness, take an exponential time ATM M and an input w to the machine, let the
run time (and space) of M on input w be bound by m = 2p(|w|), for some polynomial
p. By theorem 15, φM,w(�≤m

2
,m) ∈ L(�=n,�≤n : n ∈ N) is satisfiable iff w ∈ L(M).

Recall that the reduction of definition 31 replaces � by [a]. Let φM,w([a≤m
2
],m) ∈

P1(=n,≤n : n ∈ N) be the formula obtained from φM,w(�≤m
2
,m) by applying this

reduction. Observe that φM,w([a≤m
2
],m) does not involve ∗, but it remains for us

to eliminate occurrences of =n. By the foregoing, φM,w([a≤m
2
],m) is satisfiable iff

M accepts w. Let h be the polynomial time reduction from P(∩,∪, ; ,≤n,=n : n ∈
N) to P(∩,∪, ; ,≤n : n ∈ N) of theorem 36(2). To summarise: M accepts w iff
h(φM,w([a≤m

2
],m)) ∈ P(∩,∪, ; ,≤n : n ∈ N) is satisfiable, proving that P(∩,∪, ; ,≤n :

n ∈ N) is EXPSPACE-hard. �

7 Open Problems

• Find the complexities of L(�=n : n ∈ N) and L(�≤n : n ∈ N)-SAT over Kripke frames.

• Find the complexities of L(�=n,�≤n : n ∈ N), L(�=n : n ∈ N)-SAT and L(�≤n : n ∈ N)-
SAT over the linear frame (N, <).

• Find the complexities of P(∪, ; ,≤n : n ∈ N)-SAT and P(∪, ; ,=n : n ∈ N)-SAT.

• Find the complexity of P(∩,∪, ; ,=n : n ∈ N)-SAT.

References

[AH94] Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. Journal of the
ACM 41:181-204, 1994.

[CKS81] A.K. Chandra, D.C.Kozen, L.J. Stockmeyer. Alternation. Journal of the ACM, 28(1):
114-133, January 1981.

[D84] R. Danecki. Non Deterministic propositional dynamic logic with intersection is decid-
able. Proceeding of the Fifth Symposium on Computation Theory, Poland. LNCS vol.
208, Springer 1984, pp. 34-53.

[EMH82] E. A. Emerson, J. Halpern. Decision Procedures and expressiveness in the temporal
logic of branching time. In Proceeding of STOC 1982, pages: 169-180, ACM Press,
1982.

[EMJ86] E. A. Emerson, C.S. Juttla. Tree automata and the logics of programmes. SIAM-JC,
29(1): 132-158, 1986.

[EMSS92] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative Temporal
Reasoning. Real Time Systems, Volume 4: pages 331-352, 1992.

[F01] Fabio Massacci. Decision procedures for expressive Description Logics with intersec-
tion, composition, converse of roles and role identity. In Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI-2001), pp.193-198, 2001.

21

[FL79] Fischer, M.J. and Ladner, R.E. Propositional dynamic logic of regular programs.
Journal of Computer and Systems Sciences. v18. 194-211, 1979.

[Hem96] E Hemaspaandra. The price of universality. Notre Dame Journal of Formal Logic,
37(2):174–203, 1996.

[HM92] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence archive Volume 54 , Issue
3 (April 1992) Pages: 319-379, 1992

[JL03] Jan Johannsen, Martin Lange. CTL + is complete for double exponential time. Proc.
30th Int. Coll. on Automata, Logics and Programming, ICALP, volume 2719 of LNCS,
pages 767 775 , 2003.

[L77] R. Ladner. The computational complexity of provability in systems of modal logic.
SIAM Journal On Computing, 6: 467-480, 1977.

[LL05] M. Lange and C. Lutz. 2-ExpTime Lower Bounds for Propositional Dynamic Logics
with Intersection. Journal of Symbolic Logic 70(4), pages 1072-1086, 2005.

[PN77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (Providence, RI.). IEEE, New York, pages
46-57, 1977.

[PR79] V.R. Pratt. Models of program logics. In Proc. 20th IEEE Symp. Foundations of
Computer Science, pages 115-222, 1979.

[SC82] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.
Proceedings of the fourteenth annual ACM symposium on Theory of Computing, pages:
159 - 168, 1982.

[VS85] M. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In Proceedings of STOC 1985, ACM Press, 1985.

22

