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Abstract

We confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969
by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from
cylindric algebras. These results in algebraic logic have the following consequence for
predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a
first-order language L with equality and exactly one nonlogical binary relation symbol E,
such that X contains only 3 variables (each of which may occur arbitrarily many times),
X has a proof containing exactly α + 1 variables, but X has no proof containing only α
variables. This solves a problem posed by Tarski and Givant in 1987.

1 Introduction

The completeness theorem of first-order logic says that every valid formula has a proof.
However, results of Henkin and Monk showed that the proof of a formula may need more
variables than are used in the formula itself. Establishing exactly how many variables are
needed to prove a given valid formula can be rather delicate. To establish provability or non-
provability with α variables, the methods of algebraic logic — cylindric algebras and relation
algebras — are useful. α-dimensional cylindric algebras can be regarded, approximately, as
algebras of α-ary relations and relation algebras are an algebraic approximation to algebras
of binary relations. From an α-dimensional cylindric algebra C it is possible to obtain the
relation algebra reduct RaC, and if α ≥ 4 this will be a relation algebra. The central part
of this paper is the construction of some relation algebras Nβ

α, for 4 ≤ α ≤ β < ω, and the
proof, for sufficiently large β, that Nβ

α is a subalgebra of RaC for some α-dimensional cylindric
algebra C, but not a subalgebra of RaC′ for any (α+ 1)-dimensional cylindric algebra C′. In

symbols, Nβ
α ∈ SRaCAα \SRaCAα+1. This confirms a conjecture of Maddux, and is used to

confirm a related conjecture of Monk about neat reducts of cylindric algebras. We apply this
result to logic by showing, for each α ≥ 3, that there are valid formulas that can be proved
with α+ 1 variables but not with only α variables in a proof system taken from [31].

Here in the introduction we discuss these classes of algebras, some of the history of this
investigation, and the proof-theoretic consequences. In the second section we present the
algebras and their properties, and the last section we apply them to logic.

∗Research of the first two authors partially supported by UK EPSRC grants GR/L85961, GR/K54946,
and GR/L85978. Thanks to Maarten Marx, Szabolcs Mikulás, Mark Reynolds, and the referee for helpful
comments.
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Cylindric algebras and relation algebras. We assume a basic knowledge of relation
algebras and cylindric algebras. See [22] for an introduction, and [12, 13] for a comprehensive
study. We use the notation of [12, 13]. In particular, for any ordinal α, CAα is the class of
α-dimensional cylindric algebras. Let C ∈ CAα. Then C is an algebra of the form

C = 〈C,+, ·, , 0, 1, ci, dij〉i,j<α

where 〈C,+, · , , 0, 1〉 is a Boolean algebra and, for all i, j < α, ci is a unary operation on C
and dij ∈ C. For all i, j < α, the j-for-i substitution, sij , is defined by

sijx =

{
x if i = j,
ci(x · dij) if i 6= j.

For all β < α, the set of β-dimensional elements is defined by

NrβC = {x : x ∈ C, x = cγx whenever β ≤ γ < α}.

The neat reduct NrβC = 〈NrβC,+, ·, , 0, 1, ci, dij〉i,j<β is a β-dimensional cylindric algebra.
An algebra RaC = 〈Nr2C,+, ·, , 0, 1, ; , ,̆ d01〉, similar to relation algebras, is constructed by
restricting the Boolean operations to the set Nr2C of two-dimensional elements of C and using
the third dimension to define conversion and composition [13, Def. 5.3.7]: ă = s20s

0
1s

1
2a and

a ; b = c2(s
1
2a · s02b) for all a, b ∈ Nr2C. RaC is called the relation algebra reduct of C. NrβCAα

denotes the class {NrβC : C ∈ CAα} and RaCAα denotes the class {RaC : C ∈ CAα}.
It is evident from the definitions that if we preface a relation algebra reduct with a

neat β-reduct for 3 ≤ β ≤ α, the outcome is unchanged: RaNrβC = RaC. It follows
that RaNrβCAα = RaCAα. We have Nr3CAα ⊇ Nr3CAα+1 by [12, Th. 2.6.31], so RaCAα =
RaNr3CAα ⊇ RaNr3CAα+1 = RaCAα+1 whenever α ≥ 3. Of course, the same holds for the
closure of these classes under subalgebras. For any class K of algebras, we let SK be the class
of subalgebras of algebras in K, so we obtain:

SRaCA3 ⊇ SRaCA4 ⊇ SRaCA5 ⊇ · · · ⊇ SRaCAα ⊇ SRaCAα+1 ⊇ . . . . (1)

The study of which inclusions in (1) are proper has a rather long history. Henkin and
Tarski proved that every algebra in SRaCA4 is a relation algebra (see [25, Th. 9.2], [22,
pp. 377–378], and [13, Th. 5.3.8]). J. C. C. McKinsey found an algebra that satisfies all
the axioms for relation algebras except the associative law. Tarski used McKinsey’s algebra
to construct a nonrepresentable 3-dimensional cylindric algebra in which composition is not
associative [11, footnote 26]. McKinsey’s algebra (the relation algebra reduct of Tarski’s
algebra) is not a relation algebra, so it lies in SRaCA3 \ SRaCA4. This shows that the first
inclusion in (1) is proper.

The second inclusion is also proper. R. Lyndon [17] found a relation algebra that is
nonrepresentable because it fails to satisfy the following condition:

if 0 = (ă ;c) · (b; d̆) ·
(
[(ă ;e) · (b; f̆)];[(ĕ ;c) · (f ; d̆)]

)
then 0 = (a ;b) · (c;d) · (e ;f).

Monk showed that this condition is valid in SRaCA5 [25, Lem. 9.15] and concluded that
Lyndon’s relation algebra is not in SRaCA5 [25, Th. 9.16]. Monk also proved that every
relation algebra is in SRaCA3 [25, Th. 9.10], but Maddux improved this to show that every
relation algebra is in SRaCA4 [19, Ch. 10,Th. (21)], [13, Th. 5.3.17]. It follows that Lyndon’s
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relation algebra is in SRaCA4 but not SRaCA5. For more on the connections between relation
algebras and cylindric algebras see [13, Sect. 5.3] and [14, 19, 21, 22, 23, 25, 28, 29].

It was known from the work of Henkin, Johnson, and Monk [8, 9, 15, 16, 26, 27] that
infinitely many inclusions in (1) are strict. Therefore, if 3 ≤ α < ω, we may define π(α)
to be the least β > α such that SRaCAα 6= SRaCAβ. Results in [15, 26, 27] imply that
π(α) ≤ 3α!. Maddux [23] improved this upper bound from factorial to linear by proving
that π(α) ≤ 3α − 7 for every finite α > 3. When α = 4, this yields the strictness of the
second inclusion again. The third inclusion was also known to be strict by an unpublished
construction; see [23, p. 195–6].

Maddux’s proofs use the notion of an α-dimensional cylindric basis. He showed that if
an atomic relation algebra A has such a basis then A ∈ SRaCAα [19, Ch. 10, Th. (13)], [21,
Th. 10]. We will use this fact later to show that the algebras we construct can be embedded
into relation algebra reducts of cylindric algebras. However, the converse fails: not having
a cylindric basis is not enough to show that an algebra cannot be embedded. Indeed, every
representable relation algebra A must belong to SRaCAα for every α ≥ 3, and A can even be
embedded in a relation algebra that has an α-dimensional cylindric basis. But A itself may not
even have a 5-dimensional cylindric basis: examples can be found among the relation algebras
constructed from projective geometries by Lyndon [18]. It is also noteworthy that for all finite
α ≥ 5 there is a representable atomic relation algebra A with an α-dimensional cylindric basis
(so that A ∈ SRaCAα) but with no (α+1)-dimensional cylindric basis (see [21, p. 954] and [19,
Ch. 10, Ex. (23)]). But as we said, the latter does not imply that A /∈ SRaCAα+1, so this
does not help in showing that the inclusions in (1) are proper.

In this paper, we confirm a conjecture of Maddux [4, Prob. 17, p. 734], that

Theorem 1 For each finite α ≥ 3, the inclusion SRaCAα ⊃ SRaCAα+1 is strict.

Thus, π(α) = α + 1 for 3 ≤ α < ω. Theorem 1 is proved by constructing certain relation

algebras Nβ
α (for 4 ≤ α ≤ β < ω) that belong to SRaCAα, but do not belong to SRaCAα+1

whenever β is sufficiently large compared to α. See theorems 5 and 8 below. The first of
these is easily seen, using cylindric bases; the second involves some combinatorial argument
(cf. [7]). The algebras Nβ

α themselves are not too complicated. They have the further property
of being generated by a single atom.1 This is enough to establish theorem 1, since we have
already seen that the first few inclusions in (1) are strict.

The neat embedding problem. Monk [26] formulated the following conjecture in 1969.
Let R be the set of triples of finite cardinals 〈α, κ, γ〉 having the property that there exists
a cylindric algebra C of dimension α that can be neatly embedded in a cylindric algebra of
dimension α + κ but not in one of dimension α + γ, that is, C ∈ SNrαCAα+κ \ SNrαCAα+γ .
Various results about cylindric algebras imply that this situation is interesting only if α ≥ 3
and possible only if κ < γ. Monk conjectured [26, p. 342, l. 28] that 〈α, κ, κ+ 1〉 ∈ R
for all κ < ω and α ≥ 3. This condition is equivalent to SNrαCAα+κ ⊃ SNrαCAα+κ+1,
and it implies 〈α, κ, γ〉 ∈ R for all possible and interesting 〈α, κ, γ〉. Monk’s conjecture was
restated as the neat embedding problem [12, Prob. 2.12, p. 464]: For 2 < α < ω, is there a
κ < ω such that SNrαCAα+κ = SNrαCAα+κ+1? A simple calculation (replace Ra by Nr3 in
the proof of corollary 2 below) shows Monk’s conjecture holds for all α ≥ 3 if it holds for

1A construction without this property appeared in an early draft of this paper (Oct. 1997) by the first two
authors.
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α = 3. It was known that SNr3CAκ ⊃ SNr3CAκ+1 for κ = 3, 4, 5 [23]. Andréka [1] proved
SNrαCAα+κ ⊃ SNrαCAα+κ+1 for α ≥ 3 and κ < α. This yields the known results in case
α = 3. See [2, rem. 3], [23, pp. 195–6], and [12, p. 464] for more information concerning this
problem.

Theorem 1 provides a negative solution to the neat embedding problem, confirming Monk’s
conjecture.

Corollary 2 If 2 < α < ω and κ < ω then SNrαCAα+κ ⊃ SNrαCAα+κ+1.

Proof:

Observe that SRaNrαCAα+κ = SRaSNrαCAα+κ, and the same for α+ κ+ 1.
The inclusion ‘⊆’ is trivial; for ‘⊇’, note that if A ⊆ RaB for B ⊆ C ∈ NrαCAα+κ,
then A ⊆ RaC, so that A ∈ SRaNrαCAα+κ. Here, ‘⊆’ denotes ‘subalgebra’. As
mentioned above, it is clear that SRaCAα+κ = SRaNrαCAα+κ.

Now assume for contradiction that SNrαCAα+κ = SNrαCAα+κ+1. Then

SRaCAα+κ = SRaNrαCAα+κ
= SRaSNrαCAα+κ
= SRaSNrαCAα+κ+1

= SRaNrαCAα+κ+1

= SRaCAα+κ+1,

contradicting theorem 1.

Provability with α variables. Each algebra Nβ
α of the proof of theorem 1 is generated

by a single atom. This has interesting consequences for proof theory. [31] gives a first-order
language L with a single binary predicate symbol E and the equality symbol, together with
axioms and rules for this language, and a second language, L+, obtained by extending L with
operators corresponding to the relation algebra operators. The two formalisms are shown
to be equipollent in means of expression and equipollent in means of proof [31, section 2.3,

parts (vii) and (ix)]. Properties of the algebra Nβ
α translate to properties of L. A consequence

of Nβ
α ∈ SRaCAα \SRaCAα+1 is that there is a valid three-variable sentence Xα in L with a

proof (in either formalism) using α+1 variables but with no proof containing only α variables.
See theorem 13. The underlying signature of Xα consists of a single binary relation symbol
(corresponding to the atom generating Nβ

α), so is independent of α.
Corollary 2 has similar proof-theoretic implications for another provability relation `α,α+κ,

described in [3, Section 7]. This provides (α + κ)-variable proofs of α-variable formulas in
a signature consisting of α-ary relation symbols. It is closely connected to SNrαCAα+κ.
Corollary 2 implies that `α,α+κ is strictly weaker than `α,α+κ+1 for all finite α, κ with α ≥ 3.
In [14, theorem 27], it is shown that the class SNrαCAα+κ+1 cannot be defined by finitely
many axioms within SNrαCAα+κ, for finite α, κ with α ≥ 3 and κ ≥ 1. It follows that there
is no finite set of α-variable axiom schemata whose set Σ of α-variable instances satisfies
Σ `α,α+κ φ↔ `α,α+κ+1 φ for all α-variable formulas φ. See [3, 14] for details.

Notation We generally use the same notation for an algebra as for its domain. So, for
example, X ⊆ A will indicate that X is a set of elements of the algebra A (but note that we
also write B ⊆ A to denote that B is a subalgebra of A). As usual, an ordinal is the set of
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all smaller ordinals. If A is a Boolean algebra with operators, AtA denotes the set of atoms,
or minimal non-zero elements, of the Boolean part of A.

2 The algebras Nβ
α

Let 4 ≤ α ≤ β < ω and let Bβ
α = {1,

, e, p1, . . . , pα−2, q0, . . . , qβ−1}, a set with α+ β elements.

We will define a finite symmetric integral nonrepresentable relation algebra, called Nβ
α, whose

Boolean part is the Boolean algebra of all subsets of Bβ
α. For any a, b, c ∈ Bβ

α, let [a, b, c] be
the closure of 〈a, b, c〉 under permutations:

[a, b, c] = { 〈a, b, c〉 , 〈a, c, b〉 , 〈b, c, a〉 , 〈b, a, c〉 , 〈c, a, b〉 , 〈c, b, a〉 } .

Such a set is called a cycle.2 The following cycles are forbidden:

[1
,
, x, y] if x 6= y (2)

[qi, qj , qk] for all i, j, k < β (3)

[r, s, t] if r, s, t ∈ {pi, qi} for some i with 1 ≤ i < α− 1 (4)

[r, s, t] for all r, s, t ∈ {e, q0} (5)

[e, qi, qj ] if i, j < β and |i− j| > 1. (6)

Let C be the union of the set of cycles that are not forbidden. C determines the binary
operation ; as follows. For any x, y ⊆ Bβ

α, let

x;y =
∑
{c : 〈a, b, c〉 ∈ C, a ∈ x, b ∈ y}.

The converse x̆ of any x ⊆ Bβ
α is defined in the trivial way, namely, x̆ = x. The identity

element of Nβ
α is {1,}. We have, in effect, defined Nβ

α as the complex algebra of the relational

structure 〈Bβ
α, C, f, {1

,}〉, where f is the identity relation on Bβ
α, but we will use ordinary

algebraic notation for Nβ
α and ignore the distinction between {a} and a for a ∈ Bβ

α. Thus,

for example, we regard Bβ
α as the set of atoms of Nβ

α.
The conditions on α and β are sufficient for our purposes, but not entirely necessary.

The definitions apply to any α and β, but we assume α ≤ β for simplicity and to avoid
exploring fringe cases. The algebras constructed here were obtained from algebras in [21] by
the addition of all the cycles of the form [e, qκ, qκ].

Theorem 3 For 4 ≤ α ≤ β < ω, Nβ
α is a finite symmetric integral relation algebra with

cardinality 2α+β.

Proof:

By [20, Ths. 1, 3], Nβ
α is a relation algebra if, for all v, w, x, y, z ∈ Bβ

α, (a)
either [x, y, z] ⊆ C or [x, y, z] ∩ C = ∅, (b) x = y iff 〈x, 1,

, y〉 ∈ C, and (c) if

〈v, w, x〉 , 〈x, y, z〉 ∈ C then there is some u ∈ Bβ
α such that 〈w, y, u〉 , 〈v, u, z〉 ∈ C.

Now (a) is obvious from the definition of C, (b) is easy to check using the definition
of forbidden cycles, and for (c), one of 1

,
, e, p1, or p2 will work as u. Here we use

4 ≤ α ≤ β. Nβ
α is obviously finite, and it is integral since 1

,
is an atom.

2This definition of ‘cycle’ is only appropriate for symmetric algebras.
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We recall some notions from [21, 22]. If A is an atomic relation algebra, then an α-
dimensional basic matrix is a function M : α × α → At(A) such that, for all i, j, k < α,
Mi,i ≤ 1

,
, Mi,j = Mj,ĭ and Mi,j ;Mj,k ≥ Mi,k. BαA is the set of all α-dimensional basic

matrices over A. An α-dimensional cylindric basis for A is a set of S of α-dimensional basic
matrices over A such that

(C0) for all atoms a, b, c ∈ AtA with a ≤ b; c there is M ∈ S with M0,1 = a, M0,2 = b, and
M2,1 = c,

(C1) if M,N ∈ S, i, j < α, i 6= j, and Mk,l = Nk,l for all k, l < α with i, j /∈ {k, l}, then there
is L ∈ S such that Mk,l = Lk,l for all k, l with i /∈ {k, l} and Lk,l = Nk,l for all k, l with
j /∈ {k, l},

(C2) if M ∈ S and i, j < α then M [i/j] ∈ S, where M [i/j] : α × α → AtA is defined by
M [i/j]k,l = M[i/j](k),[i/j](l), for k, l < α, and [i/j] : α → α is defined by [i/j](i) = j and
[i/j](k) = k whenever i 6= k < α.

Lemma 4 For 4 ≤ α ≤ β < ω, BαN
β
α is an α-dimensional cylindric basis for Nβ

α.

Proof:

Since Nβ
α is a relation algebra (by theorem 3), it suffices (by [21, Th. 7]) to

show that 0 6=
∏
κ<α−2 xκ ;yκ whenever

x0, . . . , xα−3, y0, . . . , yα−3 ∈ {e, p1, p2, . . . , pα−2, q0, q1, q2, . . . , qβ−1}.

Suppose that there is some γ such that 1 ≤ γ < α − 1 and for every κ < α − 2,
{xκ, yκ} 6⊆ {pγ , qγ}. Then [pγ , xκ, yκ] is not a forbidden cycle (all κ < α − 2),
hence pγ ≤

∏
κ<α−2 xκ ;yκ.

If there is no such γ, then for each of the α − 2 possible values of γ there is
a κ (= κ(γ)) < α − 2 with {xκ, yκ} ⊆ {pγ , qγ}. Clearly, the κ(γ) are distinct.
By cardinalities, every possible κ < α − 2 must arise in this way: i.e., for every
κ < α− 2 there is some γ such that {xκ, yκ} ⊆ {pγ , qγ} and 1 ≤ γ < α− 1. Then
[e, xκ, yκ] is not a forbidden cycle so in this case we have e ≤

∏
κ<α−2 xκ ;yκ.

Theorem 5 Nβ
α ∈ RaCAα.

Proof:

BαN
β
α is an α-dimensional cylindric basis by Lemma 4, so, by [21, Th. 10],

we may apply the complex-algebra operator Ca and obtain a cylindric algebra
C = CaBαN

β
α with C ∈ CAα and Nβ

α
∼= RaC.

Theorem 6 Nβ
α is generated by e without using 1

,
.

Proof:
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It suffices to verify the following equations:

q0 = e ;e · e,
1
,

= q0 ;q0 · e;q0,

q1 = e ;q0 · q0 ;q0,

q2 = e ;q1 · e ;q0 · e+ q0,

qκ = e ;qκ−1 · e ;qκ−2 for 3 ≤ κ < β,

pκ = q0 ;q0 · qκ ;qκ for 1 ≤ κ ≤ α− 2.

Definition 7 Define f : ω → ω by:

f(0) = 0,
f(n+ 1) = 1 + n · f(n), for n < ω.

Theorem 8 If 4 ≤ α < ω and 2(f(α− 1) + 1) ≤ β < ω then Nβ
α /∈ SRaCAα+1.

By a simple induction on α using the definition of f , the hypothesis of the theorem implies
β ≥ α, as required for the definition of Nβ

α.
Because the proof is rather technical, it may be worth sketching some of the ideas behind

the argument, before giving the detailed proof, which is an encoding of the standard proof
of a special case of Ramsey’s Theorem [7].3 We could extend these results to cover the case
β = ω, though the algebras are no longer finite in this case. In some ways the argument is
simplified when β = ω in that we do not have to worry about the size of ‘large’ sets in the
construction — they are simply infinite. However here we use some finite value for β greater
than 2f(α− 1) + 1 (definition 7), and this makes Nβ

α into a finite relation algebra.

We saw that Nβ
α ∈ RaCAα (theorem 5) was easily proved using the following property:

with only α− 2 pairs of diversity atoms xκ, yκ ∈ Nβ
α, (κ < α− 2), it was impossible to force∏

κ<α−2 xκ ; yκ = 0. However, moving up one dimension, it is quite easy to find diversity

atoms xκ, yκ ∈ Nβ
α for each κ < (α + 1) − 2 with

∏
κ<α−1 xκ ; yκ = 0. For example, take

x0 = q0, y0 = q2, and xκ = yκ = pκ for 1 ≤ κ < α− 1, and consider the forbidden cycles. Of
course, this does not prove that Nβ

α /∈ SRaCAα+1; it merely shows that the proof of theorem 5
does not go through at this higher dimension.

In the formal proof (which follows this outline), we will assume, for contradiction, that

Nβ
α ⊆ RaC for some cylindric algebra C ∈ CAα+1. We derive a contradiction by proving the

existence of certain ‘large’ subsets St of C (1 ≤ t ≤ α − 1). (The notion of ‘large’ depends
on t and weakens as t rises, so that Sα−1 merely has to have two distinct elements. This is
formalized by requiring that |St| > f(α − t)—see definition 7.) Each x ∈ St will determine

a ‘network’ of ‘colors’—atoms x(i, t) of Nβ
α (for i < t) such that x ≤ s0i s

1
tx(i, t). The chief

properties that St will have is that (i) for each x ∈ St, x(0, t) will be a qγ for γ even and unique
to x, and (ii) for each i with 1 ≤ i < t there is a single color pκ(i) for some 1 ≤ κ(i) < α− 1,
such that the (i, t)th color x(i, t) of any x ∈ St is pκ(i). The color pκ(i) is independent of
x ∈ St (and even independent of t).

3Indeed, [7, Sect. 5] shows that any value of β greater than the integer part of (α− 2)! 2e would suffice for
our result.
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Figure 1: Colors of an element x ∈ St

To start (t = 1), as there are no values of i to consider, S1 is built in a straightforward
way, as {qγ : γ < β even}. It is large, as there is a very large number (f(α− 1)) of atoms of

Nβ
α of the form qγ for γ < β, γ even. To build St+1 from St, we begin by ‘gluing together’ any

two elements x, z of St, after first ‘moving’ the tth coordinate of x to t + 1 by taking stt+1x.
See figure 2. By fixing z and varying x, a large number of different elements can be obtained
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Figure 2: Amalgamation

in this way. Because they lie beneath elements obtained from St, their (i, t+ 1)th color is the
same as the (i, t)th color for St, if i < t; but their (t, t + 1)th colors are unpredictable and
may not all be the same. So we use the pigeon-hole principle to pick out a large subset St+1

of them in which the (t, t + 1)th color is fixed; the notion of ‘large’ is chosen so that this is
possible.

It follows from the definition of composition in Nβ
α, that for each t, the colors pκ(i) (1 ≤

i < t) are all distinct. This gives a contradiction when t = α − 1, because if x, z ∈ Sα−1 are
distinct, we can ‘glue them together’ to form a non-zero element whose (i, α)th color is pκ(i),
for all 1 ≤ i < α. Again, the colors pκ(i) must all be distinct—but now there are not enough
colors to permit this, as there are α− 1 values of i, but only α− 2 available colors.

Proof of theorem 8 Now let us prove our result formally. We will freely use the facts about
substitutions given below. If one thinks of the elements of an (α + 1)-dimensional cylindric
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algebra C as (α + 1)-ary relations R on some set X, then for x0, . . . , xα ∈ X, (x0, . . . , xα) ∈
sijR iff (x0, . . . , xi−1, xj , xi+1, . . . , xα) ∈ R. In this light, the facts seem intuitively natural.
However, the reader should beware: C may not be representable as an algebra of (α+ 1)-ary
relations, and not all ‘natural facts’ about substitutions are valid in cylindric algebras. In
fact, the study of substitution is very extensive; see, for example, [12, Sect. 1.5] or [32].

Fact 9 The following equations are valid in CAα+1, for all i, j, k, l ≤ α.

1. sij(x · y) = sijx · sijy, sij(x+ y) = sijx+ sijy, sij0 = 0, and sij1 = 1 [12, 1.5.3].

2. If x = cix then sijx = x [12, 1.5.8(i)].

3. cis
j
ix = cjs

i
jx [12, 1.5.9(i)].

4. sijckx = cks
i
jx if k 6= i, j [12, 1.5.8(ii)].

5. sijs
k
l x = skl s

i
jx if {i, j} ∩ {k, l} = ∅ [12, 1.5.10(iii)].

6. sijx = siks
i
jx if i 6= j [12, 1.5.10(i)].

7. siks
j
ix = sjks

i
jx [12, 1.5.10(vi)].

8. ci(x+ y) = cix+ ciy and ci(x · ciy) = cix · ciy. [12, Th. 1.2.6 and definition 1.1.1 C3].

Recall that we are assuming for contradiction that Nβ
α ⊆ RaC for some C ∈ CAα+1.

The domain of Nβ
α is therefore a subset of the domain of C, and in fact, each a ∈ Nβ

α is a
two-dimensional element of C (a = cia whenever 2 ≤ i ≤ α). Of course, ă = a in Nβ

α.

We need two observations on the way elements of Nβ
α behave in C. First, a = sija whenever

a ∈ Nβ
α, i, j < α + 1, and i ≥ 2. Second, composition uses only the first three dimensions of

C: a ; b = c2(s
1
2a · s02b) for a, b ∈ RaC. These dimensions can be ‘moved’, using substitutions.

In the proof of [13, Th. 5.3.8], it is shown that (∗) a;b = cj(s
1
ja · s0jb) for j = 3, and the proof

works whenever 3 ≤ j < α+ 1. So

a;b = cj(s
1
ja · s0jb) for 2 ≤ j < α+ 1. (7)

In terms of the discussion after the statement of theorem 8, this allows us to relate the (i, j)th

color of an element of C, for varying i, j, to composition in Nβ
α, using the following lemma.

Lemma 10 Let a, b ∈ Nβ
α and i < j < k < α+ 1. Then s0i s

1
ja · s0j s1kb ≤ s0i s

1
k(a ; b).

Proof:

We show that s0i s
1
k(a ;b) = cj(s

0
i s

1
ja · s0j s1kb), from which the lemma follows

immediately. It follows from i < j that 1 ≤ j, so there are two cases, 1 = j and
1 < j. First consider the case 1 < j.

s0i s
1
k(a ;b) = s0i s

1
kcj(s

1
ja · s0jb) (7)

= cjs
0
i s

1
k(s

1
ja · s0jb) fact 9.4

= cj(s
0
i s

1
ks

1
ja · s0i s1ks0jb) fact 9.1

= cj(s
0
i s

1
ja · s0j s1kb) facts 9.5, 9.6

9



In case j = 1, we have 0 = i and k ≥ 2. Choose m so that 2 ≤ m < α + 1 and
k 6= m.

s0i s
1
k(a;b) = s1kcm(s1ma · s0mb) i = 0, (7)

= cms
1
k(s

1
ma · s0mb) fact 9.4

= cm(s1ks
1
ma · s1ks0mb) fact 9.1

= cm(s1ma · s1ms1ks0mb) fact 9.6

= cms
1
m(a · s1ks0mb) fact 9.1

= c1s
m
1 (a · s0ms1kb) facts 9.3, 9.5

= c1(a · sm1 s0ms
1
kb) facts 9.1, 9.2

= c1(a · s01sm0 s1kb) fact 9.7

= c1(a · s01s1kb) facts 9.5, 9.2

= cj(s
0
i s

1
ja · s0j s1kb) i = 0, j = 1.

We construct by induction on t, with 1 ≤ t < α, a set St ⊆ Nrt+1C \ {0} with the following
properties:

1. |St| > f(α− t).

2. If x, y ∈ St then ctx = cty.

3. If x ∈ St, there is an even number k < β with x ≤ s1t qk.

4. If x, y ∈ St, k < β, and x, y ≤ s1t qk, then x = y.

5. There is a one-one map κ : {1, . . . , t − 1} → {1, . . . , α − 2} such that for each i with
1 ≤ i < t and each x ∈ St, we have x ≤ s0i s

1
t pκ(i).

We let S1 = {qk : k < β, k is even}. Note that S1 ⊆ Nr2C \ {0}. Let us check that
S1 has the required properties. We use fact 9 freely. Clearly, qk ; 1 = 1 for any k. That is,
1 = c2(s

1
2qk · s021) = c2s

1
2qk = c1s

2
1qk = c1qk. It follows that property 2 above holds for S1. We

have qk = s11qk for each k, so property 3 holds. Property 4 holds because the qk (for k < β)
are pairwise disjoint. This gives property 1 because |S1| = |{k < β : k is even}| = dβ2 e ≥
f(α− 1) + 1 > f(α− 1). Since t = 1, the last condition is vacuously true with κ = ∅.

Assume now that St is constructed, for some t with 1 ≤ t < α− 1.

Lemma 11 Suppose that x ∈ St, i < t, and a ∈ Nβ
α satisfy x ≤ s0i s

1
ta. Then stt+1x ≤ s0i s

1
t+1a.

Proof:

By fact 9, stt+1x ≤ stt+1s
0
i s

1
ta = s0i s

t
t+1s

1
ta = s0i s

1
t+1s

t
1a = s0i s

1
t+1a, the last

equality holding trivially if t = 1, and because a ∈ Nr2C if t ≥ 2.

Now we show how to obtain St+1. Fix some z ∈ St. For each atom p ∈ {p1, . . . , pα−2} and
x ∈ St \ {z}, define

τpx = ct+1(s
t
t+1x · s0t s1t+1p).

Let κ : {1, . . . , t − 1} → {1, . . . , α − 2} be the one-one function given by property 5 for St,
and let D = {pk : 1 ≤ k < α− 1, k /∈ rng(κ)}. Note that |D| = α− 2− |rng(κ)| = α− 1− t.
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Lemma 12 If x ∈ St \ {z}, then z ≤
∑
{τpx : p ∈ D}.

Proof:

Fix x ∈ St \ {z}.
Claim. z · stt+1x ≤

∑
p∈D s0t s

1
t+1p.

Proof of Claim. Using fact 9.1, we have

z · stt+1x ≤ 1 = s0t s
1
t+11 = s0t s

1
t+1

( ∑
a∈AtNβα

a
)

=
∑

a∈AtNβα

s0t s
1
t+1a.

So it suffices to show that if a ∈ AtNβ
α and (z · stt+1x) · s0t s1t+1a 6= 0, then a /∈

{1,
, e, qk : k < β} ∪ {pl : l ∈ rng(κ)}.
Therefore let w = z · stt+1x · s0t s1t+1a, for some atom a of Nβ

α, and assume that
w 6= 0. Properties 3 and 4 for St give us distinct even numbers l,m < β such
that z ≤ s1t ql and x ≤ s1t qm. Observe that by lemma 11, stt+1x ≤ s00s

1
t+1qm, so that

w ≤ stt+1x ≤ s00s
1
t+1qm. So w satisfies:

w ≤ s00s
1
t ql, w ≤ s0t s

1
t+1a, w ≤ s00s

1
t+1qm.

Hence, w ≤ s00s
1
t ql · s0t s1t+1a, and by lemma 10, w ≤ s00s

1
t+1(ql ; a). We now see that

w ≤ s00s
1
t+1((ql ; a) · qm), whence (ql ; a) · qm 6= 0—i.e., [a, ql, qm] is not a forbidden

cycle.
Now, from the definition of composition in Nβ

α, a = 1
,

is impossible, since as
l 6= m, this would give a forbidden cycle of type (2), a = qk is impossible, for
k < β, since this gives a forbidden cycle of type (3), and a = e is impossible, since
this gives a forbidden cycle of type (6) (using the fact that l and m are distinct
even numbers, so |l −m| > 1).

To rule out pl for l ∈ rng(κ) when t > 1, suppose that i ∈ dom(κ) is such that
κ(i) = l, so that x, z ≤ s0i s

1
t pl by property 5. So w ≤ z ≤ s0i s

1
t pl, and by lemma 11,

w ≤ stt+1x ≤ s0i s
1
t+1pl. As w · s0t s1t+1a 6= 0, we have s0i s

1
t pl · s0i s1t+1pl · s0t s1t+1a 6= 0. By

lemma 10, this implies that s0i s
1
t+1(pl ; a · pl) 6= 0. Thus, a 6= pl, since [pl, pl, pl] is

a forbidden cycle of type (4). This proves the claim.

Now, to prove the lemma, observe that

z = z · ctz = z · ctx by property 2 of St,

= z · ctst+1
t x = z · ct+1s

t
t+1x by x ∈ Nrt+1C and fact 9.3,

= ct+1(z · stt+1x) since z ∈ Nrt+1C,
= ct+1(z · stt+1x ·

∑
p∈D s0t s

1
t+1p) by the claim,

≤ ct+1(s
t
t+1x ·

∑
p∈D s0t s

1
t+1p) by fact 9.8,

= ct+1
∑

p∈D(stt+1x · s0t s1t+1p) by distributing,

=
∑

p∈D ct+1(s
t
t+1x · s0t s1t+1p) by fact 9.8

=
∑

p∈D τ
p
x by the definition.

Our path is now clear. Since the lemma holds for all x, by Boolean manipulation we get

z ≤
∏

x∈St\{z}

∑
p∈D

τpx =
∑

g:St\{z}→D

∏
x∈St\{z}

τ g(x)x .
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So as z 6= 0, there is g : St \ {z} → D with z ·
∏
x∈St\{z} τ

g(x)
x 6= 0. Choose X ⊆ St \ {z} with

|X| > f(α− (t+ 1)) on which g is constant. This is possible, for if |g−1(p)| ≤ f(α− t− 1) for
all p ∈ D, then |St \ {z}| ≤ |D| · f(α − t − 1) = (α − t − 1) · f(α − t − 1) = f(α − t) − 1, so
that |St| ≤ f(α− t), contradicting property 1 for St. Let p be the constant value of g on X,
and define:

ζ = z ·
∏
x∈X τ

p
x 6= 0,

x′ = stt+1x · s0t s1t+1p · ζ, for each x ∈ X,
St+1 = {x′ : x ∈ X}.

We check the required properties for St+1. Recall that τpx = ct+1(s
t
t+1x·s0t s1t+1p). To begin,

note that ciy = y for every y ∈ St+1 and i ≥ t + 2, so that St+1 ⊆ Nrt+2C. For property 2,
observe that ct+1ζ = ζ, so for all x ∈ X,

ct+1x
′ = ct+1(s

t
t+1x · s0t s1t+1p · ζ) = ct+1(s

t
t+1x · s0t s1t+1p) · ζ = τpx · ζ = ζ.

This also shows that the x′ ∈ St+1 are non-zero, since ζ 6= 0.
Consider property 3. Let x ∈ X. By property 3 for St, x ≤ s1t qk for some even k. By

definition of x′ and lemma 11 (with i = 0), x′ ≤ stt+1x ≤ s1t+1qk. This proves property 3.
Now we deal with properties 4 and 1. For property 4, assume that x, y ∈ X and x′, y′ ≤

s1t+1qb for some b < β. We will prove that x = y. Choose even k, l < β such that x ≤ s1t qk and
y ≤ s1t ql. By the argument for property 3, x′ ≤ s1t+1qk and y′ ≤ s1t+1ql. So x′ ≤ s1t+1qk ·s1t+1qb =
s1t+1(qk · qb). Since x′ 6= 0, we must have qk = qb and k = b. Similarly, l = b. So k = l, and
by property 4 for St, we obtain x = y, as required. Hence, x′ = y′, which yields property 4
for St+1. This argument also shows that x′ = y′ ⇒ x = y, since if x′ = y′ then by property 3
there does exist b < β with x′, y′ ≤ s1t+1qb. So the map x 7→ x′ is a bijection from X to St+1,
whence |St+1| = |X| > f(α− (t+ 1)). This proves property 1 for St+1.

Finally, we arrange property 5. Recall that κ : {1, . . . , t−1} → {1, . . . , α−2} is the existing
(possibly empty) one-one function for St. Let 1 ≤ i < t and x ∈ X. Then x ≤ s0i s

1
t pκ(i),

so by lemma 11, x′ ≤ stt+1x ≤ s0i s
1
t+1pκ(i). Finally, for the case i = t, we have x′ ≤ s0t s

1
t+1p

by definition of x′. So we may define κ′ : {1, . . . , t} → {1, . . . , α − 2} suitable for St+1 by:
κ′�{1,...,t−1} = κ, and pκ′(t) = p. Then κ′ is one-one, because p ∈ D. This finishes the inductive
construction.

In the case t = α− 1, the construction yields a set St with |St| > f(α− t) = 1. So there
are distinct z, x ∈ St. In this case, the one-one map κ : {1, . . . , t − 1} → {1, . . . , α − 2} is
surjective, so that D = ∅. Applying lemma 12 to x now shows that z ≤

∑
{τpx : p ∈ D} = 0.

This is a contradiction, and proves theorem 8.

3 Application to logic

We apply the main result to the logical systems of [31] and solve a problem raised by Tarski
and Givant4 by showing in theorem 13 that the first displayed inequality on page 93 of [31]
does hold for every n > 4. It was previously known to fail for 3, to hold for 4, and to hold for
infinitely many n [21, Th. 24(i), Th. 25], [31, pp. 92–3]. We review here the concepts we need

from [31]. L is a language of first order logic that has the equality symbol 1
◦

and one additional
binary predicate E (for “elementhood”). The set of variables of L is Υ = {v0, v1, v2, . . . }. The
only connectives used in [31] are the implication and negation symbols. The only quantifier is

4[31, p. 93], [6, p. 208, problem 15], and [4, p. 735, problem 23].
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the universal quantifier. The other connectives and the existential quantifier are introduced
as abbreviations. Atomic formulas are formed as usual; v0Ev1 and v21

◦
v3 are examples

of atomic formulas. Formulas are formed in the standard way from atomic formulas using
propositional connectives and quantifiers. A sentence is a formula with no free variables. The
set of formulas of L is Φ, and the set of sentences of L is Σ. For any formula X ∈ Φ, the
universal closure [[[X ]]] of X is formed by universally quantifying X with respect to all its
free variables, where the order of quantification is determined by the indices of the variables.
There are nine logical axiom schemata for L, adopted from [30], namely,

(AI) [[[ (X → Y ) → ((Y → Z) → (X → Z)) ]]],

(AII) [[[ (¬X → X) → X ]]],

(AIII) [[[X → (¬X → Y ) ]]],

(AIV) [[[ ∀x∀yX → ∀y∀xX ]]],

(AV) [[[∀x(X → Y ) → (∀xX → ∀xY ) ]]],

(AVI) [[[ ∀xX → X ]]],

(AVII) [[[X → ∀xX ]]], where x is not free in X,

(AVIII) [[[ ∃x(x1
◦
y) ]]], where x 6= y.

(AIX) [[[x1
◦
y → (X → Y ) ]]], where X is atomic and Y is obtained from X by replacing a

single occurrence of x by y,

for X,Y, Z ∈ Φ and x, y ∈ Υ. All these axioms are sentences, and modus ponens is the only
rule of inference. The rule of “generalization” is not needed. If a sentence X ∈ Σ can be
proved in L we write ` X. By the completeness theorem, for any sentence X ∈ Σ we have
` X iff X is logically valid (true in all models).

Tarski’s extension of L, called L+, is obtained by adding operators on predicates and
another equality symbol, namely = (which is why 1

◦
is used earlier). There are two binary

and two unary predicate operators, corresponding to the basic operations of relation algebras.
For example, if P and Q are binary predicates of L+, then so are P+Q, P�Q, P , and P̆ . The
set of predicates so obtained, starting from E and 1

◦
, is Π. The set of variables of L+ is Υ (as

it is for L). The atomic formulas of L+ are formed using Π instead of {E,1
◦
}. For example,

v0E � Ev1 is an atomic formula of L+. Additionally, L+ contains other atomic formulas,
namely the variable-free equations P = Q for all predicates P,Q ∈ Π. The formulas and
sentences of L+ are obtained from this larger set of atomic formulas in the same way as in L.
Φ+ and Σ+ are the sets of formulas and sentences of L+, respectively. The logical axioms
(AI)–(AIX) of L are included among the logical axioms of L+. In addition, some axioms are
added that serve as definitions of the predicate operators, namely,

(DI) ∀v0∀v1(v0P +Qv1 ↔ (v0P v1 ∨ v0Qv1)),

(DII) ∀v0∀v1(v0P v1 ↔ ¬v0P v1),

(DIII) ∀v0∀v1(v0P�Qv1 ↔ ∃v2(v0P v2 ∧ v2Qv1)),

(DIV) ∀v0∀v1(v0P̆ v1 ↔ v1P v0),
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(DV) P = Q↔ ∀v0∀v1(v0P v1 ↔ v0Qv1).

where P,Q ∈ Π. For an L+-sentence X, we write `+ X if there is a proof of X in L+. L+
is an extension of L. Indeed, an immediate consequence of the definitions is that Φ ⊆ Φ+

and Σ ⊆ Σ+. In [31] it is shown that L+ is actually equipollent with L in means of both
expression and proof; there is a recursive function G that eliminates occurrences of the
predicate operators in accordance with (DI)–(DV), preserving provability and meaning; see
[31, Ch. 2] for details.

For 3 ≤ α < ω, the formalisms Lα and L+α are obtained from L and L+ by restricting the
set of variables to Υα = {v0, . . . , vα−1} [31, p. 91]. The sets of formulas and sentences of Lα
and L+α are Φα, Φ+

α , Σα, and Σ+
α . In accordance with [31, p. 70], we may take the logical

axiom schemata of Lα to be (AI)–(AIX), restricted to formulas in Φα, together with

(AIX′′) [[[x1
◦
y → (X → Xxy) ]]],

where x, y ∈ Υ, X ∈ Φα, and Xxy is obtained from X by transposing x and y, that is,
simultaneously replacing every occurrence (whether free or bound) of x with y and y with x,
and, in case α = 3,

(AX′) [[[∃v2(∃v1(X ∧ Yv0v2) ∧ Zv0v2) ↔ ∃v2(Xv1v2 ∧ ∃v0(Yv1v2 ∧ Z) ]]],

where X,Y, Z are any formulas in which v0 and v1 are the only free variables. Axiom
(AIX′′) accompanies (AIX) for various technical reasons discussed in [31, pp. 70–1]; it makes
it possible to respell bound variables by allowing a proof that “alphabetic variants” are
equivalent. Axiom (AX′), which expresses the associative law for relative multiplication, is
not included when α > 3 because in that case it is derivable on the basis of the remaining
axioms. The logical axioms of L+α are those of Lα together with (DI)–(DV). We write `α X
if there is a proof of X in Lα and we write `+α X if there is a proof of X in L+α . Note that
the next theorem fails when α = 3 [21, Th. 24(i)].

Theorem 13 Let 4 ≤ α < ω. There is an equation P = Q ∈ Σ+
3 with

`+α+1 P = Q but 6`+α P = Q

and a sentence X ∈ Σ3 such that

`α+1 X but 6`α X.

Proof:

The proof is based on the proof of [21, Th. 25]. We concentrate on the first
part of the theorem; the second part then follows easily using the elimination
mapping G.

Suppose β > α. Later we will choose β ≥ 2(f(α− 1) + 1). We use the algebra

Nβ
α to form an algebraic realization of L+α . By Lemma 4, the set BαN

β
α is an

α-dimensional cylindric basis for Nβ
α. It is obvious that BαN

β
α is ‘permutation

closed’: if M ∈ BαN
β
α and τ is a transposition on α then BαN

β
α also contains

the matrix Mτ , which is defined by (Mτ)ij = Mτ(i),τ(j) for all i, j < α. So

M = 〈Nβ
α, e, BαN

β
α〉 is an α-dimensional algebraic realization according to [21,

Def. 16].
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Figure 3: The homomorphism g

The set Π of predicates forms an algebra under the predicate operations,
namely

P =
〈
Π,+, ,�, ,̆1

◦〉
.

The algebra P is an absolutely free algebra that is freely generated by E (see [31,
p. 238]). Treating the connectives and quantifiers as operations on formulas, we
construct another absolutely free algebra, this time similar to (α+ 1)-dimensional
cylindric algebras, namely,

C =
〈
Φ+
α+1,∧,∨,¬,∃vκ, vκ1

◦
vλ

〉
κ,λ<α+1

.

Define a binary relation '+
α+1 on Φ+

α+1 as follows. If X,Y ∈ Φ+
α+1, then

X '+
α+1 Y iff `+α+1 [[[X ↔ Y ]]].

It is easy (but somewhat tedious) to show, using axioms (AI)–(AIX) and (AIX′′),
that '+

α+1 is a congruence relation on C and that C/'+
α+1 ∈ CAα+1. Note that

Ra
(
C/'+

α+1

)
is a relation algebra since α+ 1 ≥ 4.

Let A be the subalgebra of Ra
(
C/'+

α+1

)
generated by v0Ev1/'+

α+1. Observe
that A ∈ SRaCAα+1. Let h be the homomorphism from P onto A determined
by the condition that h(E) = v0Ev1/'+

α+1. With the help of (DI)–(DV), it is
easy to prove that h(P ) = v0P v1/'+

α+1 for every P ∈ Π. (Alternatively, one can
define the mapping h by this formula, and then use (DI)–(DV) to prove that h is
a homomorphism.)

The denotation function DM [21, Def. 17] maps predicates in Π to elements

of Nβ
α and formulas in Φ+

α to subsets of BαN
β
α. Restricted to Π, DM is a ho-

momorphism from P onto Nβ
α. Since P is absolutely freely generated by E, this

homomorphism is completely determined by the condition that DM(E) = e. It
follows from [21, Th. 22(iii)] that

`+α X implies DM(X) = BαN
β
α (8)

Next we will derive a contradiction by assuming that DM(P ) = DM(Q) when-
ever h(P ) = h(Q) and P,Q ∈ Π. This assumption implies that DM can be

factored through h, yielding a homomorphism g from A onto Nβ
α where g(h(P )) =

DM(P ) for every P ∈ Π. See figure 3. Since SRaCAα+1 is a variety, it is closed
under forming homomorphic images, and since A ∈ SRaCAα+1 we must have
Nβ
α ∈ SRaCAα+1 too. But Nβ

α is not in SRaCAα+1 if we choose β ≥ 2(f(α−1)+1).
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From this contradiction, it follows that there must be P,Q ∈ Π with h(P ) =
h(Q) and DM(P ) 6= DM(Q). From h(P ) = h(Q) we get `+α+1 [[[ v0P v1 ↔ v0Qv1 ]]],
which implies `+α+1 P = Q. On the other hand, DM(P ) 6= DM(Q) implies

DM(P = Q) 6= BαN
β
α by [21, Lem. 21(x)], hence by (8), 6`+α P = Q. Note that

P = Q is in Σ+
3 since it is a sentence with no variables at all. Thus, P = Q

witnesses the first part of the theorem. To get a sentence witnessing the second
part, just apply the elimination mapping G [31, 2.3(iii)] to P = Q, obtaining a
sentence G(P = Q) ∈ Σ3. By the equipollence results [31, Sect. 3.8] this gives
6`α G(P = Q) and `α+1 G(P = Q).
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