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ABSTRACT. A classical problem in algebraic logic is to characterise
classes of representable algebras. Taking the example of the repre-
sentable Tarskian relation algebras, we will discuss how games can
help with such problems, and how they lead to a deeper study of
representability.

Introduction

A classical problem in algebraic logic is to characterise classes of repre-
sentable algebras. Taking the example of the representable Tarskian rela-
tion algebras, we will discuss how games can help with such problems, and
how they lead to a deeper study of representability. We will be able to
use the games to help to explain some classical results in this area, and to
discuss some more recent ones.

1 Algebras of relations

Algebraic formalisation of unary relations began with Boole in the 19th
century. It was very successful. The boolean algebra axioms are sound and

*We would like to thank the referee for helpful comments on a draft of this paper.
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complete: every boolean algebra is isomorphic to a field of sets [Stog36].

De Morgan proposed considering binary (and higher-arity) relations.
Peirce and Schroder developed the theory and established hundreds of laws
of binary relations (cf., e.g., [Schg95]). [Mad91] has an interesting discussion
of the history. But Pierce lamented:

The logic of relatives is highly multiform; it is characterized by innumerable
immediate conclusions from the same set of premises. ... The effect of these
peculiarities is that this algebra cannot be subjected to hard and fast rules
like those of the Boolian calculus; and all that can be done in this place is
to give a general idea of the way of working with it. [Pei33, 3.342]

In the 1940s, Tarski and his collaborators began to investigate binary
relations with modern algebra. Tarski laid down the notion of a field of
binary relations, by which he meant a subalgebra of a product of algebras
of the form

me(X) = (p(X X X)’U’ \7 ®7 X X X7 IdX7 717 | )7

for some set X, where

Idx = {(z,z):2¢€ X},
R~ = {(y.2): (z,y) € R},
RIS = {(z,y):3z((z,2) e RA(z,y) € 9)}.

He wanted to characterise the algebras isomorphic to fields of binary rela-
tions. Such algebras are called representable relation algebras, the class of
them is denoted RRA, and the isomorphism is called a representation.

It’s easily seen why Tarski wanted to admit subalgebras of Re(X). They
are simply obtained by omitting some of the relations in fRe(X), but they
still contain @, X x X, and Idx, and are closed under the operations, so
they can certainly be considered as algebras of binary relations.

But why products? One could argue that if X; (i € I) are pairwise
disjoint and have union X, the product [],.; Me(X;) is isomorphic to the
relativisation of Me(X) to the equivalence relation £ = J;c;(X; x X;)
on X, defining ‘being in the same X;’. Relations not contained in E are
deleted, and the algebra operations are intersected with E: e.g., a;b in the
relativisation is defined to be ¢NE, where ¢ is a; b evaluated in Re(X). Such
a relativisation is some sort of algebra of binary relations, but maybe not
the kind one would first think of considering. So perhaps a better answer
is probably that under this ‘subalgebras of products’ definition, RRA is a
variety — an equationally axiomatised class. This was proved by Tarski
in [Tar55]. It follows from Birkhoff’s theorem [Bir35] that RRA is closed
under subalgebras, products, and homomorphic images.
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An algebra is simple if it has no non-trivial proper homomorphic im-
ages. It can be shown that all simple representable relation algebras are
isomorphic to subalgebras of fe(X) for some X: there is no need to con-
sider products. For simplicity of exposition, we will generally restrict our
attention here to simple algebras; but most of what we say is either true
for arbitrary ones, or can easily be generalised to them. We also generally
consider only non-degenerate relation algebras, satisfying 0 # 1. (When
0 = 1, the algebra has only one element; it is isomorphic to PRe(&) and so
is representable. This case is not interesting.)

Relation algebras In [Tar4l], Tarski proposed axioms to capture RRA.
These axioms defined the class RA of ‘relation algebras’.

Definition 1. A relation algebra is an algebra of the form
A= (A,+,-,0,1,1°,7,;) such that

e (A,+,—,0,1) is a boolean algebra
e (A,;,1) is a monoid

e ‘Peircean law’ (actually discovered by De Morgan):
(a;b) - c#0<=(a;c) -b#0<=a-(c;b) #0 for all a,b,c € A.

As is standard, we use the notation +,—,0,1,1’,7,; for ‘abstract’ algebra
operations corresponding to the ‘concrete’; set-theoretically defined oper-
ations U,\, @, X x X, Idx, ~!, | (respectively) on algebras of binary
relations. Considering triangles helps to make the point of the Peircean law
clear:

The axioms in Definition 1 are equivalent to Tarski’s original ones, which
were equations. We will not need it here, but it may be of interest to
mention that the relation algebra axioms actually capture all equations
valid in RRA that can be proved with 4 variables. The underlying proof
system here can be (e.g.,) a sequent calculus or a Hilbert system for first-
order logic, tuned to produce proofs using only 4 variables. For details, cf.
[Mad83, GivTar87, Mad89].

Did Tarski’s axioms capture RRA? Well, soundness (RRA C RA) is
easily seen. But completeness failed. In a celebrated 1950 paper, Lyndon
[Lyn50] gave an example of A € RA \ RRA. In 1964, Monk [Mony64],
building on work of Lyndon [Lyn61] and Jénsson [Jén59], showed that
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RRA is not finitely axiomatisable, so proving the key ‘negative’ result in
the field. Many other negative results about RRA are now known. One of
the stronger ones is:

Theorem 2 (Hirsch, Hodkinson, [HirHod;02a, Theorem 18.13]).
There is no algorithm to tell whether an arbitrary finite relation algebra is
representable.

The following problem was stated in [HenMonyTar71] for ‘cylindric alge-
bras’, but the version for relation algebras is just as pertinent: find a simple
intrinsic characterisation of (the algebras in) RRA. In the next sections,
we will look into this question using games.

2 Case study: atomic and finite relation algebras

First, we try to cast relation algebras and representations in a more man-
ageable form. This is quite useful for atomic relation algebras, and for
representations of finite relation algebras. We will consider the general case
later.

2.1 Atomic relation algebras

An element a of a relation algebra A is said to be an atom if a is a minimal
non-zero element with respect to the standard boolean algebra ordering ‘<’,
where ¢ < y <= x+y = y. A is said to be atomic if for every non-zero
element = of A, there is an atom a of A with a < z. All finite relation
algebras are atomic, of course. We will say more about infinite atomic
relation algebras in Sections 4 and 5.

Atomic relation algebras can be quite easily specified. One can prove
from the RA axioms that ~ and ; are additive. That is, (a +b)" = a + b,
(a+b);c=a;c+b;c,and a;(b+c¢) =a;b+ a;c are valid laws in relation
algebras. We can even prove from the RA axioms that ~ and ; are additive
over infinite sums. It follows that in an atomic relation algebra A, the
operations ~ and ; are determined by their values on atoms, and we can
specify A by stating:

e the set At A of atoms of A, and which elements of A are the sum of
which atoms (this pins down the boolean structure of A),

e which atoms are < 17,
e 4, for each atom a (it turns out that @ is also an atom),

e for each a,b,c € At A, whether a;b > ¢ or not. In the case where
a;b > ¢, we say that (a,b,c) is a ‘consistent triple’.
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Remark: It follows from the Peircean law that (a,b,¢) is consistent if and
only if its Peircean transforms (a,b,c), (a,c,b), (¢,b,a), (b,&ad), (& a,b),
(b, d, &) are all consistent.

2.2  Ultrafilters

Given a relation algebra A, we’ll write A for its domain as well. An ultrafilter
of A is a subset @ C A such that

l.a,bea=a-b€a,
2.a>bea=ac€aq,
3. « contains precisely one of a, —a, for every a € A.

Examples of ultrafilters are sets « of the form {b € A : b > a}, for any
a € At A. Such ‘atom-generated’ ultrafilters are called principal ultrafilters.
All ultrafilters « satisfy A € o and 0 ¢ a.

Assume that A is simple, and suppose we are given a representation
h: A — Re(X) for some set X. For z,y € X, let

hl(z,y) ={a€ A: (z,y) € h(a)}.
It is easy to check that
Lemma 3. h~!(z,y) is always an ultrafilter of A.
2.3 Representations of finite simple relation algebras
The following is well known and easily proved:
Lemma 4. Any ultrafilter of a finite relation algebra is principal.

Hence, a representation h : A — Re(X) of a finite (simple) relation
algebra A can be viewed in a simple way as a complete labelled directed
graph M = (X, \), where X is a set and A : X x X — At A is a ‘labelling
function’. We just define \(z,y) to be the (unique) atom in h=1(z,y). It
can be checked that for all z,y, 2z € X,

AMz,y) <1V <=2z =y.

Az,y) = Ay, ©)~.

Mz, y) < Mz, 2) 5 A(2,y). That is, ‘all triangles are consistent’.

e For all a,b € At A, if Mx,y) < a;b then there is w € X with

AMz,w) = a and AMw,y) = b. ‘All consistent triples are witnessed
wherever possible.’

Conversely, given a map A : X x X — At A satisfying these conditions,
we can obtain a conventional representation h : A — PRe(X) by defining
hia) ={(z,y) € X x X : a > Mz,y)}. The (X, )’ view of representations
of finite relation algebras is very handy, as we will see.
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2.4 Two finite relation algebras
1. McKenzie’s algebra K.
Four atoms: 1’,<, >, (so 16 elements altogether).

=1, <=> 3S=<, f=t.
All triples are consistent except Peircean transforms of:
(ya,ad') for a # d, (<,<,>), (<, <, 1), and (8,4, 1).

2. The ‘anti-Monk algebra’ M. We use this name not out of lack of
respect, but because M is in some way the opposite of what are known
as ‘Monk algebras’. We believe M was discovered by Maddux.

Four atoms: 1’,r, b, g.

a = a for all atoms a. (So M is a relation algebra all of whose elements
are self-converse. Such a relation algebra is said to be symmetric.)

All triples are consistent except Peircean transforms of: (1’;a,a’) for
a#d,and (r,b,g).

These are both relation algebras. Can you tell if they are in RRA or not?
Games will help to tell, as we will see.

3 Games and representability (finite relation
algebras)

In [Lyn50], Lyndon characterised the finite representable relation algebras
by a ‘step by step’ construction. In a nutshell, his approach was this:

1. Try to build ‘step by step’ a representation of a given finite relation
algebra.
2. Write first-order axioms expressing that you can succeed.

The resulting axioms will be true in a finite relation algebra A just when A
has a representation.

It’s interesting to compare Lyndon’s method with the Henkin construc-
tion of a model of a consistent first-order theory T, as given in, e.g., [Hodg93,
Theorem 6.1.1] or [ChaKei; 90, §2.1]. In this construction, 7" is extended,
sentence by sentence, to a consistent theory U in a larger signature with ad-
ditional constants. These new constants are called ‘witnesses’, because the
construction arranges that they witness truth of all existential statements
in U. Together with other properties of U enforced by the construction,
this ensures that a model of U (and hence of T') can be built easily from
the witnesses.

The important point for us is that starting from an inconsistent T, the
construction won’t work, because it will get stuck somewhere. Consistency
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of the original T is used to prove that the construction succeeds, never
getting stuck. But this gives us a test for consistency of any theory T. We
just try to do the construction, and see if it succeeds.

This is rather what Lyndon did. His construction of a representation of
a finite relation algebra A4 succeeds precisely when A has a representation.
The axioms he wrote expresses that the construction succeeds, and hence
they characterise representability of A.

We are now going to explain (a minor variant of) Lyndon’s step by step
characterisation in more detail, using a game.

3.1 Networks

The ‘pieces’ played during the game are called networks. A network is like a
piece of a representation (though of course, the given algebra might not have
a representation). It satisfies the universal conditions of ‘representation’.

Definition 5. Let A be an atomic relation algebra. An A-network is a
complete labelled directed graph N = (X, A) where X # gand A : X x X —
At A is a labelling function satisfying, for all z,y,z € X,

o \Nz,y) <1 <=z =y,

° Az,y) = My, 2)~,
o Az,y) < Az, 2);A(2,y) — all triangles in N are consistent.

We write N for any of N, X, A\. We rely on the context to tell which one is
meant.

3.2 Games on A-networks

Let A be a non-degenerate atomic relation algebra —so At A # @— and let
n < w. The game G, (A) has two players, V (male) and 3 (female), and n
rounds. If n = 0, there are no rounds and we declare 3 the winner. Assume
n > 0. In round 0, V picks ag € At A, and 3 plays an A-network Ny with ag
occurring as a label in it. In round t (1 <t < n), suppose that the current
network at the start of the round is N;_;. Play goes as follows. First, V
picks z,y € Ny—1 and a,b € AtA with a;0 > N1 (z,y):

xT
Nt—l

Ni_1(z,y) <asb
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If there is already a node z € N;_; such that N;_i(x,z) = a and
Ni_1(z,y) = b, then 3 simply sets Ny = N;_;. If not, she has more work
to do. She begins by adding a new node z (say) to Ny;_1, and labelling
the edges (z,z) with a and (z,y) with b. This forms the basis of the new
network N;:

The player 3 now has to complete the labelling of Ny, by defining Ny (u, v)
for all remaining pairs (u,v) of nodes. These are the ones other than (z, z),
(z,y), and pairs of nodes of N;_1, whose labels are already fixed:

It can be very hard for 3 to complete the labelling. N; must be a network,
so all its triangles must be consistent. Worse still, N; is then passed on
to the next round (if any), in which V can make new choices. So even if
3 succeeds in creating a network Ng, she may have left herself open to a
lethal attack by V in a later round. If in some round she cannot manage
to complete the labelling and create a network, she loses. Thus, 3 wins the
play of G, (A) if she always responds legally to ¥’s moves.

Note that it is in 3’s interests to play as small a network (with as few
nodes) as possible. Although she is permitted, by the rules of the game, to
make arbitrarily large extensions to the networks played in the game, she
only needs to include the nodes shown in the diagrams above. Additional
nodes are superfluous and will only make it easier for V to win, by giving
him more rope to hang her with. We will always assume that she plays this
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way, so that Ny has at most two nodes, and for each ¢, Nyy; has at most
one more node than N;.

The connection of the game to representability is given by the following
theorem. It is more or less what Lyndon proved in [Lyn50] (but he didn’t
use games). The theorem is not restricted to simple relation algebras, but
it only covers finite relation algebras; we will consider what to do about
infinite relation algebras later.

Theorem 6. Let A be a finite relation algebra.

1. A € RRA if and only if 3 has a winning strategy in G, (A).

2. The player 3 has a winning strategy in G, (A) if and only if she has
one in G, (A) for all finite n.

3. Omne can construct first-order sentences o, for n < w (independently
of A) such that A | o, if and only if 3 has a winning strategy in
Gn(A).

Hence, for a finite relation algebra A, we have A € RRA <— A | {0, :
n < w}.

Proof. We sketch the main ideas of the proof. For a more rigorous treat-
ment, ¢f. [HirHod;02a, Chapter 11].

1. If A € RRA then 3 can use a representation as a guide in winning
Gu(A). Conversely, if she has a winning strategy in G, (A), then
from plays of the game in which she uses her strategy and V plays all
possible moves at some stage, we can recover a representation of A.

2. = is clear. For the converse, we observe that because A is finite, 3
has only finitely many possible responses to ¥’s move in any round.
Konig’s tree lemma can now be used to collimate her responses in the
finite games into a single winning strategy in G, (A).

3. First, given an A-network N, and k < w, we write an axiom 7 (V)
saying that 3 can win Gi(A) starting from N. We go by induction
on k. The case k = 0 is easy: we need only say that N is a network:

n(N) = A\ (N@o<r A A\ Neyzr)
seN yeN\{x}
A N\ Ny =N(y,z)~
z,yeN

A /\x,y,zEN N(ﬂf,y) S N(sz)?N(’Z?y)

The next formula 741 (V) says that whatever move V makes in the
first round of the game, there is some N’ such that if 3 responds to
V’s move with N’ then she can win Gj(A) starting from N’ — i.e.,
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such that 7,(N’) holds: (7x(N’) has been constructed inductively).
Roughly, 7441 looks like this:

Ter1(N) = /\ Va,b(N(m,y)Sa;beElN’QN
z,yeN
(V) A\ (N'(2,2) = a AN'(z,) = b)) ).
zEN'

The formula uses wvariables to hold the labels on network edges. The
expression AN’ O N in the middle is really shorthand for a string of
quantifiers of the form Jvy ... Ju;, relativised to atoms. The variables
v; represent the atoms labelling the ‘new’ edges of N’ (if any) that
are not already edges of N. We know how many there are, because
N’ has at most one more node than N does. The two possibilities —
of N’ being the same as N or bigger— mean that the rest of the
formula is actually a disjunction to cope with these two cases. In the
case N’ = N, the variables v; are not used. For simplicity, this is not
shown above. More details can be found in [HirHod;97a, HirHod; 02a).

Finally, we let 0, = VagaN (1,1 (N)AV, ey N(2,y) = ag) forn > 0.
Here, the N signifies JvgoJvgr JvigTFvii. The variable v;; represents
the atom N(7,7). Again, these quantifiers are relativised to atoms
of the algebra, and again, they are actually followed by a disjunction
(not shown above) to allow for the possibility that in her first move,
3 might pick a one-node network (in which case only vy is used) or a
two-node network. We let o9 = T.

q.e.d.

The axioms o, (plus the RA axioms) seem to give an intrinsic charac-
terisation of the finite algebras in RRA. But is it a simple one? Can you
tell whether McKenzie’s algebra and the anti-Monk algebra satisfy the o,
for all n?

It’s easier to use the games G,, directly.

Example 7 (McKenzie’s algebra K). Recall that this relation algebra
has four atoms: 1, <, >,#. We have r=1v <=> 3=, ﬂ =f.
All triples of atoms are consistent except Peircean transforms of (1’,a,a’)
fora # ', (<,<,>), (<,<,t), and (§,1,1).

Consider the following play of G, (K). The player V starts off by picking
the atom . The player 3 responds with the network Ny as shown below.

lg_ i ol
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The edge (0,1) is labelled by §. We know that in any C-network N and nodes
x,y of N, we have N(z,y) = 1" if and only if z = y, and N(y,z) = N(z,y)~.
So 3 has no choice over the labels of the remaining edges of Ny. We don’t
need an arrow on the edge in the diagram to indicate its direction, because
# = #, so the converse edge (1,0) will also be labelled f.

The player V continues by choosing the two nodes 0,1 of Ny, and the
atoms > and <. The player 3 has to add a new node, say 2, and label (0, 2)
with > and (2,1) with <. She has no choice in labelling the remaining edges
of her response, Ni:

We prefer to show the edge (2,0), which will be labelled > = <.

The player V now picks the nodes 0,1 again, and the atoms <, >. The
player 3 now has to add a node 3, with (0, 3) labelled < and (3, 1) labelled
>. She has no choice over the remaining edges: in particular, she must
label the edge (2,3) by <, since all other choices lead to inconsistency of
the triangle 2,0, 3.

|
¥

Now V deals the killer blow, picking 2,3 and the atoms f, . The player 3
has to add a new node, say 4.
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The player 3 cannot consistently label the edge (0,4) by < or 1’ (because
of the triangle 2,0,4), nor by > (because of the triangle 3,0,4). She has
to use f. Similarly, she must label (1,4) with . But now, 0,1,4 is an
inconsistent triangle, and 3 has lost. It is clear that she never had any real
choice, so what we have described is a winning strategy forV in G, (K) (and
indeed in G4(K)). The player 3 has no winning strategy, so by Theorem 6,
K is not representable.

Example 8 (Anti-Monk algebra M). Recall that M has four atoms:
1’,r,b,g. We think of these as the colours red, blue, and green. M is
symmetric: we have & = x for all atoms z. All triples of atoms are consistent
except Peircean transforms of (1’,a,a’) for a # da/, and (r,b, g).

Consider a typical M-network N as shown below. Observe that all trian-
gles involve at most two colours from r, b, g, as required for consistency. We
don’t need any arrows at all on edges this time, since ¢ = a for all atoms a,
so the labels on an edge (u,v) and the converse edge (v, u) are always the
same.

Suppose that N is in play in some round of the game G, (M). A typical
move of V will be to pick two nodes and some atoms or other. We assume by
way of example that he picks the two right-hand nodes x, y in the diagram,
and the atoms p,q, say. If there is a node z in N with N(z,z) = p and
N(z,y) = g, as in the game rules, then 3 has an easy job. We’ll assume
there isn’t; it follows that p,q # 1’. The player 3 must now add a new node
on the right as shown:

KT
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Then, she must fill in the remaining labels, to give a network N’, say:

In this example, the edge (z,y) that V picked in N is labelled r. His
chosen atoms p, ¢, combined with r, must not all be different, or his choice
would be illegal because r £ p;q. So two of p, g, r must be equal. There are
two possibilities.

Case 1: p = ¢q; so N looks like:
W
SN AT

In this case, 3 simply uses p to label all remaining edges:

It is clear that all triangles have at least two edges of the same colour, so
are consistent.

Case 2: r=p # qorr =q# p. Let’s suppose that r = ¢ # p (the other
case is similar), and that the new node is called z:
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p
] T%
A r
Observe that = and z look the same as seen from y: the labels on the edges
(y,x) and (y, z) are the same. The player 3 tries to make this true for the

other nodes, as well as y. That is, she defines N'(t,z) = N(t,z) for all
nodes ¢t of N other than z,y:

Now, there are three kinds of triangle in N':

1. Triangles consisting of nodes of N. These are certainly consistent,
because N is a network.

2. Triangles of the form ¢, z, z, involving x, z. These have two edges with
identical colours, because N'(t,z) = N'(t,z). So they are consistent.

3. Triangles of the form ¢, u, z, involving z but not x. The sides of such a
triangle are coloured the same as in the triangle ¢, u,z of N (because
z looks the same as x from ¢, and from «). But the triangle ¢, u, x is
consistent, by case 1, and hence, so is triangle ¢, u, z.

So all triangles of N’ are consistent, and N’ is a M-network.

This can be elaborated into a winning strategy for 3 in G,,(M), showing
that M is representable. This elegant strategy is due to Maddux (personal
communication).

3.3 Summary

1. McKenzie’s algebra £ ¢ RRA. So RRA C RA, as Lyndon (1950)
showed. In fact, IC is one of the smallest non-representable relation
algebras. There are other 4-atom non-representable relation algebras,
but all relation algebras with at most 3 atoms are representable.
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2. The anti-Monk algebra M € RRA.

Ezercise: Show that if (X, ) is any representation of M, then X is
infinite. This is perhaps surprising. The obvious way of forcing a finite
relation algebra to have only infinite representations is to include a
relation < like the one in I, whose algebraic properties force it to be
interpreted as a dense linear order. But M is finite and symmetric.

4 Infinite relation algebras

Games can still be used to characterise representability of infinite relation
algebras. But there are some issues that need dealing with first.

4.1 Complete representations

Recall that a relation algebra is atomic if every non-zero element of it lies
above an atom. All finite relation algebras are atomic, but not all infinite
relation algebras are — indeed, some have no atoms at all. Even the atomic
ones need care. Lemma 3 holds for infinite algebras, but Lemma 4 does not:
not all ultrafilters of an infinite relation algebra, even an atomic one, are
principal. So we cannot assume that in a representation of such an algebra,
we can associate an atom with every edge in the representation.

Let us start by picking out the representations where we can associate
atoms to edges.

Definition 9. A representation h of a relation algebra A is said to be
a complete representation if h=1(x,y) is a principal ultrafilter of A —it
contains an atom of A— for every x,y € X.

Complete representations are special kinds of representations. It is not
hard to show that in the above notation,

Theorem 10 (Hirsch, Hodkinson, [HirHod;02a, Theorem 2.21]). h
is a complete representation just in case h preserves all existing infima and
suprema in A: i.e., if S C A, and S has a least upper bound a € A (with
respect to >), then
h(a) = J h(s) C X x X,
seS
and similarly for greatest lower bounds.

This property gave rise to the name ‘complete representation’. Any rep-
resentation of a finite relation algebra is complete. A model-theoretic sat-
uration argument will easily show that any infinite representable relation
algebra has incomplete representations. So for infinite relation algebras, the
question of interest is whether they have any complete representation at all.
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Definition 11. A relation algebra is said to be completely representable if
it has a complete representation. We write CRA for the class of completely
representable relation algebras.

It is not hard to see that any completely representable relation algebra
must be atomic. It’s easy to find non-atomic representable relation algebras,
and these cannot have any complete representation. But in fact, there are
even atomic relation algebras that have a representation but don’t have a
complete representation. They are representable, but not completely repre-
sentable. The first such relation algebra was given by Lyndon in [Lyn50],
though it was not recognised as such at the time.

Games can help to analyse complete representations. We can generalise
the game G,,(A) seen earlier to a game G, (A) with s rounds, where & is
any cardinal. Then we can prove

Theorem 12. Let A be any atomic relation algebra A. If A is completely
representable, then 3 has a winning strategy in G, (A) for any . If 3 has
a winning strategy in G,(A) for k = | At A| + Rg, then A is completely
representable.

There is also an approximate characterisation of complete representabil-
ity, generalising Theorem 6:

Theorem 13 (Hirsch, Hodkinson, [HirHod;97b, HirHod;02a]). For
any atomic relation algebra A, the following are equivalent:

1. The player 3 has a winning strategy in G, (.A) for all finite n,
2. A is elementarily equivalent to (i.e., satisfies the same first-order sen-
tences as) some completely representable relation algebra.

It is easily seen that the class CRA of completely representable rela-
tion algebras is pseudo-elementary (cf. [ChaKei;90, Exercise 4.1.17] and
[Hod(93, §5.2] for information about pseudo-elementary classes). However,
there are many negative results about it. [HirHod;97b] and [HirHod;02a]
used game-inspired relation algebras to show that CRA is not elementary
(it is not definable by any set of first-order sentences). By Theorem 2, it
is not definable by a second-order (or higher-order) sentence, or a sentence
of fixed-point logic. The completely representable relation algebras with
countably many atoms can be characterised using the infinitary logic Loy,
using Theorem 12 (this was observed by Véidndnen at the meeting). But
the countability assumption is necessary: there are atomic relation algebras
A, B, the former with uncountably many atoms, that agree on all L,
sentences, with B completely representable and A not.! So CRA is not
definable by a sentence of L.

n the notation of [HirHod; 02a, Theorem 17.25], take A = Ale K, and B = Ax_ k.,
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4.2 Games and representations for infinite relation algebras

So much for complete representations. What about arbitrary ones? Can we
use games to test whether an infinite relation algebra is representable?

Our game characterisation of the finite representable relation algebras in
Theorem 6 relied on every edge in a representation being labelled by an
atom — i.e., on completeness of the representation. For infinite relation
algebras, which may not have complete representations, this is not going to
work.

There are two ways out of this difficulty. We can modify the games
to handle arbitrary (complete or incomplete) representations. One of the
changes is that player V will choose arbitrary elements of the algebra, not
just atoms. Then, we can use universal algebra to turn the o, of Theo-
rem 6 into equations. This gives an equational axiomatisation of RRA.
The method is very close to one of Lyndon from [Lyn56]. For details, cf.
[HirHod;97a, HirHod;02a]. Alternatively, we can take advantage of canon-
ical extensions.

Definition 14. The canonical extension A° of a relation algebra A is a
special relation algebra formed from the set Uf A of all ultrafilters of A. Its
boolean part is just the full power set algebra (p(Uf.A),U,\,d,Uf.A). So
A is atomic. We will identify an atom {a}, consisting of a single ultrafilter
«, with the ultrafilter « itself. So the atoms of A% are essentially the
ultrafilters of A. Then:

e The atoms < 1’ (in the sense of A7) are precisely the ultrafilters
containing 1’ (in the sense of A).

e The converse of an atom (ultrafilter) « is the ultrafilter consisting of
the converses of all the elements of a: in symbols, & = {a : a € a}.
(The relation algebra axioms ensure that this is an ultrafilter.)

e A triple (o, 3,7) of ultrafilters is consistent just when every triple
(a,b,c) of elements of A taken from them (i.e., a € a, b € 3, ¢c € )
satisfies the consistency condition (a;b) - ¢ # 0. This generalises the
consistency condition for atoms given in §2. It is equivalent to say
that a;b € v whenever a € « and b € 3.

Apart from some changes in notation, this definition is due to Jénsson and
Tarski [JénTar51, J6nTar52], and it generalises Stone’s related construction
for boolean algebras [Stog36]. Any relation algebra A has a canonical ex-
tension A7, and A embeds in A? via a — {a : « an ultrafilter of A, a € a}.
For finite A, we have A = A?. Thus, the following generalises Theorem 6:

Theorem 15. A relation algebra A is representable if and only if 3 has a
winning strategy in G, (A7) for all finite n.
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Proof. =: In an important result, Monk proved that if A is representable
then A9 is representable. (Monk did not publish it; his result is reported
in his student McKenzie’s Ph.D. dissertation [McK66].) In fact, it can even
be shown that if A is representable then A% is completely representable
[HirHod;02a, Theorem 3.36]. So by Theorem 12, 3 has a winning strategy
in G, (A7) for all finite n.

<: Assume that 3 has a winning strategy in G, (A7) for all finite n.
By Theorem 13, A is elementarily equivalent to some (completely) repre-
sentable relation algebra B. Up to isomorphism, A is a subalgebra of A°.
We saw in Section 1 that RRA is a variety, and so is closed under elemen-
tary equivalence and under taking isomorphic copies of subalgebras. So we
obtain A € RRA as required. g.ed.

This means that we can still use the games G, to characterise repre-
sentability. We just need to play on the canonical extension, not the rela-
tion algebra itself. (For finite algebras A, this makes no difference, since
A% = A.) This characterisation of representability is perhaps not intrinsic,
since it uses the canonical extension; but it is still useful.

5 Infinite atom structures

Recall from Section 2 that for an atomic relation algebra, if we know the
value of the relation algebra operators applied to atoms, then we can deter-
mine these operators on arbitrary elements. For an atomic relation algebra
A, we call

AA = (AtA {ac€AtA:a <1}, {(a,d):ac At A},
{(a,b,c):a,b,ceAtA,a;bzc})

the atom structure of A. A tuple S = (S, 1, f,C) is called an atom structure
if it is the atom structure of some atomic relation algebra. It is not hard
to derive from the relation algebra axioms a first-order sentence expressing
that S is an atom structure. We used atom structures in Section 2 as a kind
of notational device to allow us to present finite relation algebras more con-
cisely. They certainly serve this function, but in some ways it is with infinite
atomic relation algebras that connections between the representability of an
algebra and the properties of its atom structure become most interesting.
Any atomic relation algebra uniquely determines its atom structure, but
once we move away from finite relation algebras, we see that there can
be many relation algebras possessing the same atom structure but with
different (non-isomorphic) boolean structures. The boolean structure of A
(i.e., which suprema of sets of atoms exist in A), together with the atom
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structure, determine A up to isomorphism. Informally, we have
atomic relation algebra = atomic boolean algebra + atom structure.

Now all boolean algebras are representable, but the representability problem
for relation algebras is highly non-trivial. So we might surmise that the
difficulties in representing an (atomic) relation algebra reside in its atom
structure. More precisely, we might guess that whether an atomic relation
algebra is representable or not is determined by its atom structure. For
complete representations, in which all edges are labelled by atoms, this is
of course true (though the ‘completely representable atom structures’ are
at least as hard to characterise as the completely representable relation
algebras). But for arbitrary representations, it is not so clear.

What are the possible atomic relation algebras with a given atom struc-
ture? At one end of the spectrum we can define the complezx algebra Cm S
of an atom structure S. This is the biggest atomic relation algebra whose
atom structure is S. Its domain is the full power set of the domain of S,
and the relation algebra operations are determined by the atom structure.
If the cardinality of the atom structure & is A then Cm S has cardinality
2. At the other end of the spectrum, the term algebra Tm S is the smallest
atomic relation algebra whose atom structure is S. It is the subalgebra of
Cm S generated, using the relation algebra operations, by the atoms. The
cardinality of the term algebra is A, for infinite atom structures. It is easily
seen that if A is an atomic relation algebra with 2At.4 = S, then up to
isomorphism, A is a subalgebra of CmS and Tm S is a subalgebra of A.

So we may distinguish two types of representability for atom structures.
An atom structure is weakly representable if it is the atom structure of some
representable relation algebra. An atom structure is strongly representable
if every relation algebra with that atom structure is representable. Since
any subalgebra of a representable relation algebra is also representable, we
can easily see that:

Theorem 16.

1. An atom structure is weakly representable if and only if its term al-
gebra is representable.

2. An atom structure is strongly representable if and only if its complex
algebra is representable.

For finite atom structures, the term algebra is the same as the complex
algebra, so weak and strong representability coincide. Several questions
immediately present themselves:
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e Is representability of an atomic relation algebra determined by its
atom structure? That is, could an (infinite) atom structure be weakly
representable but not strongly representable?

Is the class of weakly representable atom structures elementary?

What about the class of strongly representable atom structures?

Can we define either class with finitely many axioms?

The last question is easily dealt with: by Theorem 2, there can be no finite
axiomatisation of either class. Also, since RRA is a variety, a result of
[Ven97a] shows that the class of weakly representable atom structures is
elementary.

The other questions are more tricky. To help us answer them, we look at
a class of interesting atom structures obtained from graphs.

5.1 Graphs and relation algebras

By a graph, we mean an irreflexive symmetric ‘edge’ relation on a finite or
infinite set of ‘nodes’. A set I of nodes of a graph is said to be independent
if no two nodes in I are connected by a graph edge. For finite k, a k-
colouring of a graph is a partition of its nodes into at most k independent
sets. The chromatic number of a graph is the least finite & for which it has
a k-colouring, and if there is no such k then the chromatic number is co.

Given a graph I', we can make an atom structure S(T') = (S, 1, f,C)
whose atoms are red, blue, and green copies of each node of T', plus 1’ as an
extra atom. That is, the set of atoms is

S={ry,gz, by :x€TTU{1'}.

(Here and below, if T is a graph, we also let " denote its set of nodes.) The
set I of sub-identity atoms is just {1’}. The converse function f leaves each
atom fixed — S(I') is symmetric. To define C, we stipulate that all triples
of atoms are consistent (included in C) except the following:

e Peircean transforms of (1, a,a’) for a # d/,

e monochromatic triples of nodes forming an independent set in I' —
i.e., triples (ry, ry,r.) where {z,y, z} C I is independent, and similarly
for green and blue.

It turns out, for any graph I', that Cm(S(I")) is a simple relation algebra
(to prove associativity of composition we need to take advantage of the
three colours), and so S(T') is a genuine relation algebra atom structure.
Surprisingly, perhaps, its strong representability is entirely determined by
the chromatic number of I', in the case where I is infinite:
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Theorem 17 (Hirsch, Hodkinson, [HirHod;02b, HirHod;02a]). For
any infinite graph T', the relation algebra Cm(S(T")) is representable if and
only if I has chromatic number oc.

Proof. First, some notation: if Z C T, we let ry = {r, : z € Z}, and
similarly we define gz,bz. Note that these are all in Cm S(I'), since the
domain of the complex algebra is the full power set of the set of atoms.

= Suppose that h : CmS(I') — MRe(X) is a representation. As usual, we
write +, -, ; for the operations of Cm §(T'), and U, N, | for those of Re(X).

Supposing, for contradiction, that I" has finite chromatic number, its set
of nodes can be partitioned into independent sets I, ..., I,,_1 for some finite
n. Clearly, in Cm S(T") we have

+r,+8r,+brg+---+rr, ,+gr,_,+br,_, =1

n—1

Now h respects +: we have h(a + b) = h(a) U h(b), for any a,b € Cm S(T'),
and this extends by induction to sums of any finite length. So for any
distinct z,y € X, since (z,y) € h(1’), we know that (x,y) € h(cy,) for some
k < n and some colour c € {r,g, b}.

Observe that X must be infinite (since S(I') is). So it follows from
Ramsey’s Theorem [Ram30] that there are distinct z; € X (i < w) and
some element ¢ € CmS(I') of the form ¢y, for some colour ¢ and k < n,
such that (z;,z;) € h(a) for all i < j < w. So (zo,z2) € h(a). Also,
(x0, 1), (x1,22) € h(a), so that (xg,z2) € h(a)|h(a). Now h is a represen-
tation, so it respects all the algebra operations. We deduce that

(x0,22) € h(a) N (h(a)[h(a)) = h(a- (a;a)).

But for any nodes p,q,s € Iy, we know that {p,q, s} is an independent
subset of I (since I, is), and so (cp, ¢4, Cs) is not a consistent triple of atoms
in 8(T'). Because ;" in CmS(T") is defined additively from the atoms, we
have

a;a= Z Cp;Cq = {S € S(T) : Ip, q € I((cp, cq, 8) is consistent)}.
g€k

It is clear that the ‘s’ here cannot lie in a, so a - (a;a) = 0, and (zg, z2) €
h(0) = @. This is impossible.

<«: Assume I' has infinite chromatic number. We’ll show that 3 has
a winning strategy in the game G, ((CmS(T"))7) played on the canonical
extension (CmS(T'))? (see Definition 14), and hence by Theorem 15 that
Cm S(T) is representable.
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Call a set X of nodes of I small if the induced subgraph of I" on the set
of nodes X has finite chromatic number. Call a set large if its complement
is small. Then the set of all nodes is large, any superset of a large set is
large, and the intersection of two large sets is still large (because the union
of two small sets is small). By assumption, I itself is not small, so & is not
large. Now, using Zorn’s lemma or the boolean prime ideal theorem, for
each colour c € {r,g,b} the set

{cp : L CT, L large}

of c-coloured copies of large sets can be extended to an ultrafilter p. of
CmS(T') — i.e., an atom of the canonical extension (CmS(T))7, if we
identify p. with {uc} again. If Z C T and cz € pc, then Z is not small, and
so in particular, not independent.

The three atoms fi, ig, it are very useful for 3 when playing the game
G, ((CmS(I))7). In fact, they allow her to win it. First, a little calculation
will establish that any triangle in a network with two edges labelled with
the same p. is consistent:

(%) Let v be any ultrafilter of Cm S(T), and let c € {r,g,b} be given. Then
(e, fiesY) 18 a consistent triple of atoms of (CmS(T))”.

This is clear if {1’} € . Assume that {1’} ¢ . Take X,Y € pu. and
Z € v. Then (by Definition 14) we need to find z € X, y € Y, and
z € Z such that (z,y, z) is a consistent triple of atoms in S(T"). We
can replace these sets by smaller ones in their ultrafilters; so we can
suppose that X =Y C cp. Now, X has the form cx- for some X’ CT.

But cx/ € pe, so as we saw, X’ cannot be independent. Let p,q € X’
be connected by an edge of I'. Then ¢, € X, ¢, € Y. We know that Z
cannot be {1'} or @; take z € Z with z # 1’. Then by the definition
of S(T'), (cp, cq, 2) is consistent.

Now let us see how 3 can win the game G, ((Cm S(I'))?). Suppose that in
some round, the current network is N, and V picks nodes x,y € N and atoms
(ultrafilters) a, 8. If 3 has to extend the network, we will have {1’} ¢ «, 3.
Now since in Cm S(T") we have {1’} + rr + gr + br = 1, any ultrafilter must
contain one of these four sets — in fact, exactly one, since they are pairwise
disjoint. So there are ¢,c’ € {r, g, b} such that cr € o and ¢} € 3. Since we
have three colours, 3 can pick a colour ¢’ ¢ {c,c’'} (this is chiefly why we
introduced three colours). Then the following holds:

(xx) For any ultrafilter v not containing {1'}, the triples (o, pcr,y) and
(B, perryy) are consistent triples of atoms of (CmS(T))7.
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This is simply because if X € «, Y € ucr, and Z € «, we can find
z € X of colour ¢, y € Y of colour ¢’, and z € Z with z # 1.
The triple (z,y, z) is not monochromatic, so it is a consistent triple in
S(T). So by Definition 14, (o, er,7) is consistent, as claimed. The
argument for (3, pcr,y) is similar.

The player 3 lets the new network be N’ with new node z. She labels
N'(z,t) = N'(t,z) = pe for each node t of N with ¢ # x,y.

/{ t
kN

Then N’ is a network. We check consistency of triangles in N’. The
Peircean law in (CmS(T"))? ensures that it is enough to check a triangle
in any single orientation. The triangle xyz is consistent, because V’s move
is assumed legal. Pick any ¢ € N other than x,y. As t # z,y, we have
{1’} ¢ N(z,t),N(y,t) (¢f Definition 5). So by (xx) above, the triangles
txz and tyz are consistent. For any ¢,t’ € N other than z,y, triangle
tt'z is consistent by () above. All other triangles lie in N and so are
(inductively) consistent. Other checks are straightforward. So this gives a
winning strategy for 3 in the game. q.ed.

Corollary 18. S(TI') is strongly representable iff I' has infinite chromatic
number (for any infinite graph T).

Proof. By Theorems 16 and 17. q.ed.

5.2 Applications

The corollary allows us to translate problems about atom structures into
problems about graphs. Graphs seem easier to work with, and far more is
known about them.

If we replace Cm S(T') by a subalgebra (e.g., Tm S(T")), the left-to right
implication in Theorem 17 can fail. Even if the nodes of I' can be partitioned
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into independent sets Iy, ..., [,_1 for some finite n, it might be that the
element {c, : x € I} does not belong to the algebra, for some k < n and
some colour c. Indeed, taking the graph Z with nodes Z and edges between
consecutive integers only, a not too difficult exercise shows that the term
algebra Tm §(Z2) is indeed representable, though the chromatic number of
Z is just two. (The first part of the exercise is to calculate exactly which
sets of atoms are generated using the relation algebra operations.) Thus,
S8(Z) is weakly but (by Corollary 18) not strongly representable, and we
conclude:

Theorem 19. There exist weakly but not strongly representable atom
structures.

A more complicated sequence of graphs is derived from finite graphs
G, (n < w) constructed probabilistically by Erdés [Erd59]. Each G, has
chromatic number at least n, and no cycles of length n or less. Here, a cycle
is a sequence z1,...,x; of distinct nodes with (z1,z2),..., (z;-1,2;), and
(z1,x1) all being graph edges. The length of this cycle is [.

We can use this wonderful construction in graph theory to answer the last
remaining question from those listed above. We set I'y, to be the disjoint
union of the graphs G, for all n > k. Each I'y has infinite chromatic number,
but an ultraproduct I of the T'y, has no cycles, and hence (by well known
graph theoretic work: ¢f., e.g., [Die97]) chromatic number just two. It
follows from Corollary 18 that every S(I'y) is strongly representable, but an
ultraproduct S(I") of them is not strongly representable. (S(—) commutes
with taking ultraproducts.) By Lo§’s theorem (cf. [Hodg93, Theorem 9.5.1]
or [ChaKei;90, Theorem 4.1.9]), any first-order sentence true in all the
S(T'y) must also be true in S(I"). We conclude that:

Theorem 20. The class of strongly representable atom structures is not
elementary: it cannot be defined by any set of first-order axioms.

Probabilistic constructions of graphs have been useful for relation alge-
bras on other occasions. For example, in Theorem 15 we mentioned Monk’s
result that if A is a representable relation algebra then so also is its canoni-
cal extension A?. So RRA is closed under taking canonical extensions, and
we say that it is a canonical variety. But does it have an axiomatisation
by equations e that are individually canonical, in the sense that for any
relation algebra A, if A = ¢ then A% |= ¢? The answer is ‘no’: [Hod; Ven05]
uses a probabilistic graph construction and a ‘local’ variant of Theorem 17
to show that:

Theorem 21. Every first-order axiomatisation of RR A has infinitely many
non-canonical sentences.
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Similar considerations led to a proof that not every canonical variety is
generated by an elementary class of frames,? solving a problem of Fine in
modal logic [Fing75]. More details of these and other related results can be
found in [HirHod;02b, Hod; Ven05] and [HirHod;02a, Chapter 14].

6 Games in algebraic logic: pros and cons

Games have made a substantial contribution to our understanding of rela-
tion algebras. The idea has many precursors, notably in the seminal paper
of Lyndon [Lyn50]. Let us end with a rundown of the pros and cons of using
games in relation algebras and algebraic logic generally.

6.1

1.

Pros

Games provide a simple practical test for representability. (They are
also very useful for theoretical purposes, as we saw in Theorem 17.)
Games can be used to produce axioms as well (with care, they some-
times even yield finite axiomatisations).

Sometimes, a winning strategy can be extracted and used for other
things, such as decidability, complexity, finite model property.

. Games on relation algebras generalise to games for other kinds of alge-

bras of relations, such as complex algebras (cf., e.g., [Hod; MikVen01]).
Most importantly in our view, games can suggest some fairly sophisti-
cated constructions of relation algebras. These can be used to prove:

(a) RRA is not finitely axiomatisable (first proved in [Mons64], not
using games).

(b) RRA is not axiomatisable by equations using finitely many vari-
ables altogether ([J6n91], although the result was stated by Tarski
in a video made in 1974).

(c) RRA is not closed under Monk completions®: the example

Tm S(Z) above shows this, since its completion is isomorphic to

CmS(Z). Hence, RRA is not Sahlqvist-axiomatisable [Ven97b].

(d) In first-order logic, more 3-variable sentences are provable with
n+ 1 variables than with n variables, for all n > 3, motivated by
games and relation algebras [HirHod; Mad02a, HirHod; Mad02b].

(e) For a finite relation algebra A, it is undecidable whether A €
RRA [HirHod;02a).

(f) RRA is canonical (Monk), but any first-order axiomatisation of
it has infinitely many non-canonical axioms [Hod; Ven05].

2Cf. [GolpHod; Ven04, GolgHod; Ven03].
3Cf. [Hod197, HirHod;02a].
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6.2 Cons

We use games as a construction method, essentially forcing, to build repre-
sentations of relation algebras. In general, the representations so obtained
are infinite. These games are not good at building finite representations.

For example, suppose that A is a finite relation algebra with a ‘flexible
atom’, f, say. This means that (a,b, f) is consistent for all atoms a,b # 1’.
The game G, (.A) shows that A is representable: 3 can win by using f to
label network edges wherever needed, and it will always be consistent to do
S0.

Problem 22 (Maddux). Must such an A have a finite representation?

There is a general issue here: find ways of constructing finite representa-
tions. Can we combine games with, e.g., probabilistic constructions?

Some algebraic logicians avoid games and prefer the traditional ‘step by
step’ approach, enumerating the requirements of a construction and dealing
with them one by one. Certainly, games are not needed in simple cases, but
when the going gets tougher we believe that they are invaluable, and they
bring their own insights. The feeling that games are in some way undignified
is addressed by Hodges, who comments:

‘The notion of a game has to do with people acting together, setting them-
selves and each other tasks. As a result, game-theoretic versions of math-
ematical ideas often have a direct intuitive appeal when compared with
more formalistic treatments. In the period 1900-1950 logic was fighting to
establish itself as a serious branch of mathematics, and if you want your
mathematics to be serious you don’t start by talking about people setting
up competitions or exercise sessions. Today logic has won its battle for
recognition, and [we] can afford to make intuitiveness one of [our]| chief
aims.’ [HirHod;02a, p. vii]
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