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Abstract

The notion of warrant or justification is one of the central concepts in
formal models of argumentation. The dialectical definition of warrant is
expressed in terms of recursive defeat: an argument is warranted if each of
its counter-arguments is itself defeated by a warranted counter-argument.
However, few complexity results exist on checking whether an argument
is warranted in the context of deductive models of argumentation, i.e.,
models where an argument is a deduction of a claim from a set of premises
using some logic. We investigate the computational complexity of checking
whether a claim is warranted in propositional argumentation under two
natural definitions of warrant and show that it is PSPACE-complete in
both cases.

1 Introduction
Argumentation, as a subject of research within Artificial Intelligence, is con-
cerned with the study of arguments and their interrelationships. For example, an
argument may attack another argument thus providing reasons for rejecting the
latter. Arguments can be considered as opaque objects to whose internal struc-
ture we have no recourse (in which case a set of arguments along with an attack
relation is an abstract argumentation framework [Dun95]), or they can be consid-
ered as structures built on top of a deductive system, where the claim of the argu-
ment has to be entailed by its premises [BDKT97, BH00, BH01, PWA03, GS04].

Given a set of arguments as a context and an attack relation over that set,
the question of whether a particular argument or claim is somehow acceptable
or warranted by prevailing on opposing arguments, is one of the central topics
of interest in argumentation. Since a multitude of theories of argumentation
exists, several definitions of acceptability of arguments are to be found in the
literature. Apart from the theoretical properties that each potential definition
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of acceptability may have, the algorithmic issues pertaining are of interest, es-
pecially with a view to applications of argumentation.

Several complexity results exist regarding the notion of acceptability in ab-
stract argumentation frameworks [DBC02, DBC04, Dun06, Dun07], generally
placing the complexity of checking various notions of acceptability within the
first two levels of the polynomial hierarchy. Also, the complexity of acceptabil-
ity has been studied in the context of assumption-based frameworks [BDKT97],
in [DNT99, DNT00, DNT02]. We discuss these results and their relation to de-
ductive and propositional argumentation in Section 6. However, few complexity
results exist in relation to the theory of propositional argumentation as set out
in [BH00, BH01, PWA03].

The contribution of this paper, therefore, is to study the computational com-
plexity of the warranted formula problem which asks whether a claim is war-
ranted in a propositional, deductive argumentation system (see [BH00, BH01,
PWA03]). Our main result is that this decision problem, under its usual defini-
tion as well as under a useful variation of that, is PSPACE-complete.

The outline is as follows. In Section 2 we introduce the supporting notions
and definitions. The simpler decision problem of whether there exists an ar-
gument supporting a claim is shown to be Σp

2-complete in Section 3. Then, in
Sections 4 and 5 we show that the decision problem of checking whether a claim
is warranted, under the usual definition and a modified one respectively, is in
both cases PSPACE-complete. Finally, we discuss the results and conclude in
Section 6.

2 Preliminaries
We will use a propositional language with a countable set of propositional letters.
If S is a set of propositional (quantifier-free) formulae and ψ is a propositional
formula, we write S ` ψ if ψ can be proved from S according to some sound
and complete proof system for propositional logic. We will denote by

∧
S the

conjunction of all formulae in a finite set S of propositional formulae. Also, we
use |φ| for the length of a formula φ; when S is a set of formulae, we use ‖S‖ to
denote the sum of the lengths of the formulae in S.

We will also make use of quantified boolean formulae and we give the required
definitions here. A quantified boolean formula (QBF) is defined recursively as

θ ::= p | ¬θ | (θ1 ∨ θ2) | ∃pθ

where p is an arbitrary proposition taken from some countable set of proposi-
tions. We use standard abbreviations, ∧,→,↔,∀ etc. A valuation is a map
from the set of propositions to {>,⊥}. If p is a proposition, we write v ≡p w
if v, w are valuations and for all propositions q 6= p we have v(q) = w(q). A
quantified boolean formula is closed if all propositions occur within the scope
of a quantifier. We evaluate the truth of a quantified boolean formula θ with
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respect to a valuation v, by defining a truth predicate “|=”, as follows.

v |= p ⇐⇒ v(p) = >
v |= ¬θ ⇐⇒ v 6|= θ

v |= (θ1 ∧ θ2) ⇐⇒ v |= θ1 and v |= θ2

v |= ∃pθ ⇐⇒ w |= θ, for some w ≡p v

A quantified boolean formula θ is satisfiable (respectively, valid) iff for some (all)
valuation(s) v, we have v |= θ. A closed quantified boolean formula is satisfiable
iff it is valid and if this is the case we say that the formula is true.

DEFINITION 1. An instance of the Quantified Boolean Formula Problem
(QBF) is a closed formula

∃p0∀p1∃p2 . . . ∃pn−1∀pnφ

for some odd n ≥ 0 and propositions p0, p1, . . . , pn, where φ is an ordinary
propositional formula. The yes-instances of QBF are the true formulae of this
form.

It is known that QBF is PSPACE-complete (see for example [GJ79, theo-
rem 7.10]. QBF instances are not normally required to have strictly alternating
quantifiers, nor an even number of quantifiers, nor are the instances normally
assumed to be closed, but these restrictions do not affect the complexity as we
can always add dummy quantifiers without changing the validity of a formula .

We now review the required definitions on argumentation. The following
definition, of a propositional argument, is based on [BH00, BH01, PWA03].

DEFINITION 2. Let φ be a propositional formula and let S be a set of propo-
sitional formulae. The pair (S, φ) is an argument for φ (written A(S, φ)) if

• S is consistent,

• S ` φ, and

• S is minimal (i.e., no proper subset of S proves φ).

The set S is called the support for the argument, and φ its claim.

An instance of the argument problem (ARG) is a pair (S, φ), where a pair
(S, φ) is a yes-instance iff A(S, φ). An instance of the argument existence problem
(∃ARG) is a pair (φ,∆), where ∆ is a set of formulae. The pair (φ,∆) is a yes-
instance of ∃ARG if there is S ⊆ ∆ and A(S, φ); it is a no-instance otherwise.

There are different ways of formalising what we mean by a counter-argument.
Counter-arguments may contradict the claim of an argument, one of the formu-
lae in the support, or the conjunction of some or all the formulae in the support.
This last type of counter-argument is the most general and it is the basis of the
definition we adopt here. Since the main topic of this article is complexity, it is
reasonable to assume that the knowledgebase ∆ is finite, and this allows us to
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simplify the notion of a counter-argument using the
∧

notation. Let (S, φ) be
an argument (note that S can now be assumed finite). A counter-argument to
(S, φ) is an argument of the form (T,¬

∧
S). In [BH01] this is called a canonical

undercut. From now on, we will use the terms counter-argument and undercut
interchangeably.

Thus, if there exists an argument (S, φ) such that S ⊆ ∆, then S acts as
a kind of support for the claim φ. We have also a notion of attack, i.e., that
an argument (T,¬

∧
S) with T ⊆ ∆, is a canonical undercut for the argument

(S, φ). A natural extension, built on top of these notions is the notion of warrant
or justification [Pol87, Nut94, BH01, GS04]. In the argumentation literature,
warrant status is usually defined in terms of dialectical, or argument, trees.
However, in this paper we will give an equivalent recursive definition that will
simplify our proofs. Informally, a warranted formula must be supported by an
argument and, recursively, if there are any counter-arguments then they are not
warranted. Such a recursive definition of whether a claim φ is warranted given
a set of beliefs ∆ is given below.

One problem with such a definition of warrant is that it ostensibly allows
infinite chains of arguments and counter-arguments, which unless addressed,
leave the status of a formula undetermined. In our definition below, fairly
standard in the literature and based on [BH00, BH01], we insist that in a chain
of arguments and counter-arguments each argument must involve at least one
“new” formula not used in the previous part of the chain.

DEFINITION 3. Let φ be a propositional formula and let U,∆ be sets of
formulae such that U ⊆ ∆. We say that “φ is warranted over (∆, U)” and we
write W (φ,∆, U) iff there is a subset S ⊆ ∆ such that

• S 6⊆ U ,

• A(S, φ) and

• ¬W (¬
∧
S,∆, U ∪ S).

The set U can be thought of as the set of ‘already used’ formulae. An instance
(φ,∆) of the warranted formula problem (WFP) consists of a propositional
formula φ and a finite set of propositional formulae ∆. It is a yes-instance if
φ is warranted over (∆, ∅) and it is a no-instance otherwise. The formula φ is
called the claim and ∆ is called the knowledge base. It is the complexity of this
decision problem, firstly, that we wish to determine, and we do this in Section 4.

The following lemma establishes that no inconsistent formula can be war-
ranted.

LEMMA 4. If φ ` ⊥ then ¬W (φ,∆, U), for any ∆, U .

Proof. Working backwards, if W (φ,∆, U) then there is S ⊆ ∆ with A(S, φ) so,
from definition 2, S is consistent, and by soundness of `, φ is also consistent.

Alternative definitions of warranted formulae are possible, particularly when
modifying the termination conditions. Here, we present a second definition of
warrant, where an undercut is allowed if it is based entirely on new formulae.
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DEFINITION 5. An instance (φ,∆) of the alternative warranted formula
problem (which we write as WFP2) consists of a claim φ and a knowledge base
∆, as before.

(φ,∆) is a yes-instance of WFP2 if W2(φ,∆), which is defined to hold iff

∃S ⊆ ∆
(
A(S, φ) ∧ ¬W2

(
¬
∧
S,∆ \ S

))
Observe that an argument (S, φ) can only be undercut by an argument with

a support contained in ∆ \ S, according to this definition, i.e. a set consisting
only of ‘unused’ formulae. One advantage of this definition is that all tautologies
are warranted, since the empty set is permitted as support for an argument for φ
and there are no possible undercuts for the empty set by this definition (whereas
in definition 3, tautologies are not warranted). The complexity of the alternative
warranted formula problem is discussed in Section 5.

We recall the required elements of complexity theory. The classes P and
NP are as usual, the class of decision problems solvable in polynomial time and
non-deterministic polynomial time, respectively. We will denote by PSAT the
decision problem of ascertaining whether a propositional formula is satisfiable,
which is well-known to be NP-complete. PSPACE is the class of decision prob-
lems solvable in polynomial space on a deterministic Turing machine. An oracle
for a class C can be thought of as a sub-routine that answers a query in C in
constant time. We will use oracles to define certain classes in the Polynomial
Hierarchy [SM73]. If a deterministic Turing machine with access to a C-oracle
solves a decision problem in polynomial time then we say that the decision prob-
lem is in PC, and similarly if a non-deterministic Turing machine with access
to a C-oracle solves a decision problem in polynomial time then we say that
the decision problem is in NPC. Define the class Σp

2 = NPNP. The canonical
Σp

2-complete problem is ∃∀ [Sto76]. An instance of ∃∀ is a quantified boolean
formula of the form

∃p0∃p1 . . . ∃pk−1∀q0 . . . ∀qm−1φ

where φ is a quantifier free, propositional formula. Such a formula is a yes-
instance iff it is true.

A PSPACE-complete decision problem that we will employ in our proofs is
a variant of the generalised geography problem. Normally this decision problem
is defined in terms of a winning strategy for the second player in a certain
geography game, but here we give an equivalent recursive definition.

DEFINITION 6 (Undirected Edge Geography Problem (UEGP)). Let V be
a set (of vertices). Define the set of undirected edges ε(V ) of V by

ε(V ) = {{v, w} : v 6= w ∈ V }

An instance (v,E) of UEGP over the finite set V consists of a vertex v ∈ V
and a subset E of ε(V ). Such an instance is a yes-instance (and we write
(v,E) ∈ UEGP) iff

∀w ∈ V [{v, w} ∈ E → (w,E \ {{v, w}}) 6∈ UEGP]
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(clearly, since E is finite, this recursive definition is well-founded).

UEGP is known to be PSPACE-complete [FSU93].
To help our inductive proofs, it is convenient to modify this problem by

including an extra parameter F representing forbidden edges. An instance
(v,E, F ) of UEGP’ over V consists of a vertex v ∈ V and two subsets E,F ⊆
ε(V ).

(v,E, F ) ∈ UEGP’ ⇐⇒ ∀w[{v, w} ∈ E\F → (w,E, F ∪{{v, w}}) 6∈ UEGP’]
(1)

Evidently, for any sets of edges E,F ,

(v,E \ F ) ∈ UEGP ⇐⇒ (v,E, F ) ∈ UEGP’ (2)

3 The Argument Existence Problem
In this section we examine the complexity of the argument existence problem.
This result has previously appeared in [PWA03].

LEMMA 7. The complexity of the argument problem (ARG) is in PNP. The
argument existence problem (∃ARG) is Σp

2-complete.

Proof. Algorithm 1, Argument, decides whether a pair (S, φ) is an argument,
i.e., whether A(S, φ) is true. It is a deterministic, linear time algorithm which
calls the subroutine Consistent at most 2 + |S| times, which computes whether
its formula argument is consistent. Propositional consistency is known to be
NP-complete, therefore each call takes non-deterministic polynomial time in
‖S‖+ |φ|. Hence the complexity of Argument is within PNP.

Algorithm 1 Argument(S, φ)
if not Consistent(

∧
S) then

return false
end if
if Consistent(

∧
S ∧ ¬φ) then /* S 6` φ */

return false
end if
for all s ∈ S do

if not Consistent (
∧

(S \ {s}) ∧ ¬φ) then /* S is not minimal */
return false

end if
end for
return true

Building on Algorithm 1, Algorithm 2 decides whether a pair (φ,∆) is a
yes-instance of ∃ARG. This algorithm makes a non-deterministic choice of a
subset S of ∆ and then calls Argument once. As we have seen, running Argument
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Algorithm 2 ∃Argument(φ,∆)
Choose S ⊆ ∆
return Argument(S, φ)

is deterministic and involves a linear number of calls to Consistent. Hence the
complexity of ∃ARG is in NPNP = Σp

2.
It remains to prove that ∃ARG is Σp

2-hard. We prove this by reducing ∃∀
to ∃ARG. As previously mentioned, an instance of ∃∀ is a quantified boolean
formula of the form

∃p0∃p1 . . . ∃pk−1∀q0 . . . ∀qm−1φ (3)

where φ is a quantifier free, propositional formula. We write p for an arbitrary
proposition in {pi : i < k} and q for an arbitrary proposition from {qi : i < m}.
We can assume, by adding additional existential quantifiers if necessary, that
all propositions are bound by quantifiers. Moreover, we can also assume that
{p0, . . . , pk−1} ∩ {q0, . . . , qm−1} = ∅ (just delete ∃pi if pi = qj for some j < m).
Such an instance is a yes-instance if it is true. The reduction maps such an
instance to the instance (φ,∆) of ∃ARG where

∆ = {p,¬p : p occurs in φ} .

We check that the reduction is correct. If (3) is a yes-instance then it is true.
That means that there is a valuation v such that v |= ∀q0 . . . ∀qm−1φ. It follows,
from the completeness of `, that φ can be proved from S = {p : v(p) = >} ∪
{¬p : v(p) = ⊥}, so S is a consistent set of formulae proving φ. The set S
might not be minimal, but it must contain a minimal set proving φ. Hence
(φ,∆) is a yes-instance of ∃ARG. Conversely, if (φ,∆) is a yes-instance of
∃ARG then there is S ⊆ ∆ such that A(S, φ). Now, for any valuation v where
v(p) = > ⇐⇒ p ∈ S we know, by the consistency of S, that v |=

∧
S.

By the soundness of ` and since S ` φ it follows that v |= φ, for all such
valuations. Since {q0, . . . , qm−1} is disjoint from {p0, . . . , pk−1}, it follows that
v |= ∀q0 . . . ∀qm−1φ. Hence (3) is a yes-instance of ∃∀.

This establishes the complexity of ∃ARG. We turn to the complexity of the
warranted formula problem next.

4 The Warranted Formula Problem
First we establish that WFP is in PSPACE. This result is related to [BHW08],
where Besnard et al use Quantified Boolean Formulae to express several deci-
sion problems related to argument trees within a propositional argumentation
framework. Although they do not explicitly deal with warrant, a polynomial-
time reduction from WFP to QBF validity is possible in principle, and the
algorithms in that paper could perhaps be used to achieve this. Here, we pro-
vide a direct algorithm that works within polynomial space.
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LEMMA 8. WFP can be solved in PSPACE.

Proof. Consider Algorithm 3. We prove that this exponential-time deterministic
algorithm solves WFP and, if implemented correctly, uses polynomial space,
by induction over |∆ \ U |. We will calculate a bound on the space usage, in
terms of x = |φ|+ ‖∆‖.

Algorithm 3 WFP(φ,∆, U)
for all S ⊆ ∆ do

if S * U and A(S, φ) and not WFP(¬
∧
S,∆, U ∪ S) then

return true
end if

end for
return false

First note, by lemma 7, that for any S ⊆ ∆ we can check A(S, φ) in polyno-
mial space, since PNP ⊆ PSPACE. Let q be a polynomial such that A(S, φ) can
be solved using q(x) space and let q+(x) = x+ q(x).
Claim: The space needed to run algorithm 3 on input (φ,∆, U) is at most
|∆|+ |∆ \ U | × q+(x).
The claim is proved by induction over |∆\U |. The algorithm starts by allocating
|∆| space to keep a record of which set S ⊆ ∆ has been selected for the current
iteration of the loop. This is needed to decide whether to terminate on complet-
ing the current iteration and, if not, which set S should be selected for the next
iteration. For the base case, ∆ = U , each time it enters the loop, the algorithm
checks S 6⊆ U in space |∆| which fails immediately (because S ⊆ ∆→ S ⊆ U),
and this space for checking S ⊆ U can be released and re-used in the next
iteration. The space needed is therefore at most |∆|.

Now let k > 0 and suppose we have proved the claim for all cases where
|∆ \ U | < k. Suppose we run the algorithm with parameters (φ,∆, U) where
|∆ \ U | = k. As before, the algorithm first allocates |∆| space for keeping a
record of the current set S in each iteration of the loop. On entering the loop, the
algorithm first checks S 6⊆ U and A(S, φ), using space q(x) at most. If it passes
these tests it then calls WFP(¬

∧
S,∆, S ∪ U). By our induction hypothesis,

the space needed for this recursive call is at most |∆|+ |∆ \ (S ∪U)| × q+(x) ≤
|∆|+ (|∆ \U | − 1)× q+(x) (since S ∪U properly contains U in this case). The
total space needed is thus

|∆|+ q(x) +
(
|∆|+ (|∆ \ U | − 1)× q+(x)

)
≤ q+(x) +

(
|∆|+ (|∆ \ U | − 1)× q+(x)

)
≤ |∆|+ |∆ \ U | × q+(x)

as required. This proves that algorithm 3 runs in polynomial space.
We prove that the algorithm is correct by induction over |∆ \ U |. Consider

the base case, ∆ = U . In this case there is no subset S of ∆ that is not a subset
of U , hence φ is not warranted over (∆, U). For the same reason, the algorithm
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fails the S 6⊆ U test each time it enters the loop, and eventually returns false,
correctly. For the inductive step, the formula φ is warranted over (∆, U) iff there
is S ⊆ ∆ such that S 6⊆ U , A(S, φ) and ¬W (¬

∧
S,∆, U ∪ S), by definition 3.

By the inductive hypothesis, when S 6⊆ U , we have W (¬
∧
S,∆, U ∪ S) iff the

algorithm returns TRUE on input (¬
∧
S,∆, U ∪S). HenceW (φ,∆, U) iff there

is S ⊆ ∆, S 6⊆ U , A(S, φ) and ¬W (¬
∧
S,∆, U ∪ S) iff there is S ⊆ ∆, S 6⊆

U, A(S, φ) and the algorithm returns FALSE on input (¬
∧
S,∆, U ∪ S) iff the

algorithm returns TRUE on input (φ,∆, U).

Now we have to prove that WFP is PSPACE-hard.

DEFINITION 9 (The Reduction). Let (v0, E) be an instance of UEGP over
V . We will reuse the vertices in V as propositions. For a set of edges E ⊆ ε(V ),
let

Ê = {¬v ∨ ¬w, v, w : {v, w} ∈ E} .

We will prove (Theorem 13) that the mapping

(v0, E) 7→ (v0, {v0} ∪ Ê)

is a polynomial time reduction of UEGP to WFP. The next two lemmas are
very easy and we omit the proofs.

LEMMA 10. The minimal inconsistent subsets of Ê are

{{v, w,¬v ∨ ¬w} : {v, w} ∈ E} .

LEMMA 11. Let S ⊆ Ê and v ∈ V . Then A(S,¬v) holds if and only if there
is w ∈ V such that {v, w} ∈ E and S = {¬v ∨ ¬w,w}.

LEMMA 12. Let E,F ⊆ ε(V ). Then,

W (¬w, Ê, F̂ ∪ {v}) ⇐⇒ W (v ∨ ¬w, Ê, F̂ ∪ {v}).

Proof. W (v ∨ ¬w, Ê, F̂ ∪ {v}) holds iff there is a support S ⊆ Ê, such that
A(S, v ∨ ¬w), S 6⊆ F̂ ∪ {v} and ¬W (¬

∧
S, Ê, F̂ ∪ {v} ∪ S). By lemmas 10

and 11, the only possible supports for the claim v ∨ ¬w are {v} and sets of the
form {¬w ∨ ¬u, u}, where {w, u} ∈ ε(V ). But {v} ⊆ F̂ ∪ {v}, so {v} is not
allowed as a support for the claim v ∨ ¬w, and the support S = {¬w ∨ ¬u, u}
is only allowed if S ⊆ Ê but S 6⊆ F̂ ∪ {v}, i.e., if {w, u} ∈ E \ F . Note that
u 6= v because {v,¬w ∨ ¬v} is not a minimal subset that entails v ∨¬w. Hence
W (v ∨ ¬w, Ê, F̂ ∪ {v}) holds iff

∃u
[
{w, u} ∈ E \ F ∧ ¬W

(
¬
∧
{¬w ∨ ¬u, u} , Ê, F̂ ∪ {v} ∪ {¬w ∨ ¬u, u}

)]
.
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But similarly, the only possible supports for the claim ¬w are of the form
{¬w ∨ ¬u, u} where {u,w} ∈ E \ F . Thus,

W (v ∨ ¬w, Ê, F̂ ∪ {v}) ⇐⇒

⇐⇒ ∃u
[
{w, u} ∈ E \ F ∧

¬W
(
¬
∧
{¬w ∨ ¬u, u} , Ê, F̂ ∪ {v} ∪ {¬w ∨ ¬u, u}

) ]
⇐⇒ W (¬w, Ê, F̂ ∪ {v})

Putting everything together, we obtain Theorem 13.

THEOREM 13. Let E,F ⊆ ε(V ). Then

(v,E, F ) ∈ UEGP’ ⇐⇒ ¬W (¬v, Ê, F̂ ∪ {v})

Proof. The proof is by induction over |E \ F |. The base case, when E = F and
thus |E \ F | = 0, is obvious. The inductive step is proved as follows.

(v,E, F ) ∈ UEGP’ ⇐⇒
⇐⇒ ∀w [{v, w} ∈ E \ F → (w,E, F ∪ {{v, w}}) 6∈ UEGP’] (using (1))

⇐⇒ ∀w
[
{v, w} ∈ E \ F →W

(
¬w, Ê, ̂(F ∪ {{v, w}}) ∪ {w}

)]
(ind. hyp.)

⇐⇒ ¬∃w
[
{v, w} ∈ E \ F ∧ ¬W

(
¬w, Ê, ̂(F ∪ {{v, w}})

)]
(w ∈ ̂{{v, w}}, ∀ ≡ ¬∃¬)

⇐⇒ ¬∃w
[
{v, w} ∈ E \ F ∧ ¬W

(
v ∨ ¬w, Ê, ̂(F ∪ {{v, w}})

)]
(lem. 12, v ∈ ̂{{v, w}})

⇐⇒ ¬∃w
[
{v, w} ∈ E \ F ∧ ¬W

(
¬
∧
{¬v ∨ ¬w,w} , Ê, ̂(F ∪ {{v, w}})

)]
(prop. log.)

⇐⇒ ¬∃S
[
A(S,¬v), S ⊆ Ê, S 6⊆ F̂ ∪ {v} , ¬W

(
¬
∧
S, Ê, F̂ ∪ {v} ∪ S

)]
(lem. 11)

⇐⇒ ¬W
(
¬v, Ê, F̂ ∪ {v}

)
(def. 3)

COROLLARY 14. The mapping (v0, E) 7→ (v0, {v0} ∪ Ê) is a polynomial
time reduction of UEGP to WFP.
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Proof. Suppose v0 is not incident with any edge from E. Then (v0, E) is clearly
a yes-instance of UEGP. There is exactly one argument, namely ({v0} , v0),
for v0 contained in {v0} ∪ Ê and since we are assuming that v0 is not incident
with any edges of E we see by lemma 11 that there are no arguments for ¬v0

in {v0} ∪ Ê, hence W (v0, {v0} ∪ Ê, ∅), so the mapping sends a yes-instance to a
yes-instance, in this case.

Now suppose v0 is incident with at least one edge of E. Then {v0}∪ Ê = Ê.
There is exactly one argument for v0 in {v0} ∪ Ê, namely {v0}. So,

(v0, {v0} ∪ Ê) ∈WFP ⇐⇒ ¬W (¬v0, {v0} ∪ Ê, {v0}) (def. 3)

⇐⇒ ¬W (¬v0, Ê, {v0}) (v0 ∈ Ê)
⇐⇒ (v0, E, ∅) ∈ UEGP’ (thm. 13)
⇐⇒ (v0, E) ∈ UEGP (2)

COROLLARY 15. WFP is PSPACE-complete.

5 A Variation of the Warranted Formula Prob-
lem

We now turn our attention to the variation of the warranted formula problem
given in Definition 5. This version of the problem is typically more stringent
since in it, it is required that in a dialogue between opponents, one may only
use completely new formulae to propose an undercut. At the same time, this
version has the advantage that all tautologies are warranted, which is not the
case for Definition 3. It is easy to check that algorithm 4 solves WFP2 and
runs in polynomial space (as in the proof of lemma 8), so WFP2 ∈ NPSPACE =
PSPACE.

Algorithm 4 A PSPACE algorithm for WFP2(φ,∆)
for all S ⊆ ∆ do

if A(S, φ) and (S = ∅ or ¬WFP2(¬
∧
S,∆ \ S)) then

return true
end if

end for
return false

In the rest of this section we present a reduction of the PSPACE-complete
problem QBF to WFP2, thus proving that this new problem is also PSPACE-
complete. The reduction from the Undirected Edge Geography Problem to
WFP that we used in the previous section is not a correct reduction from
UEGP to WFP2, because a move in the geography game might follow an edge
to a previously visited node n, but the corresponding set of formulas will not
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be permitted as a counter-argument, because the proposition n has already
been used in a previous argument. The authors spent some time attempting to
modify this reduction in order to prove the PSPACE-hardness of WFP2, but
we did not succeed.

Instead, we reduce QBF to WFP2. Before we present the reduction itself,
we observe a few facts that will simplify our exposition. Given an instance of
QBF

∃p0∀p1∃p2 . . . ∃pn−1∀pnφ (4)

where n is odd, we can see that in linear time, using the De Morgan Laws and
eliminating double negations, we can replace φ by an equivalent formula φ1

in negation normal form where the only binary connectives are ∨ and ∧ and
negation only occurs immediately in front of propositions and φ1 uses only the
propositions p0, . . . , pn. Henceforth we will assume that φ is in negation normal
form and only uses these propositions.

We will introduce now the propositions and formulae that support our pro-
posed reduction.

For i ≤ n, let Πi be the following set of propositions

Πi =
{

(+P )i
j , (−P )i

j : j ≤ i
}
.

Πi is a language with propositions corresponding to the first i+ 1 propositions
of the instance (4). These are meant to capture the positive and negative ap-
pearences of a proposition, but without actually employing negations, so that
inconsistencies are carefully controlled. The claim and knowledge base will use
propositions in

{Qi, Ri : i ≤ n} ∪
⋃
i≤n

Πi.

For i ≤ n let
vali =

∧
j≤i

(
(+P )i

j ∨ (−P )i
j

)
.

Asserting vali forces the selection of a set of propositions that correspond to a
partial valuation, up to the proposition pi. For i < n let

exti =
(
(+P )i+1

i+1 ∨ (−P )i+1
i+1

)
∧
∧
j≤i

[(
(+P )i

j ∧ (−P )i+1
j

)
∨
(
(−P )i

j ∧ (+P )i+1
j

)]
.

exti asserts that there are two partial valuations, one at level i and one at level
i+ 1, giving opposite truth values for the first i propositions.

Finally, we will use the following formulae for i ≤ n.

λi = (¬vali ∨ (¬Qi ∧ ¬Ri))

ρi =
{

(Ri ∧ (¬exti ∨ ¬Qi+1)) i < n
Rn i = n

We will say a bit more about the purpose of these formulae just before the proof
of Lemma 21.
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DEFINITION 16. Consider an instance (4) of QBF. We define an instance

(Q0 ∧ val0, ∆)

of WFP2. The claim is (Q0∧val0) = (Q0∧((+P )0
0∨(−P )0

0)) and the knowledge
base is

∆ =
⋃
i≤n

Πi ∪ {Qi, λi, ρi : i ≤ n} ∪ {¬φ′}

where φ′ is obtained from φ by replacing each positive occurrence of pj by (+P )n
j

and each occurrence of ¬pj by (−P )n
j , for j ≤ n (so occurrences of all proposi-

tions in φ′ are positive).

We introduce some supporting definitions here. For i ≤ n let ∆i = Πi ∪
{Qi, λi, ρi} (so ∆ =

⋃
i≤n ∆i ∪{¬φ′}). Let s = 〈sj : j ≤ n〉 ∈ {+,−}n+1 be any

sequence of +’s and −’s of length n+ 1. Let i ≤ n and let s ∈ {+,−}n+1. We
write si for the element of {+,−}n+1 obtained from s by changing the sign of
si. We may write s ±i to denote either s or si. For k ≤ n+ 1 write s�k for the
sequence 〈sj : j ≤ k〉.

Let vs be the valuation defined on {p0, . . . , pn} by v(pj) = > ⇐⇒ sj = +.
Define the sets of propositions

Xi(s) =
{

(sjP )i
j : j ≤ i

}
⊆ Πi

Xi(s) =
{

(−sjP )i
j : j ≤ i

}
= Πi \Xi(s)

where −sj is the ‘opposite sign’ to sj . Observe that Xi(s) is determined by s�i.
We now claim that

vs(φ) = > ⇐⇒ Xn(s) |= φ′ (5)

for any s ∈ {+,−}n+1. To prove this claim, first recall that φ is in negation
normal form. If φ is a literal then there is j ≤ n and either φ = pj or φ = ¬pj . In
the first case vs(pj) = > ⇐⇒ sj = + ⇐⇒ (sjP )n

j ∈ Xn(s) and in the second
case vs(¬pj) = > ⇐⇒ sj = − ⇐⇒ (sjP )n

j ∈ Xn(s). Either way, (5) holds.
If φ is a disjunction, say φ =

∨
k φk, then inductively (5) holds for each φk, so

vs(
∨

k φk) = > ⇐⇒ ∃k vs(φk) = > ⇐⇒(IH)∃k Xn(s) |= φk ⇐⇒ Xn(s) |= φ.
The case where φ is a conjunction is similar (replace ∃ by ∀). This proves (5).

LEMMA 17. Let i ≤ n, T ⊆ ∆.

T ` vali ⇐⇒ ∃s ∈ {+,−}n+1
, T ⊇ Xi(s)

and for i < n

T ` exti ⇐⇒ ∃s ∈ {+,−}n+1
, T ⊇ Xi(s) ∪Xi+1(s)

Proof. Clearly, Xi(s) ` vali, since each of the i conjuncts of vali is proved by
Xi(s). Conversely, let T ` vali. For each j ≤ i we have T ` ((+P )i

j ∨ (−P )i
j).

The only formula including a positive occurrence of (+P )i
j in ∆ is the formula
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(+P )i
j itself, and similarly for (−P )i

j . Hence, for each j ≤ i, either (+P )i
j or

(−P )i
j belongs to T . Let s ∈ {+,−}n+1 be an arbitrary sequence, subject to

sj = + ⇐⇒ (+P )i
j ∈ T . Then T ⊇ Xi(s), as required.

Similarly, the right to left implication in the second part is clear. For the
left to right implication, suppose T ` exti. For each j ≤ i we have T ` ((+P )i

j ∧
(−P )i+1

j ) ∨ ((−P )i
j ∧ (+P )i+1

j ) and T ` (+P )i+1
i+1 ∨ (−P )i+1

i+1. The propositions
of exti only occur positively in formulae in ∆ as themselves. Let s ∈ {+,−}n+1

be arbitrary subject to sj = + ⇐⇒ (+P )i
j , (−P )i+1

j ∈ T , for j ≤ i, and
si+1 = + ⇐⇒ (−P )i+1

i+1 ∈ T . As before we get T ⊇ Xi(s) ∪Xi+1(s).

LEMMA 18. The minimal inconsistent subsets of ∆ \ {¬φ′} are

Xi(s) ∪ {λi, Qi} , Xi(s) ∪ {λi, ρi}

for i ≤ n, s ∈ {+,−}n+1 and

{ρi, Qi+1} ∪Xi(s) ∪Xi+1(s), {ρi, Qi+1} ∪Xi(s) ∪Xi+1(si+1)

for i < n, s ∈ {+,−}n+1.
If ¬φ′ ∈ S and S is minimal inconsistent then S ⊆ Πn ∪ {¬φ′}. A set

Xn(s) ∪ {¬φ′} is inconsistent iff vs |= φ.

Proof. Every subset of
⋃

i≤n Πi ∪ {Qi : i ≤ n} is clearly consistent (consider
the valuation that makes all propositions true) so any inconsistent subset of
∆ \ {¬φ′} includes λi or ρi for some i ≤ n. Suppose λi ∈ S and S is minimal
inconsistent. Then S \ {λi} is consistent and S \ {λi} ` ¬λi ≡ vali ∧ (Qi ∨Ri).
By lemma 17, since S \{λi} ` vali we have S ⊇ Xi(s) for some s. And since S \
{λi} ` (Qi∨Ri) either Qi ∈ S or ρi ∈ S (note that the only positive occurrence
of Qi or Ri is in the formulae Qi, ρi respectively). Thus the minimal inconsistent
subsets of ∆\{¬φ′} that include λi are Xi(s)∪{λi, Qi} and Xi(s)∪{λi, ρi} for
s ∈ {+,−}n+1. Any other minimal inconsistent subset of ∆\{¬φ′}must exclude
λj (all j ≤ n) but include ρi for some i ≤ n. So suppose λj 6∈ S (all j) and ρi ∈ S
(some i), S \{ρi} is consistent and S \{ρi} ` ¬ρi. Supposing i = n, we get that
S \{ρi} ` ¬Rn but the only negative occurrence of Rn in any formula in ∆ is in
λn and we are assuming that λn 6∈ S, so S \ {ρi} 6` ¬Rn and therefore it cannot
be that i = n. Assume that i < n, then S \ {ρi} ` ¬ρi ≡ (¬Ri ∨ (exti ∧Qi+1)).
As before, it must be that S \ {ρi} 6` ¬Ri, hence S \ {ρi} ` exti ∧ Qi+1. By
lemma 17, S ⊇ Xi(s)∪Xi+1(s), for some s and since the only positive occurrence
of Qi+1 in any formula in ∆ is as itself, we also have Qi+1 ∈ S. Hence the other
minimal inconsistent subsets of ∆ \ {¬φ′} are {ρi, Qi+1} ∪Xi(s) ∪Xi+1(s).

If S is minimal inconsistent and ¬φ′ ∈ S then S \ {¬φ′} is consistent and
S \ {¬φ′} ` φ′. The propositions in φ′ appear only positively, and the only
positive occurrences of these propositions in ∆ occur as themselves and they
are found in Πn. It follows by minimality that S ⊆ Πn.

Let s ∈ {+,−}n+1. Then Xn(s) ∪ {¬φ′} is inconsistent iff Xn(s) ` φ′ iff
vs |= φ, by (5).
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LEMMA 19. Let S, T be disjoint, consistent subsets of ∆ and suppose that
A(T,¬

∧
S). There must be a minimal inconsistent subset X ⊆ ∆ such that

X ∩ S,X \ S 6= ∅ and T = X \ S.

LEMMA 20. Suppose that there is exactly one set S ⊆ ∆ such that A(S, φ).
Then the following are equivalent: (i) W2(φ,∆), (ii) W2(

∧
S,∆), and (iii)

¬W2(¬
∧
S,∆ \ S).

Proof. First we prove the following claim: given the assumptions in the lemma,
if for some T ⊆ ∆ it is the case that A(T,

∧
S), then T = S. To prove the claim,

suppose A(T,
∧
S). Then, T ` φ will be true, and therefore, there is a minimal

set T ′ ⊆ T such that T ′ ` φ, meaning that A(T ′, φ) is true. But then, by the
assumption in the lemma, T ′ = S and, by the requirement of minimality of T
in A(T,

∧
S), T = T ′ = S. This proves the claim.

Now we prove the lemma.

W2(φ,∆)

⇐⇒ ∃T ⊆ ∆, A(T, φ) ∧ ¬W2(¬
∧
T,∆ \ T ) (by def. 5)

⇐⇒ ¬W2(¬
∧
S,∆ \ S) (by uniqueness of S)

⇐⇒ W2(
∧
S,∆) (by def. 5 and claim)

LEMMA 21. Let i < n, s ∈ {+,−}n+1.

W2

∧Xi(s) ∧Qi,∆ \
⋃
j<i

∆j


⇐⇒

 ¬W2(
∧
Xi+1(s) ∧Qi+1,∆ \

⋃
j≤i ∆j)

∧
¬W2(

∧
Xi+1(si+1) ∧Qi+1,∆ \

⋃
j≤i ∆j)


Before we give the formal proof, it might be helpful to give a rough descrip-

tion of the roles of the formulae λi and ρi, as well as that of the propositions
Qi, Ri. The intention is that if an argument with support Xi(s) is made, there
are two undercutting arguments and their supports are Xi+1(s) and Xi+1(si+1).
We could have fixed this by including in our knowledge base the formula αi that
asserts that Xi(s) ∪ Xi+1(s) ∪ {αi+1} is inconsistent. Now, if Xi(s) ∪ {αi} is
played there are two undercutting arguments, Xi+1(s±i+1) ∪ {αi+1}. If these
two arguments were the only undercutting arguments, then the sequences s
would properly reflect partial valuations used to evaluate (4). The problem is
that Xi(s) ∪Xi+1(s±i+1) also undercuts Xi(s) ∪ {αi} and cannot itself be un-
dercut. In order to avoid these kinds of undercuts, we devise the knowledge
base so that every formula in Πi has already been used before an undercutting
argument Xi+1(s±i+1) is made. The proposition Qi is included in the support
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{Qi} ∪Xi(s)
{ρi, Qi+1}
∪

Xi+1

(
s ±(i+1)

) {λi} ∪Xi(s)

{λi} {ρi} ∪Xi(s)

{Qi+1} ∪Xi+1

(
s ±(i+1)

)
. . .

. . .

Figure 1: Attacks and counter-attacks on {Qi} ∪Xi(s) within ∆ \
⋃

j<i ∆j .

of an argument at level i only when Πi is not yet exhausted. If the formula ρi is
included in the support of an argument then the whole of Πi will be exhausted.

See figure 1. Each node represents an argument, although the claim of the
argument has been suppressed and only the support is visible. An arc between
two arguments denotes undercutting. When i = 0 there are two sequences of
+’s and −’s of length one, hence two possible nodes at the root of the graph,
namely

{
Q0,+P 0

0

}
and

{
Q0,−P 0

0

}
, and these are the only supports of the claim

of the reduction.
The set {λi} undercuts {Qi} ∪Xi(s). The set {ρi} ∪Xi(s) undercuts {λi},

but in the process “exhausts” all propositions at level i: now, (+P )i
j , (−P )i

j for
j ≤ i have all been used up. The set {ρi} ∪ Xi(s) can now be undercut by
{Qi+1} ∪Xi+1(s±i+1) and by no other sets.

Figure 1 shows that {Qi} ∪ Xi(s) can be undercut in another way, by
{ρi, Qi+1} ∪ Xi+1(s±i+1), but this undercut will not be warranted because it
is itself undercut by {λi} ∪Xi(s) which cannot be undercut. Now we give the
formal proof of the lemma.

Proof. Since each proposition in Xi(s)∪ {Qi} only occurs positively as itself in
∆ it follows, for S ⊆ ∆, that A(S,

∧
Xi(s) ∧ Qi) ⇐⇒ S = Xi(s) ∪ {Qi}. By
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lemma 20,

W2

(∧
Xi(s) ∧Qi,∆ \

⋃
j<i

∆j
)

⇐⇒ ¬W2

(
¬
(∧

Xi(s) ∧Qi

)
,∆ \

(⋃
j<i

∆j ∪Xi(s) ∪ {Qi}
))

⇐⇒ ¬W2

(
¬
(∧

Xi(s) ∧Qi

)
,
(

∆ \
⋃
j≤i

∆j
)
∪ {λi, ρi} ∪Xi(s)

)
(6)

using ∆i = Xi(s)∪Xi(s)∪{Qi, λi, ρi}. We consider whether ¬W2(¬(
∧
Xi(s)∧

Qi), (∆ \
⋃

j≤i ∆j)∪ {λi, ρi} ∪Xi(s)) holds. Let S ⊆ (∆ \
⋃

j≤i ∆j)∪ {λi, ρi} ∪
Xi(s). By lemmas 18, 19, A(S,¬(

∧
Xi(s) ∧Qi)) holds if and only if

S = {ρi, Qi+1} ∪Xi+1(s), S = {ρi, Qi+1} ∪Xi+1(si+1) or S = {λi}

(the set {λi, ρi} also entails the given claim but it is not minimal). The first two
of these three supports for ¬ (

∧
Xi(s) ∧Qi) are not warranted though, because

both of them are undercut by {λi} ∪ Xi(s) and there is no undercut on this
latter set contained within ∆ \ (

⋃
j≤i ∆j ∪ {λi, ρi, Qi+1}). Thus

¬W2

(
¬
(∧

Xi(s) ∧Qi

)
,
(

∆ \
⋃
j≤i

∆j
)
∪ {λi, ρi} ∪Xi(s)

)
⇐⇒ W2

(
¬λi,

(
∆ \

⋃
j≤i

∆j
)
∪ {ρi} ∪Xi(s)

)
(7)

By lemmas 18, 19 again, the one and only support for ¬λi in (∆ \
⋃

j≤i ∆j) ∪
{ρi} ∪Xi(s) is {ρi} ∪Xi(s). By lemma 20 again,

W2

(
¬λi,

(
∆ \

⋃
j≤i

∆j
)
∪ {ρi} ∪Xi(s)

)
⇐⇒ ¬W2

(
¬
(
ρi ∧

∧
Xi(s)

)
,∆ \

⋃
j≤i

∆j
)

(8)

Continuing, the only supports for ¬
(
ρi ∧

∧
Xi(s)

)
within ∆ \

⋃
j≤i ∆j are

{Qi+1} ∪Xi+1(s), {Qi+1} ∪Xi+1(si+1)

Hence

¬W2

(
¬
(
ρi ∧

∧
Xi(s)

)
,∆ \

⋃
j≤i

∆j
)

⇐⇒



W2

(
¬ (
∧
Xi+1(s) ∧Qi+1) ,∆ \ (

⋃
j≤i ∆j ∪Xi+1(s) ∪ {Qi+1})

)
and

W2

(
¬
(∧

Xi+1(si+1) ∧Qi+1

)
,

∆ \ (
⋃
j≤i

∆j ∪Xi+1(si+1 ∪ {Qi+1}))
) (9)
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Putting all this together,

W2

(∧
Xi(s) ∧Qi,∆ \

⋃
j<i

∆j
)

⇐⇒ ¬W2

(
¬
(∧

Xi(s) ∧Qi

)
,
(

∆ \
⋃
j≤i

∆j
)
∪ {λi, ρi} ∪Xi(s)

)
(by 6)

⇐⇒ W2

(
¬λi,

(
∆ \

⋃
j≤i

∆j
)
∪ {ρi} ∪Xi(s)

)
(by 7)

⇐⇒ ¬W2

(
¬
(
ρi ∧

∧
Xi(s)

)
,∆ \

⋃
j≤i

∆j
)

(by 8)

⇐⇒



W2

(
¬
(∧

Xi+1(s) ∧Qi+1

)
,∆ \

(⋃
j≤i

∆j ∪Xi+1(s) ∪ {Qi+1}
))

and

W2

(
¬
(∧

Xi+1(si+1) ∧Qi+1

)
,

∆ \
(⋃

j≤i

∆j ∪Xi+1(si+1) ∪ {Qi+1}
)) (by 9)

⇐⇒



W2

(
¬
(∧

Xi+1(s) ∧Qi+1

)
,(

∆ \
⋃

j≤i+1

∆j
)
∪Xi+1(s) ∪ {ρi+1, λi+1}

)
and

W2

(
¬
(∧

Xi+1(si+1) ∧Qi+1

)
,(

∆ \
⋃

j≤i+1

∆j
)
∪Xi+1(si+1) ∪ {ρi+1, λi+1}

)

⇐⇒



¬W2

(∧
Xi+1(s) ∧Qi+1,∆ \

⋃
j<i+1

∆j
)

and

¬W2

(∧
Xi+1(si+1) ∧Qi+1,∆ \

⋃
j<i+1

∆j
) (by (6))

LEMMA 22. Let i ≤ n, s ∈ {+,−}n+1. If n− i is even then

W2

∧ (Xi(s) ∪ {Qi}) ,

∆ \
⋃
j≤i

∆j

 ∪Xi(s) ∪ {Qi}


⇐⇒ vs 6|= ∃pi+1∀pi+2 . . . ∀pnφ

18



and if n− i is odd,

W2

∧ (Xi(s) ∪ {Qi}) ,

∆ \
⋃
j≤i

∆j

 ∪Xi(s) ∪ {Qi}


⇐⇒ vs |= ∀pi+1∃pi+2 . . . ∀pnφ

Proof. The proof is by induction over n−i. For the base case, let i = n, so n−i is
even. We have to prove thatW2(

∧
(Xn(s)∪{Qn}), (∆\

⋃
j≤n ∆j)∪Xn(s)∪{Qn})

holds iff vs 6|= φ. Note that ∆ \
⋃

j≤n ∆j = {¬φ′}. The formula
∧
Xn(s) ∧Qn

is supported by Xn(s) ∪ {Qn} and by no other set within Xn(s) ∪ {Qn,¬φ′}.
The only possible set supporting ¬ (

∧
Xn(s) ∧Qn) contained in {¬φ′} is of

course {¬φ′}, and {¬φ′} proves ¬ (
∧
Xn(s) ∧Qn) if and only if Xn(s) |= φ′ iff

vs(φ) = >, by the last part of lemma 18 and equation (5). Thus W2(
∧

(Xn(s)∪
{Qn}), Xn(s) ∪ {Qn,¬φ′}) holds iff vs 6|= φ, proving the base case.

Now let n−i > 0 and suppose the lemma holds for all smaller values of n−i.
By lemma 21, W2(

∧
Xi(s) ∧Qi,∆ \

⋃
j<i ∆j) holds iff

¬W2

∧Xi+1(s) ∧Qi+1,∆ \
⋃
j≤i

∆j

∧
¬W2

∧Xi+1(si+1) ∧Qi+1,∆ \
⋃
j≤i

∆j

 .

(10)

If n − i is odd, this is equivalent to vs |= ∃pi+2∀pi+3 . . . ∀pnφ and vsi+1 |=
∃pi+2∀pi+3 . . . ∀pnφ by the inductive hypothesis (n − (i + 1) is even) which is
equivalent to vs |= ∀pi+1∃pi+2∀pi+3 . . . ∀pnφ, as required. If n − i is even, (10)
is equivalent to vs 6|= ∃pi+2∀pi+3 . . . ∀pnφ and vsi+1 6|= ∃pi+2 . . . ∀pnφ, which is
equivalent to vs 6|= ∃pi+1∀pi+2 . . . ∀pnφ, as required.

THEOREM 23. Definition 16 is a polynomial time reduction of QBF to
WFP2.

Proof. The reduction maps the instance (4) of QBF to the instance (Q0 ∧
val0,∆) of WFP2. There are two supports for the claim viz

{
Q0, (+P )0

0

}
and

{
Q0, (−P )0

0

}
. Hence the claim is warranted over ∆ iff either W2(Q0 ∧

(+P )0
0,∆) or W2(Q0 ∧ (−P )0

0,∆), i.e., iff there is s ∈ {+,−}n+1 such that
W2(Q0 ∧

∧
X0(s),∆). By lemma 22, recalling that n is odd, this is equivalent

to vs |= ∀p1∃p2 . . . ∀pnφ or vs0 |= ∀p1 . . . ∀pnφ (here s is arbitrary) which is
equivalent to vs |= ∃p0(∀p1 . . . ∀pnφ). Hence the reduction is correct.

6 Discussion and Conclusions
We have shown that deciding whether a claim is warranted in the frameworks
of [BH00, BH01, PWA03] is PSPACE-complete. We discuss this result within
the context of existing complexity results for other frameworks.

19



Dung’s seminal paper [Dun95] considers abstract Argumentation Frame-
works (AFs), where arguments are seen as abstract entities and, using a notion
of attack that is essentially a binary relation on the set of arguments, several
definitions of acceptability are introduced. Given a finite set of arguments, the
complexity of ascertaining whether an argument belongs to the set of acceptable
arguments according to a specific notion of acceptability, is a decidable decision
problem. Results concerning the complexity of some definitions of acceptabil-
ity, as well as further refinements thereof in the literature, have been produced
[DBC02, DBC04, Dun06, Dun07] and the complexity lies generally in the first
two levels of the polynomial hierarchy — apparently lower than the PSPACE
result of the current paper. But these results do not carry over to deductive
argumentation. A naive translation from the warranted argument problem of
definition 3 to an abstract Argumentation Framework would potentially produce
an exponential number of arguments (in general, one can expect |∆| · 2|∆| argu-
ments). If one thus constructs an abstract argumentation framework that con-
tains as nodes the arguments of a deductive system of argumentation, then the
graph could be of exponential size, rendering the complexity results expressed as
functions of the graph-size unhelpful. Indeed, this process resembles the expo-
nential jump in complexity observed when going from the usual representations
of graphs as inputs to decision problems (e.g., as incidence matrices) to succinct
representations (e.g., circuits). Some work on directly linking propositional ar-
gumentation with abstract argumentation frameworks exists [WDP06], but has
not addressed the complexity of warrant.

A parallel line of research on argumentation based on deductive systems con-
cerns Assumption-Based Frameworks (ABFs) by Bondarenko et al [BDKT97],
where an underlying object language and associated logic provide the deductive
processes on which the validity of an argument depends. In this framework
an argument is effectively a conflict-free set of assumptions, without a specified
claim. The corresponding decision problems in ABFs have been studied sepa-
rately, and results exist [DNT99, DNT00, DNT02] on the complexity of various
semantics, generally situated in the first four levels of the polynomial hierarchy.
Once again, the complexity results do not carry over to propositional argumenta-
tion. The reasons are twofold: first, the definition of argument diverges, making
a correspondence difficult; second, the definitions of acceptability in ABFs also
diverge from the definition of warrant in propositional argumentation.

Further work includes the study of other deductive argumentation frame-
works, as yet unexplored from a complexity perspective. A prime candidate
for such study is defeasible logic programming (DeLP) [SL92, GS04] which also
employs the notion of warrant based on dialectical trees. Two key differences
between the definition of warrant in DeLP and those we have considered here
are (i) the formulae of DeLP are restricted to generalised horn clause formulae
with modus-ponens as the only inference rule, and (ii) when undercutting an ar-
gument there is no requirement that the formulae in the undercut are partly or
entirely unused formulae, instead there is a weaker requirement that the support
of the undercut is not contained in the support of a previously played argument.
In principle, this means that a chain of arguments, undercuts and recursive un-

20



dercuts could have exponential length (where as in both definition 3 and 5,
such a chain could have at most linear length). Indeed, consider the knowledge
with the following strict rules: p1, . . . , pn → q, p1, . . . , pn → ¬q, ai → pi and
bi → pi for i ≤ n and with the following defeasible rules (presumptions, in the
terminology of DeLP): ai and bi for i ≤ n.1 The tree corresponding to the
query WDeLP(q,∆) would have branches of length 2n. Currently, we only know
that the complexity of the warranted argument problem for DeLP is between
PSPACE (through a reduction from the geography problem) and EXPSPACE and
we plan to investigate this problem further.
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