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Abstract

The family of domain algebras provide an elegant formal system for automated reasoning
about programme verification. Their primary models are algebras of relations, viz. repre-
sentable domain algebras. We prove that, even for the minimal signature consisting of the
domain and composition operations, the class of representable domain algebras is not finitely
axiomatizable. Then we show similar results for extended similarity types of domain algebras.
Keywords: domain algebras, relation algebras, finite axiomatizability

1 Introduction

Domain algebras provide an elegant, one-sorted formalism for automated reasoning about program
and system verification [DS08a, DS08b]. Traditionally, similar algebraic formalisms (like dynamic
algebras [Pr90, Pr91] and Kleene algebras with tests KAT [Ko97]) used a two-sorted approach:
there is one sort for states and another sort for actions, and some operations mapping between
actions and states. Using the domain operation d, one sort (sort of actions) is enough, since states
can be modelled as those actions a for which we have a = d(a). Such a one-sorted approach is
simpler and more suitable for automated reasoning, see [DS08a, DS08b] and the references therein
for more details.

Using the domain operation we can express if an action is enabled at a certain state: d(a)
consists of those states at which action a can be taken. Besides the domain operation, domain
algebras contain an operation for modelling sequential composition of actions (or processes), we will
denote it by ;. Other connectives that can be included are: join + for modelling non-deterministic
choice, identity 1′ for modelling the ineffective action skip, zero 0 for modelling the abortive action,
and the reflexive–transitive closure ∗ for modelling iteration. If we want the set of states, or domain
elements, to have a more expressive structure than a (semi)lattice, then we can include boolean
negation on states. In the one-sorted approach, this can be done by including an antidomain
operation a: a(a) consists of those states where action a is not enabled. The dual of domain is given
by the range operation: r(a) consists of those states that can be reached via action a. Depending
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on the choice of operations, one can define (anti)domain(–range) semigroups/monoids/semirings,
etc., see [DS08a, DS08b, DJS09] for axiomatizations of these classes of algebras.

[DMS04] explains in detail how a variant of domain algebras, called modal Kleene algebras,
can be applied to partial and total program correctness. Here we focus on the connection to
partial correctness. As with Kleene algebras with tests (KAT) [Ko00], domain algebras enable us
to formulate the partial correctness assertions and the inference rules of propositional Hoare logic
as equations and quasiequations (or universal Horn formulas), respectively. Indeed, consider an
assertion {b}p{c} with formulas b, c and program p expressing that c must hold in the output state
whenever program p terminates after an execution such that b was true in the input state (at the
beginning of the execution). The above assertion can be translated to b ;p = b ;p ; c where, in KAT,
b and c are of boolean sort (tests) and p is of kleenean sort (program), and, in the domain-algebra
formalism, b and c are domain elements (elements x such that d(x) = x). Hence we can write this
equation as

d(b) ; p = d(b) ; p ; d(c) (1)

or, using the range operation, as
r(d(b) ; p) ≤ d(c) (2)

see [MS06] for similar translations. Inference rules can be translated similarly. For instance, the
composition rule with tests b, c, d and programs p, q translates to the quasiequation

(b ; p = b ; p ; c ∧ c ; q = c ; q ; d)→ b ; p ; q = b ; p ; q ; d (3)

with domain elements b, c, d. We also recall from [Ko00] that there are intuitively valid inference
rules that are not derivable in propositional Hoare logic, e.g.,

{c}(if b then p else p){c} ⇒ {c}p{c} (4)

We refer the reader to [Ko00] for more details on propositional Hoare logic and its connection to
KAT.

As [Ko06] argues: “In programming language semantics and verification, the relational models
are of primary importance, because correctness conditions are often expressed as input/output
conditions on the start and final state of the computation”. Similarly, [DJS09] writes that the
“primary model of interest is the algebra Rel(X) of binary relations R on a set X with composition
and unary (anti)domain and (anti)range operations [since it] is a standard semantic model for
the input-output relation of nondeterministic programs and specifications, and the domain/range
operations can be used to define pre- and postconditions and modal (program) operators on a
state space”. Hence, in this paper, we will focus on the semantics of domain algebras provided
by binary relations. An action is modelled as the binary relation of input–output pairs, states as
subidentity relations, and the operations of the domain algebra as “natural” operations on binary
relations. For instance,

d(a) = {(s, s) : (s, t) ∈ a for some t} (5)

a ; b = {(s, t) : (s, u) ∈ a and (u, t) ∈ b for some u} (6)

see Definition 2.2 below for exact details. One of the fundamental questions is whether do-
main algebras are complete with respect to this semantics, i.e., whether every semantically valid
(quasi)equation is a theorem of domain algebras. In fact, the recent publication [DJS09] poses
some open problems regarding the completeness of domain algebras. These questions boil down
to the problem of whether the axiomatically defined domain algebras are isomorphic to alge-
bras of binary relations, i.e., using the slogan of algebraic logic, whether they are representable.
We can formulate the question in a more general setting: are the (quasi)equational theories of
representable domain algebras finitely axiomatizable? Besides its theoretical importance, a com-
pleteness result would enable us to argue about partial program correctness in a finite, equational
derivation system that provides “a simple flexible basis for automated theorem proving in program
and system verification” [DJS09]. As we have seen above with the translation of propositional
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Hoare logic, inference rules in general translate to quasiequations. For instance, rule (4) translates
to the relationally valid quasiequation

(d(c) ; (d(b) ; p+ a(b) ; p) = d(c) ; (d(b) ; p+ a(b) ; p) ; d(c))→ d(c) ; p = d(c) ; p ; d(c) (7)

Hence ideally we would like to have a complete axiomatization of the valid quasiequations.1 Sim-
ilar problems have been investigated for Kleene algebras. For instance, [Ko06] notes that the
quasiequation p ≤ 1′ → p ; p = p is valid in relational models but not true in all KATs, and gives
sufficient conditions for the representability of KATs and their ∗-free fragment. [Ko90] states as an
open problem whether the quasiequational theory of regular events is finitely based, and [Ko06]
writes “Axiomatization of the universal Horn theory of relational models is another interesting
open problem”.

Representable domain algebras (without the Kleene star) are subreducts of Tarski’s repre-
sentable relation algebras RRAs, see, e.g., [HH02, Ma06]. Finite axiomatizability of various frag-
ments has been extensively investigated, see [Sc91, Mi04, AM10] for surveys. We recall that a
representable relation algebra is a boolean set algebra of binary relations expanded with the fol-
lowing extra-boolean operators: the identity constant 1′ (interpreted as the identity, or diagonal,
relation), the unary converse operation ^ (interpreted as the inverse relation) and the binary
composition operation ; (see (6) above). In RRAs, the domain, range and antidomain operations
are definable as

d(x) = 1′ · (x ; x^) and r(x) = 1′ · (x^ ; x) and a(x) = −d(x)

The problem is that these definitions of domain and range explicitly use the converse ^ and
meet · operations, and the {;, · ,^, 1′}-reduct of RRA has non-finitely axiomatizable equational
and quasiequational theories, cf. [HM00]. If we take d and r as basic operations, then we can
avoid the use of converse and meet and hope for finite axiomatizability. As it turns out, the
quasiequational theory is still not finitely based even for the minimal domain algebra signature
{d, ;} of domain semigroups and its various extensions with additional operations, cf. Theorem 2.3
and Corollary 5.2. We conjecture that the equational theories of representable ∗-free domain
algebras are finitely based, see [AM10] for similar axiomatizability results for reducts of RRA and
[Ho97] for axiomatizing the equational theory of representable antidomain monoids.

The rest of the paper is organized as follows. In the next section, we recall the precise definitions
of domain algebras and representable algebras, and state our main result that representable domain
algebras are not finitely axiomatizable even for the minimal signature {d, ;} consisting of domain
and composition. In Section 3, we define domain algebras and show that they are not representable,
and in Section 4, we characterize representability by a two-player game, and show that a non-
principal ultraproduct of our non-representable domain algebras is representable, establishing the
main result. In Section 5, we look at the problem of expanding the similarity type of domain
algebras with extra operations, and in Section 6, we conclude by stating some open problems.

2 Basics and main result

We recall the definition of domain algebras from [DJS09].

Definition 2.1 A domain–range monoid A = (A, d, r, ;, 1′) consists of a monoid (A, ;, 1′) and

1[Ko06] shows that, in KAT, inference rules of propositional Hoare logic can be translated to equations. In this
paper, we will also consider similarity types in which the Kleene star is not expressible, hence Kozen’s method may
not work.
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unary operations d, r : A→ A such that the axioms (D1)− (D5) and (R1)− (R5) are satisfied:

(D1) d(x) ; x = x (R1) x ; r(x) = x

(D2) d(x ; y) = d(x ; d(y)) (R2) r(x ; y) = r(r(x) ; y)

(D3) d(d(x) ; y) = d(x) ; d(y) (R3) r(x ; r(y)) = r(x) ; r(y)

(D4) d(x) ; d(y) = d(y) ; d(x) (R4) r(x) ; r(y) = r(y) ; r(x)

(D5) d(r(x)) = r(x) (R5) r(d(x)) = d(x)

A domain monoid A = (A, d, ;, 1′) is defined similarly, by dropping all the conditions that involve
r. A domain or domain–range semigroup is an 1′-free subreduct of the corresponding monoid.

An antidomain monoid is A = (A, a, ;, 1′) with a monoid (A, ;, 1′) and unary operation a : A→
A satisfying the following axioms

(A1) a(x) ; x = 0

(A2) x ; 0 = 0

(A3) a(x) ; a(y) = a(y) ; a(x)

(A4) a(a(x)) ; x = x

(A5) a(x) = a(x ; y) ; a(x ; a(y))

(A6) a(x ; y) ; x = a(x ; y) ; x ; a(y)

where 0 is defined as a(1′).

We will use the term domain algebra for any algebra A of similarity type τ such that {;, d} ⊆
τ ⊆ {;, d, r, a, 1′, 0} and A satisfies the relevant axioms above. We may use the term antidomain
algebra when we want to emphasize that a is in the similarity type. The set of domain elements
D of an (anti)domain algebra is the set of all elements e such that d(e) = e.

We will use the notation X ;Y = {x ;y : x ∈ X, y ∈ Y }, d(X) = {d(x) : x ∈ X}, etc. for subsets
of elements X and Y . If D is the set of domain elements of A then (D, ;) is a lower semilattice.
We write ≤ for the ordering induced by this operation: e ≤ e′ iff e ; e′ = e. In an antidomain
monoid, we define d(x) = a(a(x)). In an antidomain monoid, the domain elements D form a
boolean algebra D = (D, ·,−) with the operations defined as x · y = x ; y and −x = a(x).

Definition 2.2 A representation M of a domain algebra A consists of a set M (the base of the
representation) and an interpretation xM ⊆ M ×M of each element x ∈ A such that (x ; y)M is
the composition of the relations xM and yM

(x ; y)M = {(u, v) ∈M ×M : (u,w) ∈ xM and (w, v) ∈ yM for some w ∈M}

and for each operation in the signature of A,

(d(x))M = {(u, u) ∈M ×M : (u, v) ∈ xM for some v ∈M}
(r(x))M = {(v, v) ∈M ×M : (u, v) ∈ xM for some u ∈M}
(a(x))M = {(u, u) ∈M ×M : (u, v) /∈ xM for all v ∈M}

(1′)M = {(u, v) ∈M ×M : u = v}

and x 6= y implies xM 6= yM.
A domain algebra is representable if it has a representation. In general, if τ is a similarity

type, we write R(τ) for the class of representable τ -algebras.

It is easy to check that the class of representable τ -algebras is closed under subalgebras, direct
products and ultraproducts (it is pseudo-axiomatizable). Hence it forms a quasivariety. Our main
result is the following.

Theorem 2.3 Let τ be a similarity type such that {d, ;} ⊆ τ ⊆ {d, r, a, ;, 1′, 0}. The class R(τ) of
representable τ -algebras is not finitely axiomatizable in first-order logic.
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Proof: We will define domain algebras Bn for every n ∈ ω of signature {d, r, a, ;, 1′} in Defini-
tion 3.6, and show that

1. the {d, ;}-reduct of Bn is not representable, Corollary 3.10,

2. non-principal ultraproducts
∏
U Bn of Bn over ω are representable, Corollary 4.8.

Now suppose, for contradiction, that a finite set of formulas, without loss of generality a single
formula σ(τ), defines R(τ). Since Bn is not representable, Bn |= ¬σ(τ) for n ∈ ω. Since  Loś
theorem states that first-order formulas are preserved under ultraproducts (see [CK90]), we have∏
U Bn |= ¬σ(τ), so

∏
U Bn is not representable, a contradiction.

3 Non-representability

In this section, we define domain algebras An and show that they are not representable. Before
we define these algebras, we review some basic results about domain algebras and introduce some
additional properties and relations that may be defined.

We refer the reader to [DJS09] for the basics of domain-algebra arithmetic. We list a few easy
consequences of the axioms — similar statements hold for r instead of d.

Proposition 3.1 Let A be a domain algebra and let x, y ∈ A.

1. If e = r(x) ; d(y), then e is a domain element and x ; y = x ; e ; y.

2. d(x ; y) = d(x) ; d(x ; y) and d(d(x)) = d(x).

3. For any domain element e, we have d(a ; e ; b) ≤ d(a ; b).

Definition 3.2 A domain algebra A with a set of domain elements D is said to be loose if it
includes an element 0 such that, for all x, y ∈ A,

1. 0 ; x = x ; 0 = d(0) = r(0) = 0

2. x ; y ∈ D ⇐⇒ (x ; y = 0 or both x, y ∈ D).

Next, we introduce two binary relations v,4 on the elements of a domain algebra.

Definition 3.3 Let A be a domain algebra, and let D be the set of domain elements of A. Define
a binary relation v on A by

a v b iff a = e0 ; b ; e1 for some e0, e1 ∈ D.

Let a < b iff a v b and a 6= b. For any a ∈ A, a↑ denotes {b ∈ A : a v b}.
We define another binary relation 4 on A by letting

a 4 b iff a = e0 ; u0 ; e1 ; u1 ; . . . ; un−1 ; en and b = u0 ; u1 ; . . . ; un−1 (8)

for some natural number n, domain elements e0, e1, . . . , en and elements u0, . . . , un−1. We will
write a ≺ b if a 4 b and a 6= b.

Let 1 ≤ k < ω. A sequence (α0, . . . , αk−1) of elements, where for each i < k − 1, we have
αi ≺ αi+1, is called a k-chain from α0 to αk−1 or simply a chain. The length of such a chain is k.
For k ≥ 2, a k-cycle is a k-chain (α0, . . . , αk−1) such that αk−1 ≺ α0.

Note that the sequence (a0) is a 1-chain from a0 to a0 (the chain condition holds vacuously), but
it is not a cycle, since the length of a cycle has to be at least two.

Lemma 3.4 If a domain algebra has a cycle, then it is not representable.
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Proof: In any representation M, it is very easy to verify that a 4 b implies aM ⊆ bM (see the
next proposition, below). Hence, if (a0, a1, . . . , ak−1) is a cycle, then aM0 = aM1 = . . . = aMk−1.
Since a0 6= a1, this contradicts the faithfulness of the representation.

The main idea for the construction of the non-representable domain algebra An (below) is that it
includes such an n-cycle.

Clearly a v b implies a 4 b, but the converse fails, as we will see. The relation a v b is
equivalent to an equation a = d(a) ; b ; r(a), but the definition of the relation a 4 b seems to make
essential use of existential quantification. Note that v coincides with the boolean ordering ≤ on
D. If A is a loose domain algebra, then 4 also coincides with the boolean ordering on D.

All of the parts of the next proposition follow easily from the definitions of v and 4 and from
Proposition 3.1.

Proposition 3.5 Let A be a domain algebra.

1. The relation v is reflexive and transitive, but ; generally is not monotone w.r.t. v.

2. If e is a domain element and a 4 e, then a is a domain element.

3. If a 4 b, then d(a) ≤ d(b) and r(a) ≤ r(b).

4. 4 is reflexive and ; is monotone w.r.t. 4

if a1 4 a2 and b1 4 b2, then a1 ; b1 4 a2 ; b2

but generally is not transitive.

5. Let M be a representation of A. If a 4 b, then aM ⊆ bM.

Now let A be a loose domain algebra.

6. If e is a domain element and e 4 f , then f is a domain element.

Next we define, for every n ∈ ω, a domain algebra An. These algebras are formally defined in
Definition 3.6, but first we give a rough outline of how they may be constructed. Start with
the representable domain algebra C with elements {0, e, f, e∗, a, b, c} where the set D of domain
elements is {0, e, f, e∗}. The domain and range operations are defined by d(δ) = r(δ) = δ for
δ ∈ D, d(a) = d(c) = e, d(b) = e∗ = r(a) and r(b) = r(c) = f . Composition is defined for domain
elements by δ ; δ′ = 0 if δ 6= δ′ else δ, d(x) ; x = x = x ; r(x) (all x) and a ; b = c, and all other
compositions are zero. A representation of C over the base set {0, 1, 2} maps the non-zero elements
of C to singleton sets of ordered pairs (i, j) where i ≤ j < 3 as shown in Figure 1(a). Secondly,
we ‘split’ C to obtain a representable domain algebra Cn, by replacing the elements e∗, a and b by
{ei : i < n}, {ai : i < n} and {bi : i < n}, respectively, leaving the operations unchanged, except
d(ei) = r(ei) = ei, d(ai) = e, r(bi) = f , r(ai) = ei = d(bi), and ai ; bj = 0 if i 6= j and ai ; bi = c
for i < n. A representation of Cn can be obtained from the representation shown in Figure 1(a)
of C by replacing the base point 1 by n points 10, 11, . . . , 1n−1, as shown in Figure 1(b). Finally,
we obtain the non-representable domain algebra An by further splitting the elements ei, ai, bi so
that for x ∈ {ei, ai, bi} we replace x by {x01, x10, x11}, and we replace c by {ci : i < n}. The
operations are defined on these new elements in such a way as to make c0 ≺ c1 ≺ . . . ≺ cn−1 ≺ c0
an n-cycle of An. Again, the domain and range operations are mostly unchanged, but d(ci) = e,

r(ci) = f , r(aλ,µi ) = eλ,µi = d(bλ,µi ), for (λ, µ) ∈ {(0, 1), (1, 0), (1, 1)}. For composition, we refine
the composition of Cn in such a way that ci ≺ ci+1, for i < n, making (c0, c1, . . . , cn−1) into an
n-cycle, see (14) below. (In passing we note that, since our signature does not include boolean
meet or join, there is no requirement that ci−1+ci = a11i ;e01i ;b11i +a11i ;e10i ;b11i = a11i ;e11i ;b11i = ci.)
Now we give the formal definition.
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Figure 1: Representations of C and Cn.

Definition 3.6 Let n ∈ ω. Let Dn = (Dn, ·,−) be the boolean algebra generated by the following
set of atoms At(Dn) = {e, f, e01i , e10i : i < n}. Let ≤ denote the usual ordering on Dn and +
boolean join. We denote the top and bottom elements of Dn by 1′ and 0, respectively, and define
e11i = e01i + e10i , for i < n.

Let An = (An, ;, d, r, a, 1
′) be an algebra with elements

Dn ∪ {a01i , a10i , a11i , b01i , b10i , b11i , ci : i < n}

with operations defined below. For x ∈ {e, a, b} and i < n the symbol x00i denotes 0. The set of
domain elements of An is Dn. The domain and range operators are defined by

d(x) = r(x) = x if x ∈ Dn (9)

and for non-domain elements x

d(x) =

{
e if x ∈ {a01i , a10i , a11i , ci : i < n}
eλ,µi if x = bλ,µi

(10)

r(x) =

{
f if x ∈ {b01i , b10i , b11i , ci : i < n}
eλ,µi if x = aλ,µi

(11)

for any i < n and (λ, µ) ∈ {(0, 1), (1, 0), (1, 1)}. Composition is defined first for domain elements:

d ; d′ = d · d′ for all domain elements d and d′.

Of course, we will have

x = d(x) ; x = x ; r(x) and 0 = 0 ; x = x ; 0 for all x.

In addition, we require

aλ,µi ; eν,πi = aλ·ν,µ·πi (12)

eλ,µi ; bν,πi = bλ·ν,µ·πi (13)

aλ,µi ; bν,πi =

 ci if λ · ν = 1
ci−1 if λ · ν = 0 and µ · π = 1
0 if λ · ν = µ · π = 0

(14)

for λ, µ, ν, π ∈ {0, 1} and i < n, − is modulo n. All other compositions are defined to be zero.
The antidomain operation a is defined by taking the complement of d in Dn: a(x) = −d(x).

The antirange operation is already definable in this signature, the antirange of x is a(r(x)). The
boolean connectives of Dn can be recovered by using a as complement and ; as meet.

Lemma 3.7 For each n ∈ ω, An is a loose domain algebra. Furthermore, if x, y ∈ An and neither
x nor y is a domain element, then there is an atom d of Dn such that x ; d ; y = x ; y.
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Proof: We check the second sentence of the lemma first. It can easily be checked, from Defini-
tion 3.6, that

x ; y = 0 ⇐⇒ r(x); d(y) = 0 (15)

If x ; y = 0, then we may pick an arbitrary atom d of Dn and we have x ; d ; y = x ; y = 0. Suppose
x ; y 6= 0, so r(x) ; d(y) 6= 0. Since x is not a domain element by assumption, we observe that
r(x) ∈ {e, f, e01i , e10i , e11i : i < n}, hence r(x) ; d(y) also belongs to this set. If r(x) ; d(y) is an atom
of Dn, then we may let d equal this atom. The final case is where r(x) ; d(y) is neither zero nor an
atom, i.e., it is e11i for some i < n. Since neither x nor y is a domain element by assumption, we
must have x = a11i and y = b11i by (12) and (13). The required domain atom d is e10i in this case
(but note by (14) that the other atom below e11i , namely e01i , would not work).

Looseness of An is easily checked from Definition 3.6. We must show that An is a domain
algebra. The axiom which is the most difficult to check is associativity of composition:

(x ; y) ; z = x ; (y ; z) (16)

If x ; y = 0, then, since d(y ; z) ≤ d(y), we have r(x) ; d(y ; z) ≤ r(x) ; d(y) = 0, so both sides of
(16) are zero by (15). Hence we may assume that r(x) ; d(y) 6= 0 and similarly r(y) ; d(z) 6= 0.

If x, y, z are all domain elements, then, since composition of domain elements is defined by
boolean meet, (16) is true. So we may assume that at least one of x, y, z is not a domain element.
Let

E∗ = {e, f, e01i , e10i , e11i : i < n}

Note that E∗ is a proper subset of the set of domain elements (recall that Dn is a boolean algebra,
closed under +), but E∗ is the important part of Dn in the following sense. For any non-domain
element w, we have d(w), r(w) ∈ E∗. Hence, for any non-domain element w and any domain
element d, we have w ; (d ; r(w)) = w ; d and (d ; d(w)) ; w = d ; w, and both d ; r(w) and d ; d(w)
belong to E∗. Hence we may replace any domain element among x, y, z by an element from E∗

without altering either side of (16). So we will assume that the only domain elements occurring
in (16) belong to E∗.

First suppose d(y) = e. Since r(x) ; d(y) 6= 0, we have x = e by (9) and (11). Hence both sides
of (16) equal y ;z. Next suppose d(y) = f . Then y = z = f , by (9) and (10), and both sides of (16)
equal x. Hence we may assume that d(y) ∈ {e01i , e10i , e11i : i < n} and similarly r(y) also belongs
to this set. In An, if the domain and range of an element belong to {e01i , , e10i , e11i : i < n}, then

the element itself belongs to this set. Therefore, y = eλ,µi , for some i, λ, µ. Since r(x) ; d(y) 6= 0,

we have either x = eλ
′,µ′

i or x = aλ
′,µ′

i , for some λ′, µ′. Similarly, either z = eλ
∗,µ∗

i or z = bλ
∗,µ∗

i ,
for some λ∗, µ∗. Let l = λ · λ′ · λ∗ and m = µ · µ′ · µ∗. Then both sides of (16) evaluate to

0 if l = m = 0

el,mi if x = eλ
′,µ′

i , y = eλ
∗,µ∗

i

bl,mi if x = eλ
′,µ′

i , y = bλ
∗,µ∗

i

al,mi if x = aλ
′,µ′

i , y = eλ
∗,µ∗

i

ci if x = aλ
′,µ′

i , y = bλ
∗,µ∗

i , l = 1

ci−1 if x = aλ
′,µ′

i , y = bλ
∗,µ∗

i , l = 0, m = 1

This completes the proof that An is associative.

It might be instructive to check the definitions of v and 4 in An.

Lemma 3.8 Let 2 ≤ n < ω.

1. For every x ∈ An, we have 0 v x v x.

2. For domain elements d, e, we have d v e ⇐⇒ d ≤ e.
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3. Whenever λ ≤ ν and µ ≤ π, we have

aλ,µi v aν,πi and bλ,µi v bν,πi

and no other pairs of elements (other than those listed here and above) are related by v.

4. The binary relation 4 in An is

v ∪ {(ci, ci+1), (cn−1, c0) : i < n− 1}

Proof: The first part holds since 0 = 0 ; x ; 0 and x = d(x) ; x ; r(x). The second and third parts
are easily verified. For the fourth part, we know that x v y implies x 4 y and

ci = a01i+1 ; b01i+1 = (a11i+1 ; e01i+1) ; (e01i+1 ; b11i+1) = a11i+1 ; e01i+1 ; b11i+1 ≺ a11i+1 ; b11i+1 = ci+1

(all i < n, addition modulo n), so c0 ≺ c1 ≺ . . . ≺ cn−1 ≺ c0.
Conversely, suppose x ≺ y, i.e., there are non-domain elements u0, u1, . . . , uk−1 (some k) and

domain elements e0, e1, . . . , ek such that y = u0 ;u1 ; . . . ;uk−1 and x = e0 ;u0 ; e1 ; . . . ;uk−1 ; ek and
x 6= y. If k ≤ 1, then x < y. If k ≥ 2, then y is the product of at least two non-domain elements.
By looseness, either y = 0 (so x = y = 0, but of course 0 v 0) or y is not a domain element. In

An, this can only happen if k = 2 and the product is of the form aλ,µi ; bν,πi (some i < n, some

λ, µ, ν, π < 2). Therefore if x ≺ y and x 6< y, then x = aλ,µi ; eρ,σi ; bν,πi and y = aλ,µi ; bν,πi . Given
that x 6= 0 and x 6= y, we must have x = ci−1 and y = ci, as required.

Corollary 3.9 Let 2 ≤ n < ω. An has an n-cycle but no k-cycle for k < n.

Hence, by Lemma 3.7 and Lemma 3.4 and Corollary 3.9, we have the following.

Corollary 3.10 Let τ be a signature containing {d, ;}. For each 2 ≤ n < ω, the τ -reduct of An
is not representable.

Remark 3.11 A special case of the relation 4 defined in (8) is the relation 42 defined by

a 42 b iff a = x ; ε ; y and b = x ; y

for some elements x, y and domain element ε. The non-representability of An is witnessed by the
following quasiequation qn that is valid in representable algebras but fails in An:

(
∧
i<n

zi 42 zi+1)→ z0 = z1 (17)

where the addition is modulo n. Expanding this, qn may be expressed as∧
i<n

(d(εi) = εi ∧ zi = xi+1 ; εi+1 ; yi+1 ∧ zi+1 = xi+1 ; yi+1)→ z0 = z1 (18)

To see that qn fails in An consider the valuation that maps εi, xi, yi, zi to e01i , a
11
i , b

11
i , ci, respec-

tively (the antecedent of qn is true, but the consequent is false, since c0 6= c1). On the other hand,
since representable algebras cannot contain a cycle, qn must be valid in representable algebras.

4 Representability

In this section, we show that any non-principal ultraproduct A of An over ω is representable.
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Game for representability of domain algebras

First we work out the details for domain algebras without the antidomain operation, and show
the necessary modifications for including antidomain later. The game we define gives a set of
conditions that are sufficient (though not necessary) for representability of a domain algebra.

Let A = (A, d, r, ;, 1′) be a domain algebra with a set D of domain elements. Recall that
the domain elements of A together with composition form a lower semilattice. Let δ↑ denote
{d ∈ D : δ ≤ d}, for any δ ∈ D. A network N = (N1, N2) over A consists of a finite set N1 (of
nodes) and a map N2 : (N1 ×N1)→ ℘(A) satisfying the following coherence conditions:

C1 there is δi ∈ D such that N2(i, i) = δ↑i , and if i 6= j, then N2(i, j) ∩D = ∅

C2 d(N2(i, j)) ⊆ N2(i, i) and r(N2(i, j)) ⊆ N2(j, j)

C3 N2(i, j) ;N2(j, k) ⊆ N2(i, k)

for all i, j, k ∈ N1, and

C4 {(k, l) : k, l ∈ N1, N2(k, l) 6= ∅} is reflexive, transitive and antisymmetric.

A network N = (N1, N2) over A is saturated if it satisfies

S1 if d(a) ∈ N2(i, i), then a ∈ N2(i, l) for some l

S2 if r(a) ∈ N2(j, j), then a ∈ N2(l, j) for some l

S3 if a ; b ∈ N2(i, j), then a ∈ N2(i, k) and b ∈ N2(k, j) for some k

for all i, j ∈ N1 and a, b ∈ A. Note that in saturated networks the following condition holds:

S4 if a ∈ N2(i, j) and a 4 b, then b ∈ N2(i, j).

Indeed, assuming a ∈ N2(i, j) and a 4 b, we have a = e0 ; u0 ; e1 ; u1 ; . . . ; un−1 ; en and
b = u0 ; u1 ; . . . ; un−1 for some natural number n, domain elements e0, e1, . . . , en and elements
u0, . . . , un−1. Then by S3 and C1, we have i = k0, k1, . . . , kn−1, kn = j such that ui ∈ N2(ki, ki+1)
and ei ∈ N2(ki, ki), hence by C3, b = u0 ; u1 ; . . . ; un−1 ∈ N2(i, j).

Let N = (N1, N2) and M = (M1,M2) be networks. We write N ⊆ M if N1 ⊆ M1 and for
all i, j ∈ N1, we have N2(i, j) ⊆ M2(i, j). We sometimes drop the superscripts and write N for
the network, the set of nodes and the map, distinguishing cases by context, though we may write
nodes(N) to denote the set N1 of nodes of N .

Let t ≤ ω. The two player game Gt(A) has t rounds numbered 0, 1, . . . , i, . . ., for i < t. In
the initial round, player ∀ (male) picks a set {α, β} of distinct elements of A. Player ∃ (female)
responds with either α or β. In the former case, she has to prove that there is a pair of nodes
witnessing α but not β, in the latter case the other way round — this suffices to prove that the
representation she constructs is faithful. See Figure 2(a). Without loss of generality, suppose
she picks α. In the initial round, ∃ has to define a network N0 with nodes 0 and 1 such that
α ∈ N0(0, 1) but β /∈ N0(0, 1). Of course, she identifies 0 with 1 precisely when α is a domain
element. Suppose 0 < i < t and a network Ni−1 has just been played. ∀ can choose from the
following types of move.

Domain move He can demand to see a domain witness. He picks j ∈ nodes(Ni−1) and an
element a ∈ A such that d(a) ∈ Ni−1(j, j). Such a move is denoted (j, a). Then ∃ has to
play a network Ni ⊇ Ni−1, such that a ∈ Ni(j, k) for some k ∈ nodes(Ni). See the top of
Figure 2(b) where the newly added edges are indicated by dotted arrows — ∃ might have to
add more edges to ensure that the new structure is indeed a network, see below.

Range move He can demand to see a range witness. This is completely symmetric to the domain
move. See the bottom of Figure 2(b).
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Composition move He can demand to see a composition witness. He picks j, k ∈ nodes(Ni−1)
and a, b ∈ A such that a ; b ∈ Ni−1(j, k). Such a move is denoted (j, k, a, b). ∃ has to play a
network Ni ⊇ Ni−1 where there is l ∈ nodes(Ni) such that a ∈ Ni(j, l) and b ∈ Ni(l, k). See
Figure 2(c).

If at any stage ∃ fails to define the required network or if a network is played such that β ∈ N(0, 1),
then ∀ wins. Otherwise ∃ wins.

0
$$ α or β // 1

zz
jd(a)
$$ a // l cc j

a

''
a;b

��

��

l

b
ww

cc

jr(a)
$$

la
oo cc kEE

(a) (b) (c)

Figure 2: The initial move {α, β}, a domain move (j, a), a range move (j, a) and a composition
move (j, k, a, b).

Lemma 4.1 Let A be a loose domain algebra (see Definition 3.2) and t be a natural number. If
for every x ∈ A there is no cycle of length less than or equal to 2t, then ∃ has a winning strategy
in Gt(A).

Proof: Suppose that no such cycle exists. We describe a winning strategy for ∃. Let ∀ play
{α, β} in the initial round. If there is no chain from α to β of length less than or equal to t, then ∃
plays α. Otherwise there can be no chain from β to α of length less than or equal to t, and ∃ plays
β in this case. Assume the former case holds, ∃ plays α. Then she defines N0 by N0(0, 0) = d(α)↑,
N0(1, 1) = r(α)↑, N0(0, 1) = {α}, and N0(1, 0) = ∅ if α is not a domain element, or by identifying
0 with 1 and N0(0, 0) = α↑ if α = d(α). In either case, N0 is a network and we have α ∈ N0(0, 1)
and β /∈ N0(0, 1).

We will prove, by induction over the round i, that

1. Ni is a network,

2. if γ ∈ Ni(0, 1), then there is a m-chain from α to γ for some m ≤ i.

Suppose 0 < i < t and a network Ni−1 has just been played.

Domain move Assume ∀ plays (j, a), where d(a) ∈ Ni−1(j, j). Recall by C1 that there is a

domain element δj such that Ni−1(j, j) = δ↑j , so δj ≤ d(a). If there is a witness l ∈ Ni−1 such
that a ∈ Ni−1(j, l), then she lets Ni = Ni−1, so assume that there is no such witness in Ni−1.
Then ∃ plays the network Ni defined as follows. She lets nodes(Ni) = nodes(Ni−1)∪{l}, for
some new node l /∈ nodes(Ni−1). For edges not incident with the new node l, the labelling
in Ni is the same as in Ni−1 (hence the minimal domain label δp is the same in Ni as in
Ni−1, for p ∈ Ni−1). ∃ lets δl = r(δj ; a) and

Ni(l, l) = δ↑l

Ni(p, l) = Ni−1(p, j) ; {a} ; δ↑l
Ni(l, p) = ∅

11



for p ∈ nodes(Ni−1). See Figure 3, where typical elements of labels are shown. Note that

a = d(a) ; a ; r(a) ∈ δ↑j ; {a} ; δ↑l = Ni−1(j, j) ; {a} ; δ↑l = Ni(j, l)

since δj ≤ d(a) (by assumption) and δl ≤ r(a) (by definition of δl).

jdj ::
dj ;a;dl // l dlcc

p::

u

OO

u;a;dl

77pppppppppppppppppppppppppppppppppppppppp

Figure 3: Domain move: dj ≥ δj , dl ≥ δl, u ∈ Ni−1(p, j).

Range move Range moves are handled symmetrically.

Composition move Assume ∀ plays (j, k, a, b) where a ; b ∈ Ni−1(j, k). If there is already a
witness l ∈ Ni−1 such that a ∈ Ni−1(j, l) and b ∈ Ni−1(l, k), then ∃ lets Ni = Ni−1. Note
that this includes the case when j = k, by looseness of A and the coherence of Ni−1. So
assume that j 6= k and that there is no witness l ∈ Ni−1. Then ∃ plays the network Ni
defined below. We have four cases according to whether a and b are domain elements.

1. a, b ∈ D. Then a ; b ∈ D, and hence j = k by C1 for Ni−1, contrary to our assumption.

2. a ∈ D and b /∈ D. First note that, since d(a ; b) ≤ d(a) = a and d(a ; b) ∈ Ni−1(j, j)
by C2, we have a ∈ Ni−1(j, j) by C1. In this case, nodes(Ni) = nodes(Ni−1) and ∃
re-defines the labels as follows.

Ni(p, q) = Ni−1(p, q) ∪Ni−1(p, j) ; {b} ;Ni−1(k, q)

for all p, q ∈ nodes(Ni−1). See Figure 4, where typical (mostly new) elements of labels
are shown. Note that Ni(p, q) = Ni−1(p, q) if Ni−1(p, j) = ∅ or Ni−1(k, q) = ∅. Consid-
ering the case p = q, we haveNi−1(p, j) = ∅ orNi−1(k, q) = ∅, since a;b ∈ Ni−1(j, k) 6= ∅
and Ni−1 satisfies C4. Hence we have Ni(p, p) = Ni−1(p, p). Note that

b ∈ δ↑j ; {b} ; δ↑k = Ni−1(j, j) ; {b} ;Ni−1(k, k) ⊆ Ni(j, k)

since δj ≤ d(a ; b) ≤ d(b) and δk ≤ r(a ; b) ≤ r(b) by Proposition 3.1.

3. a /∈ D and b ∈ D. This case is completely symmetric to the previous one.

4. a, b /∈ D. In this case, nodes(Ni) = nodes(Ni−1) ∪ {l} (some l /∈ nodes(Ni−1)), with
minimal domain element δl = r(δj ; a) ; d(b ; δk) and the labelling is defined by

Ni(l, l) = δ↑l

Ni(p, l) = Ni−1(p, j) ; {a} ; δ↑l

Ni(l, q) = δ↑l ; {b} ;Ni−1(k, q)

Ni(p, q) = Ni−1(p, q) ∪Ni−1(p, j) ; {a} ; δ↑l ; {b} ;Ni−1(k, q)

for all p, q ∈ nodes(Ni−1). See Figure 5, where typical (mostly new) elements of labels

are shown. Observe that the new part Ni−1(p, j) ; {a} ; δ↑l ; {b} ; Ni−1(k, q) of Ni(p, q)
will be empty if Ni−1(p, j) = ∅ or Ni−1(k, q) = ∅. So

Ni(p, q) = Ni−1(p, q) if either Ni−1(p, j) = ∅ or Ni−1(k, q) = ∅ (19)
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jdj ::

dj ;b;v

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
dj ;b;dk // k dkee

v

��
p::

u

OO

u;b;dk

77pppppppppppppppppppppppppppppppppppppppp
u;b;v

// q dd

Figure 4: Composition move — case 2: dj ≥ δj , dk ≥ δk, u ∈ Ni−1(p, j), v ∈ Ni−1(k, q).

If Ni−1(p, j) 6= ∅ 6= Ni−1(k, q), then p 6= q by C4 for Ni−1, whence Ni(p, p) = Ni−1(p, p).
Note that

a ∈ Ni(j, l) = Ni−1(j, j) ; {a} ;Ni(l, l)

since Ni−1(j, j) 3 δj ≤ d(a ; b) ≤ d(a), Ni(l, l) 3 δl ≤ r(δj ; a) ≤ r(a). Similarly,
b ∈ Ni(l, k). Also note that Ni−1(j, k) 3 δj ; a ; δl ; b ; δk, since

δj ; a ; b ; δk = δj ; a ; r(δj ; a) ; d(b ; δk) ; b ; δk = δj ; a ; δl ; b ; δk (20)

l

dl

��

dl;b;dk

$$HHHHHHHHHHHHHHHHHHHHH

dl;b;v

��1
11111111111111111111111111111111111

jdj ::

dj ;a;dl

;;vvvvvvvvvvvvvvvvvvvvv

dj ;a;dl;b;v

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
dj ;a;dl;b;dl // k dkee

v

��
p::

u

OO

u;a;dl

FF
u;a;dl;b;dk

77ppppppppppppppppppppppppppppppppppppppppp
u;a;dl;b;v

// q dd

Figure 5: Composition move — case 4: dj ≥ δj , dk ≥ δk, dl ≥ δl, u ∈ Ni−1(p, j), v ∈ Ni−1(k, q).

Next we show that the structure Ni defined above satisfies the induction hypothesis.
First we check that γ ∈ Ni(0, 1) implies the existence of a chain of length at most i from α to

γ. We show that in each round i of the game, if a new element z is included in the label Ni(0, 1),
then x 4 z for some x ∈ Ni−1(0, 1). In fact, we show for every p, q ∈ nodes(Ni−1),

Ni(p, q) ⊆ {z : x 4 z for some x ∈ Ni−1(p, q)} (21)

Since x 4 x, we know that Ni−1(p, q) ⊆ {z : x 4 z for some x ∈ Ni−1(p, q)}, so have to show that
Ni(p, q)rNi−1(p, q) ⊆ {z : x 4 z for some x ∈ Ni−1(p, q)}. Observe that the only moves of ∃ that
add additional elements to the label of (p, q) are in response to composition moves. So assume
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that, in round i > 0, ∀ plays (j, k, a, b) where a ; b ∈ Ni−1(j, k). First suppose that this is covered
by case 2, i.e., a ∈ D. Note that a ; b 4 b in this case and thus u ; a ; b ; v 4 u ; b ; v for any u, v,
and in particular, for every u ∈ Ni−1(p, j) and v ∈ Ni−1(k, q). Since Ni−1 satisfies C3, we have
u ; a ; b ; v ∈ Ni−1(p, q). Hence any new element z included in Ni(p, q) rNi−1(p, q) satisfies x 4 z
for some x ∈ Ni−1(p, q). Since case 3 is completely symmetric, next we assume that a, b /∈ D, as in
case 4 for composition moves. Consider a new element z in the label of (p, q). From the definition
of Ni in case 4 we have z = u ; a ; dl ; b ; v for some u ∈ Ni−1(p, j), dl ≥ δl and v ∈ Ni−1(k, q).
Then z = u ; a ; dl ; b ; v < u ; δj ; a ; δl ; b ; δk ; v ∈ Ni−1(p, q), by (20) and C3 for Ni−1. This proves
(21) and hence the second induction hypothesis. Since there is no t-chain from α to β it follows
that β 6∈ Nt(0, 1).

It remains to show that Ni is a network. C1 holds by looseness of A, C4 can be checked by
inspection. We check C2. First consider an old edge (p, q), where p, q ∈ Ni−1, and z ∈ Ni(p, q).
By (21), x 4 z for some x ∈ Ni−1(p, q). Hence, by Proposition 3.5(3), d(x) ≤ d(z) and r(x) ≤ r(z).
By C2 for Ni−1 we have d(x) ∈ Ni−1(p, p) and r(x) ∈ Ni−1(q, q). Since Ni−1 ⊆ Ni, it follows that
d(z) ∈ Ni(p, p) and r(z) ∈ Ni(q, q).

It remains to check C2 for new edges of Ni — edges incident with the new node l played in
response to a domain move, a range move, or case 4 of a composition move. First suppose Ni
was played in response to a domain move (j, a). Let l be the new node, p ∈ Ni−1, and consider
u ; a ; dl ∈ Ni(p, l) where u ∈ Ni−1(p, j) and dl ≥ δl. Recall that δl = r(δj ; a), so δj ; a ; δl = δj ; a.
Then

d(u ; a ; dl) ≥ d(u ; δj ; a ; δl) = d(u ; d(δj ; a ; δl)) = d(u ; d(δj ; a)) = d(u ; δj) ∈ Ni−1(p, p)

using the last part of Proposition 3.1, d(a) ≥ δj and C2 and C4 for Ni−1. Also,

r(u ; a ; dl) ≥ r(u ; δj ; a ; δl) = r(u ; δj ; a) = r(r(u ; δj) ; a) = r(δj ; a) = δl ∈ Ni(l, l)

since r(u) ≥ δj . So C2 holds on the edge (p, l), for p ∈ Ni−1, and the edge (l, l) is trivial to check.
Range moves are similar.

Now we check C2 for edges incident with the new node l in response to case 4 of composition
moves. First consider u ; a ; dl ∈ Ni(p, l) for some u ∈ Ni(p, j) and dl ∈ Ni(l, l). We need
d(u ; a ; dl) ∈ Ni(p, p) and r(u ; a ; dl) ∈ Ni(l, l). Well,

d(u ; a ; dl) ≥ d(u ; δj ; a ; δl) = d(u ; δj ; a ; (r(δj ; a) ; d(b ; δk))) = d(u ; δj ; a ; b ; δk) ∈ Ni−1(p, p)

by Proposition 3.1, C2 and C4 for Ni−1. Furthermore,

r(u ; a ; dl) ≥ r(u ; δj ; a ; δl) ≥ δl ∈ Ni(l, l)

since r(u ; δj ; a) = r(r(u ; δj) ; a) = r(δj ; a) ≥ δl. This shows that C2 holds for edges (p, l) in case
4 composition moves. Similarly C2 holds for edges (l, q). This establishes C2 for Ni.

Next we check that Ni satisfies C3 as well. We must show that u ; v ∈ Ni(p, r), whenever
u ∈ Ni(p, q) and v ∈ Ni(q, r), for any p, q, r ∈ Ni. We consider a domain move (j, a) first. Let l
be the new node included in Ni. Labels of edges not involving l are the same in Ni as they are
in Ni−1, so we may assume that l ∈ {p, q, r}. Also Ni(l, k) = ∅, for k ∈ Ni−1, so we may assume
r = l. If q = l, then

Ni(p, l) ;Ni(l, l) = (Ni−1(p, j) ; {a} ; δ↑l ) ; δ↑l ⊆ Ni(p, l)

If r = l but q 6= l, then we can assume p 6= l (as Ni(l, q) = ∅). Then

Ni(p, q) ;Ni(q, l) = Ni−1(p, q) ; (Ni−1(q, j) ; {a} ; δ↑) ⊆ Ni−1(p, j) ; {a} ; δ↑ = Ni(p, l)

by C3 for Ni−1. So C3 holds, when Ni is played in response to a domain or (similarly) a range
move.

Next we consider a composition move (j, k, a, b). Again, let the new node be l. Consider three
nodes p, q, r ∈ Ni. We have to show, for all u ∈ Ni(p, q) and v ∈ Ni(q, r), that u ; v ∈ Ni(p, r).
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Suppose first that p, q, r ∈ Ni−1. If u ∈ Ni−1(p, q) and v ∈ Ni−1(q, r), then u ;v ∈ Ni−1(p, r) ⊆
Ni(p, r), inductively. Next suppose that u ∈ Ni(p, q) r Ni−1(p, q). Whether the composition
move is case 2, 3 or 4, we have Ni−1(p, j) 6= ∅ 6= Ni−1(k, q) in this case, by (19). Recall that
a ; b ∈ Ni−1(j, k) 6= ∅. Since Ni−1 satisfies C4, we must have Ni−1(q, j) = ∅ and therefore
Ni(q, r) = Ni−1(q, r), again by (19). Thus v ∈ Ni−1(q, r). If a is a domain element but b is not
(case 2), then, since u ∈ Ni(p, q) rNi−1(p, q), we must have u = w ; b ; y, for some w ∈ Ni−1(p, j)
and y ∈ Ni−1(k, q). Hence y ;v ∈ Ni−1(k, r) by C3 for Ni−1. Then u;v = (w ;b;y);v = w ;b;(y ;v) ∈
Ni(p, r). Case 3 of composition moves is similar. For case 4, neither a nor b is a domain element
and we have u = w ; a ; dl ; b ; y, for some w ∈ Ni−1(p, j), dl ≥ δl and y ∈ Ni−1(k, q). By C3 for
Ni−1, y ; v ∈ Ni−1(k, r). By definition of Ni, u ; v = w ; a ; dl ; b ; (y ; v) ∈ Ni(p, r), as required. The
case where v ∈ Ni(q, r) rNi−1(q, r) (and thus Ni(p, q) = Ni−1(p, q)) is similar.

Finally we must consider cases where l ∈ {p, q, r}, for case 4 of composition moves. We consider
p = l first. We have to show that Ni(l, q) ; Ni(q, r) ⊆ Ni(l, r). If Ni(l, q) = ∅, then the inclusion
is trivial, so suppose not. Then Ni−1(k, q) 6= ∅. Since Ni−1 satisfies C4 and a ; b ∈ Ni−1(j, k) 6= ∅,
we must have Ni−1(q, j) = ∅, whence Ni(q, r) = Ni−1(q, r). So

Ni(l, q) ;Ni(q, r) = (δ↑l ; {b} ;Ni−1(k, q)) ;Ni−1(q, r) ⊆ δ↑l ; {b} ;Ni−1(k, r) = Ni(l, r)

The case where l = r is similar. Finally, if l = q, then Ni(p, l) ;Ni(l, r) ⊆ Ni(p, r), by the final line
in the definition of Ni in case 4 of composition moves. This completes the proof that C3 holds for
Ni. Thus Ni is indeed a network, hence ∃ can win Gt(A), finishing the proof of Lemma 4.1.

Game with antidomain

In this section, we describe the necessary modifications of networks and games for dealing with
antidomain as well.

Let A = (A, d, r, a, ;, 1′) be a domain algebra with a set D of domain elements forming the
boolean algebra D. An additional requirement in the definition of a network is that

N(i, i) is an ultrafilter of D (22)

Note that this extra condition for antidomain networks is necessary and sufficient for the antido-
main operation to be properly represented in a saturated antidomain network. Indeed, if N is a
saturated antidomain network and i ∈ nodes(N), we have

a(x) ∈ N(i, i) ⇐⇒ d(x) /∈ N(i, i) ⇐⇒ ¬(∃j ∈ nodes(N))x ∈ N(i, j)

by (22), C2 and S1. It is included in the definition of a domain network that N(i, i) = δ↑, for some
δ ∈ D. But δ↑ is an ultrafilter iff δ is an atom of the boolean algebra D. Thus, for antidomain
algebras, condition (22) is equivalent to

N(i, i) = e↑ for some atom e of D (23)

For the remainder of this section, all networks are antidomain networks (i.e., they satisfy (22)/(23)).
The game Gat (A) is almost identical to the previously defined game Gt(A), the only difference

is that the networks played have to be antidomain networks, i.e., there has to be an atom in the
label of a reflexive edge. In all other respects, the definition of the game Gat (A) is the same as the
definition of Gt(A). Instead of Lemma 4.1 we have the following.

Lemma 4.2 Let t be a natural number and let A be a loose antidomain algebra with no cycles
of length 2t or less. Suppose for all non-domain elements x, y ∈ A, there is an atom e of D such
that x ; y = x ; e ; y. Then player ∃ has a winning strategy in Gat (A).
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Proof: The winning strategy for ∃ is very similar to the one we gave before. This time, in
response to a domain, range or composition move in round i, if ∃ has to include a new node l in
Ni, then she has to let δl be an atom of D. In response to a domain move (j, a), she lets δl be
any atom below r(δj ; a), range moves are similar. In response to a composition move (j, k, a, b),
where neither a nor b are domain elements, she lets δl be any atom below r(δj ; a) ; d(b ; δk) such
that δj ; a ; b ; δk = δj ; a ; δl ; b ; δk. Such an atom δl exists, by the assumption in the lemma. In
other respects, the definition of Ni is the same as before. The proofs that Ni is a network and
that every element of Ni(0, 1) can be reached from an element of N0(0, 1) by a chain of length at
most i are the same as before.

Corollary 4.3 Let t be a natural number. ∃ has a winning strategy in the antidomain network
game Gat (A2t).

Proof: By Lemma 3.7 and Corollary 3.9, A2t is a loose algebra with no cycles of length less than
2t, and for all non-domain elements x, y ∈ A2t, there is a domain atom e such that x ; e ; y = x ; y.
By Lemma 4.2, ∃ has a winning strategy in Gat (A2t).

We are ready to formulate the result connecting representability and ∃’s winning strategy.

Lemma 4.4 Let A be a finite or countable domain algebra. If ∃ has a winning strategy in Gω(A),
then A is representable. If A is a finite or countable antidomain algebra and ∃ has a winning
strategy in Gaω(A), then A is representable.

Proof: We prove the lemma for domain algebras but the same proof works mutatis mutandis
for antidomain algebras. Let us assume that ∀ picked {α, β} in the initial round of the game
and ∃ responded with α. Since ∃ has a winning strategy, there is a saturated network N such
that α ∈ N(0, 1) but β /∈ N(0, 1). It is easy to see that saturated networks define representable
algebras. Hence there is a representable, homomorphic image M of A such that αM 6= βM. The
homomorphism h is given by

h(a) = {(j, k) ∈ N ×N : a ∈ N(j, k)}

for every a ∈ A.
Assume that the players repeat the game for every pair {α, β} of distinct elements of A and

∃ applies her winning strategy in each of these games. It follows that A can be isomorphically
embedded into the product of representable algebras, which is again a representable algebra.

Representing the ultraproduct

Lemma 4.5 Let U be a non-principal ultrafilter over ω and for each n ∈ ω let Bn be an antido-
main algebra such that ∃ has a winning strategy in Gan(Bn). Then ∃ has a winning strategy in
Gaω(

∏
U Bn), where

∏
U Bn is the non-principal ultraproduct of the Bns based on U .

Proof: The ultraproduct
∏
U Bn is defined as follows. Let ∼ be the equivalence relation over

the cartesian product
∏
n∈ωBn defined by (b0, b1, . . .) ∼ (b′0, b

′
1, . . .) ⇐⇒ {n : bn = b′n} ∈ U .

The elements of the ultraproduct
∏
U Bn are the equivalence classes

∏
n∈ωBn/ ∼. We write

[(a0, a1, . . .)] for the equivalence class of (a0, a1, . . .). Domain, range, antidomain and composition
operations may be defined as follows: d([a0, a1, . . .)] = [(d(a0), d(a1), . . .)], range and antidomain
are similar and [(a0, a1, . . .)] ; [(b0, b1, . . .)] = [(a0 ;b0, a1 ;b1, . . .)]. It can easily be checked that these
operators are well defined (not dependent on choice of representatives of equivalence classes). The
ultraproduct

∏
U Bn is defined as

∏
n∈ωBn/ ∼ with these operations.

Consider a play of the game Gaω(Bn). In the initial round, ∀ picks elements [(a0, a1, . . .)] 6=
[(b0, b1, . . .)]. Let S0 = {n ∈ ω : an 6= bn} ∈ U . For each n ∈ S0, ∃ starts a game of Gan(Bn)
and supposes that ∀ plays {an, bn} in the initial round. In each of these games, she responds
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using her winning strategy for the initial round in Gan(Bn) by choosing either an or bn. Let
Sa = {n ∈ S0 : ∃ chooses an}, Sb = {n ∈ S : ∃ chooses bn}. Since S0 = Sa ∪ Sb either Sa ∈ U
or Sb ∈ U , by ultrafilter properties, so there is S1 ∈ {Sa, Sb} with S1 ∈ U . Without loss we will
assume S1 = Sa in the following. For each n ∈ S1, ∃ plays the initial network Nn

0 which has either
one or two nodes. Without loss we may suppose the nodes of Nn

0 are contained in {0, 1} and there
is a subset S2 ⊆ S1 with S2 ∈ U and a set of nodes X ⊆ {0, 1} such that n ∈ S2 ⇒ nodes(Nn

0 ) = X.
For all n ∈ ω r S2 let Nn

0 be an arbitrary Bn-network with nodes X, so that all networks Nn
0

(n ∈ ω) have nodes X. We may now define the ultraproduct N0 of the Nn
0 s as the network with

nodes X and labelling defined by N0(x, y) = [(Nn
0 (x, y) : n ∈ ω)], for x, y ∈ X. In the initial

round of the ultraproduct game, ∃ plays N0. It can be checked that N0 is a
∏
U Bn-network, since

each Nn
0 is a Bn-network.

In round t > 0 suppose inductively that (i) the
∏
U An-network Nt−1 has just been played

with finite set of nodes, Y say, (ii) for each n ∈ ω there is a Bn-network Nn
t−1 with nodes Y

such that Nt−1 is the ultraproduct of the Nn
t−1s, (iii) there is W0 ∈ U such that for all n ∈ W0,

we have n ≥ t and Nn
t−1 is the tth network in a play of Gan(Bn) in which ∃ has been using her

winning strategy. We established these properties for the initial round. ∀ has three types of moves
he could make, here we consider only composition moves (domain and range moves are simpler).
Suppose ∀ plays the composition move (j, k, [c], [d]). The set W1 of indices n ∈ W0 such that
n ≥ t + 1 and (j, k, cn, dn) is a valid composition move in Gan(An) must belong to U . For each
n ∈W1, ∃ responds using her winning strategy in Gat (Bn) with the network Nn

t . We may assume
that she adds at most a single new node to the previous network and the choice of name for this
node is the same in all games. Observe that at most one of ∃’s strategies will have ‘expired’ in
this round, namely the strategy in Gat (Bt). There will be a subset W2 of W1 with W2 ∈ U and
each of Nn

t , (n ∈ W2) has the same finite set of nodes, say Z. For n 6∈ W2 we can let Nn
t be an

arbitrary Bn-network with nodes Z. Nt is then defined as the ultraproduct of the Nn
t s. Again,

Nt, so defined, will in fact be a network, since each of Nn
t is a Bn-network. Also, ∃ has not lost in

the tth round of Gan(Bn) for n ∈ W2, since she is using a winning strategy. Hence bn 6∈ Nn
t (0, 1)

for n ∈ W2. It follows that [(b0, b1, . . .)] 6∈ Nt(0, 1), so ∃ does not lose the play in round t of
Gaω(

∏
U Bn).

Lemma 4.6 Suppose ∃ has a winning strategy in Gaω(B). Then there is a countable elementary
subalgebra C of B such that ∃ still has a winning strategy in Gaω(C).

Proof: We may suppose that ∃’s winning strategy in Gaω(B) is deterministic and depends only
on the current network and ∀’s move in any situation, i.e., it does not depend on the previous
history of the game. Use the downward Löwenhein–Skolem theorem to find a countable elementary
subalgebra C0 ≺ B. We will define an elementary chain C0 ≺ C1 ≺ . . . ≺ B as follows. Suppose a
countable algebra Cn has already been defined. Consider a play of Gω(B) in which the elements
chosen by ∀ for any of his moves are restricted to Cn. Let Sn+1 be the set of all elements used by
∃ using her winning strategy in plays of Gω(B) in which ∀’s moves are restricted to elements in
Cn. Then Sn+1 is a countable set and by the downward Löwenheim–Skolem theorem again, there
is a countable elementary algebra Cn+1 containing Cn ∪ Sn+1. This defines Cn+1.

Now let C =
⋃
n∈ω Cn. By the elementary chain theorem (see [CK90, 3.1.9]) this is a countable

elementary subalgebra of B, and ∃ has a winning strategy in Gaω(C).

Theorem 4.7 If ∃ has a winning strategy in Gan(Bn) (all n ∈ ω) and U is a non-principal
ultrafilter, then

∏
U Bn ∈ R({d, r, a, ;, 1′}).

Proof: Consider the countable algebra C of Lemma 4.6. Since C is countable and ∃ has a winning
strategy in Gaω(C), Lemma 4.4 shows that C is representable. Now R(τ) is elementary and C ≡ B,
hence B is also representable.

Now letting Bn = A2n for n ∈ ω (cf. Definition 3.6) we have the following.

Corollary 4.8 Non-principal ultraproducts B =
∏
U Bn of the Bns are representable.
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This finishes the proof of Theorem 2.3, since for any {d, ;} ⊆ τ ⊆ {d, r, a, ;, 1′, 0} we know that
Bn 6∈ R(τ) by Corollary 3.10 and B ∈ R(τ) by Corollary 4.8.

5 Extending the similarity type

A natural question from both the theoretical and application point of view is whether the same non-
finite axiomatizability holds for larger similarity types. Obvious choices for the extra operations
include join +, meet ·, converse ^, top 1 and bottom 0 constants and the Kleene star ∗ (reflexive–
transitive closure).

Recall from Definition 3.6 that for each x ∈ An we have either x ;x = x (for domain element x)
or x ; x = 0. Hence it easy to extend the signature of these algebras to include the transitive (but
not reflexive) closure operation by letting the transitive closure of each element be itself. Thus our
non-finite axiomatizability result holds for signatures including the transitive closure operation.
But it is not easy to see how to extend the signature of the algebras An to include the reflexive
and transitive closure operation ∗, since for non-domain elements x the natural definition of x∗

would be 1′ + x, but our algebras do not include such elements.
It might be possible to modify the definition of An to include a definition of + or ·, but the

resulting algebra is likely to have ci ≤ ci+1 (mod n) for all i < n, and then c0 = c1 = . . . = cn−1,
whence An would be representable. Instead, for signatures including +, we recall the following
from [An88], see [AM10] for a full proof.

Theorem 5.1 Let {+, ;} ⊆ τ ⊆ {0, 1,+, 1′,^, ;, ∗}. Then the class R(τ) of representable τ -
algebras is not finitely axiomatizable.

Our contribution here is to make the fairly trivial observation that there is an obvious way to
define domain and range operations for the algebras used in [An88]. Since [An88] is not widely
available, we recall the key steps of the proof. For every natural number m, Andréka constructs
an algebra Am = (Am, 0, 1,+, 1

′,^, ;, ∗) such that

1. the {+, ;}-reduct of Am is not representable

2. any non-trivial ultraproduct A of Am (for m ∈ ω) is representable.

Define
G = {a, a′1, a′′1 , . . . , a′m, a′′m, b, b′1, b′′1 , . . . , b′m, b′′m, o, 1′, 0}

Let (Am,+) be the free upper semilattice generated freely by G under the defining relations:

a ≤ a′i + a′′i b ≤ b′i + b′′i 0 + x = x

for 1 ≤ i ≤ m and x ∈ G. Let S denote the following set of two-element subsets of Am:

S = {{a, b′1}} ∪ {{a′i, b′′1} : 1 ≤ i ≤ m} ∪ {{a′′i , b′i+1} : 1 ≤ i < m} ∪ {{a′′m, b}}

The other operations on Am are defined as follows.

0 = ∅ 1 =
∑
G x^ = x

0∗ = 0 1′
∗

= 1′ x∗ = 1 if x /∈ {0, 1′}
0 ; x = 0 = x ; 0 1′ ; x = x = x ; 1′

for x, y /∈ {0, 1′} x ; y =

{
o if {x, y} ∈ S
1 otherwise

1. The quasiequation qm is defined as

m∧
i=1

(x ≤ x′i + x′′i ∧ y ≤ y′i + y′′i )→

x ; y ≤ x ; y′1 +

m−1∑
i=1

(x′i ; y′′i + x′′i ; y′i+1) + x′m ; y′′m + x′′m ; y
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By an induction on m one can show that qm is valid in representable algebras. On the other hand,
the evaluation ε given by

ε(x) = a ε(x′i) = a′i ε(x′′i ) = a′′i ε(y) = b ε(y′i) = b′i ε(y′′i ) = b′′i

falsifies qm in Am. Since qm uses only the operations ; and +, it follows that already the {+, ;}-
reduct of Am is not representable.

2. By a step-by-step argument one can build a representation of the ultraproduct A.
Since Am has a monoid reduct and 1′ is a minimal non-zero element, one can define the

(anti)domain and range operations by letting

d(0) = r(0) = 0 and d(x) = r(x) = 1′ for x 6= 0

a(0) = 1′ and a(x) = 0 for x 6= 0

Obviously, Am expanded with (anti)domain and/or range remains non-representable, while the
representation of the ultraproduct respects both the domain, range and antirange operations.
Indeed, if x /∈ {0, 1′}, then x∗ = 1, whence the representation of x is a relation such that both its
domain and range contain all elements of the base, thus it is sound to represent d(x) and r(x) as
the identity relation and a(x) as the empty relation. Hence we have the following.

Corollary 5.2 Let {+, ;} ⊆ τ ⊆ {0, 1,+, d, r, a, 1′, ;, ∗,^}. Then the class R(τ) of representable
τ -algebras is not finitely axiomatizable.

Including meet · into the similarity type does not seem promising either. Let τ be a similarity
type such that the elements of τ are definable in representable relation algebras (i.e., using the
booleans, composition, converse and identity). Andréka [An91] shows non-finite axiomatizability
for representable algebras of similarity type τ ⊇ {· ,+, ;}. In [HM07], we defined non-representable
algebras of the similarity type {· , 1′, ;} whose ultraproduct is representable. Since 1′ is a minimal
non-zero element in these algebras, defining domain, range and antidomain operations should not
be a problem. Hence we conjecture that representable algebras of the similarity type τ ⊇ {· , d, ;}
form a non-finitely axiomatizable quasivariety.

6 Conclusion

As we have seen the quasivarieties of representable domain algebras in general are not finitely
axiomatizable. It would be interesting to see simple characterizations of representable domain
algebras, cf. [Ko06] where additional separation properties provide representability of KATs as
relational KATs. Note that representing monoids or domain–range monoids is easier than repre-
senting antidomain algebras, since the labels on reflexive arrows do not have to be ultrafilters.

Problem 6.1 Let A be a domain monoid or domain–range monoid (but do not assume that A is
loose). If A has no cycles, must it be representable?

If so, we can find a simple, infinite, recursive axiomatisation of the representation class.
As [Ko00] notes, inference rules for partial correctness assertions can be translated to quasiequa-

tions of KATs of the following form:

(
∧

1≤i≤n

bi ; pi = bi ; pi ; ci)→ b0 ; p0 = b0 ; p0 ; c0 (24)

with tests bi, ci and programs pi for 0 ≤ i ≤ n. [Ko00] also shows that KAT is deductively complete
for quasiequations of the form (24) over relational models, i.e., a quasiequation of the above form
is valid iff it is a theorem of KAT. We can write the above quasiequation as

(
∧

0≤i≤n

(d(bi) = bi ∧ d(ci) = ci) ∧
∧

1≤i≤n

bi ; pi = bi ; pi ; ci)→ b0 ; p0 = b0 ; p0 ; c0 (25)
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in domain algebras. Note that our quasiequations (18) showing the non-finite axiomatizability of
representable domain algebras are not in this form. Hence we can ask the following for various
classes of domain algebras.

Problem 6.2 Is there a finite set of quasiequations that is deductively complete for quasiequations
of the form (25) over representable domain algebras.

Next we mention the problem of finitely axiomatizing the equational theories of representable
domain algebras. [Ho97] shows finite axiomatizability of the variety generated by representable
antidomain algebras. We conjecture that the same can be achieved for domain and domain–range
semigroups/monoids and their expansions with lattice operations join and meet.

A challenging problem is to finitely quasiaxiomatize those varieties V that are not finitely
based, i.e., find a finitely axiomatizable quasivariety Q such that the variety generated by Q and V
coincide. This is the case for the variety generated by representable (or relational) Kleene algebras
where several such quasivarieties have been found, see [ÉB95] for short descriptions of these qua-
sivarieties and for references. In particular, we may ask whether these finite quasiaxiomatizations
could be used for representable domain algebras with Kleene star.

Problem 6.3 Let {+, ;, 0, 1′, ∗} ⊂ τ ⊆ {+, ;, 0, 1′, ∗, d, r, a}. Is the variety generated by R(τ)
finitely axiomatizable over the variety generated by R(+, ;, 0, 1′, ∗)?
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