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Abstract. We establish the undecidability of representability and of finite

representability as algebras of binary relations in a wide range of signatures.
In particular, representability and finite representability are undecidable for

Boolean monoids and lattice ordered monoids, while representability is unde-

cidable for Jónsson’s relation algebra. We also establish a number of undecid-
ability results for representability as algebras of injective functions.

The application of abstract algebra in logic and computer science rests heavily
on the abstract characterisation of algebras of binary relations. One wants a simple
set of axioms that precisely characterises some particular class of algebras of rela-
tions of interest—a familiar example might be that the group axioms completely
describe algebras of permutations under the operations of composition and inverse.
Ideally the axiomatisation will be finite (as it is for groups), however failing that,
a reasonable test for being simple might be that the axioms are algorithmically
verifiable on finite algebras. Equivalently, when presented with a finite general al-
gebraic structure (henceforth, an algebra) it is desirable that there be an algorithm
to recognise when it is isomorphic to an actual algebra of relations.

The most famous algebra of relations is that initiated by Tarski in the 1940s [54].
He proposed a finite set of axioms for the algebra of binary relations endowed
with the Boolean operations of union, intersection, complementation, composition,
converse and the identity. Tarski’s proposed axiomatisation (here referred to as
relation algebra) was shown to be incomplete by Lyndon [35, 36] who also produced
a complete set of axioms. Lyndon’s axioms are very complicated. In 1964, Monk [39]
showed that no finite axiomatisation is possible. An enormous amount of further
work has been done in this area since, including numerous books. The surveys by
Schein [48] or by Mikulas [37] for example detail many of the results concerning
axiomatisations. Finally, Hirsch and Hodkinson [18] showed that representability is
undecidable for relation algebras: there is no algorithm to decide if a finite algebra of
in Tarski’s signature is representable as an algebra of binary relations. The question
as to the complexity of deciding finite representability (that is, representability as
an algebra of binary relations on a finite base set) remains open.

In this article we find that undecidability of representability is quite widespread
amongst reducts of the Tarski signature.

For some signatures F it is quite easy to show that representability of a relation
algebra is equivalent to representability of its F -reduct. Thus the result of Hirsch
and Hodkinson already gives undecidability of representability in several cases: in
particular any signature containing the lattice-ordered monoid signature {·,+, 1′, ;}
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(see Theorem 5.1 below). We develop an interpretation of the uniform word prob-
lem for groups and finite groups to give a new proof of this fact for converse-free
signatures, as well as the undecidability of finite representability for any reduct
of the Boolean monoid signature {0, 1,+, ·,−, ;, 1′} containing either {+, ·, ;, 1′} or
{;,≤,−, 1′} (amongst other cases). Amongst the other undecidability results we
show using this method are:

• problems of deciding embeddability of various kinds of algebra in a (not
necessarily representable) relation algebra (Section 5);
• problems concerning “constrained” representability of semigroups and or-

dered semigroups (Section 5);
• problems concerning representability of enriched semigroups as semigroups

of injective partial functions (Section 6).

The method owes much to an idea initially developed by Hall, Kublanovsky, Mar-
golis, Sapir and Trotter in [14], where problems relating to the embeddability of
semigroups in Brandt semigroups were shown to be undecidable. The results are
also related to a result of Gould and Kambites [13] which showed that the class
of ample semigroup subreducts of an inverse semigroup is nonrecursive. Their re-
sult (whose proof is also at least loosely related to [14]) can be rephrased as the
undecidability of representability as a semigroup of injective partial maps with
unary operations of domain and range (one of the cases covered by our results in
Section 6); see Jackson and Stokes [26, §6].

These new results all concern converse-free signatures. To finish the article
we revisit the construction of Hirsch and Hodkinson and use it to show that any
reduct of Tarski’s signature containing {·, ;,`} has undecidability of representability
(Theorem 7.1). The signature {·, ;,`} was considered in 1959 by Jonsson [30];
he obtained a complete axiomatisation that is somewhat more transparent than
that of Lyndon’s for the full relation algebra signature (there is only one technical
axiom schema). The present result shows that satisfaction of this axiom schema is
not an algorithmically verifiable property for finite algebras. An analogous result
(Corollary 7.2) is deduced for allegories in the sense of Freyd and Scedrov [11].

Some of the specific classes we prove to be non-recursive include:

• The class of finite, representable boolean monoids. Also, the class of finitely
representable boolean monoids.

• The class of finite boolean monoids that embed into relation algebras, also
the class of finite boolean monoids that embed into representable relation
algebras.

• The class of finite boolean monoids that embed into finite relation algebras
and the class of boolean monoids that embed into finitely representable
relation algebras.

• The class of finite representable F -algebras for any set of relation algebra
terms F capable of expressing {x · y+x · z, 1′, ; ;} or {(x+ y) · (x+ z), 1′, ;}.

• The class of triples (S, I,R) where S is a finite semigroup, I,R ⊆ S and
can be faithfully represented as a semigroup of binary relations in such a
way that the elements of I are injective relations and the elements of R are
reflexive. Also, a similar class of triples where the base set of the semigroup
of binary relations is required to be finite.

• Let F be a signature definable by relation algebra terms and suppose F
includes the “equal domains” operator and the “equal ranges” operator
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. The class of finite F -algebras that can be represented as injective
functions is not recursive. Also, the class of F -algebras representable as
injective functions over a finite base is not recursive.

We also observe the extension of most of these results to signatures including a
unary operation of reflexive transitive closure (Theorem 5.7).

1. Preliminaries: Boolean monoids, relation algebras and complex
algebras

In this paper we have various binary operations. We will let ∗ denote a partial
binary operation on a set (e.g. in a partial algebra) and ; will denote a normal
additive binary operator in a Boolean algebra with operators (e.g. in a Boolean
monoid or relation algebra). In context, we occasionally use ∗ as a total operation
in structures embedding partial structures (in particular, groups and Brandt semi-
groups), and ; in structures arising as reducts of a Boolean algebra with operators
(such as ordered semigroups). We frequently identify the structure with its domain,
e.g. x ∈ A means that x belongs to the domain of the algebra A.

1.1. Boolean monoids. A Boolean monoid M = 〈M, 0, 1,+,−, ;, 1′〉 is an alge-
braic structure on the set M , where 0, 1, 1′ are constants, − is a unary operation
and +, ; are binary operations satisfying the following properties.

Boolean Algebra: 〈M, 0, 1,+,−〉 is a Boolean algebra with top element 1
and bottom element 0.

Monoid: 〈M, ; , 1′〉 is a monoid. That is ; is associative, and 1′ is a two sided
identity for ;.

Operator: ; is additive and normal. That is, x ; (y + z) = x ; y + x ; z and
(x+ y) ; z = x ; z + y ; z (additive) and 0 ; x = x ; 0 = 0 (normal).

We use standard abbreviations a · b = −(−a + −b) and a ≤ b for a + b = b. We
write a < b if a ≤ b and b 6≤ a. We also adopt the usual bracketing conventions
regarding associativity and let ; take precedent over + and ·, so that (for example)
a+ b ; c · −c = a+ ((b ; c) · (−c)). Unless stated otherwise, we avoid treating − as a
binary relation.

Define the following two term operations in the language of Boolean monoids:

D(x) = x ; 1 · 1′ and R(x) = 1 ; x · 1′.

A Boolean monoid M is said to be normal if it satisfies the equations

(1.1) D(x) ; x = x = x ;R(x).

Consider a reflexive, transitive binary relation θ on a set X, and construct an
algebra Bm(θ) := 〈℘(θ), 0, 1,+,−, ;, 1′〉 on ℘(θ) by letting + be union of binary
relations (so that the top element 1 is θ and the bottom element 0 is ∅), letting ;
be composition of relations, with 1′ the diagonal relation, and − be the complement
relative to θ. The reader will verify that this is a Boolean monoid. (Note that the
condition 1 ≥ 1′ and 1 ; 1 ≥ 1 ; 1′ = 1 essentially forces the assumed condition
that θ is reflexive and transitive.) In general we say that a Boolean monoid M
is representable if M is isomorphic to a sub-Boolean monoid of Bm(θ) for some
reflexive, transitive relation θ. If θ is a relation over a finite base set X, then M is
said to be finitely representable. A Boolean monoid has a square representation if
it embeds into Bm(X ×X) for some set X.
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The representation problem for Boolean monoids takes as an instance a finite
Boolean monoid M, and asks whether or not M is representable. Likewise, the
finite representation problem asks whether or not M is representable over a finite
base set; that is if there is an equivalence relation θ on some finite set X such that
M embeds into Bm(θ).

When the relation θ is symmetric, it is easy to see that Bm(θ) is a normal
Boolean monoid. In Lemma 1.2 below we show that the converse holds. The main
step of the proof is the next lemma which is also important later.

Let the symmetric interior of a relation r be the relation r◦ := {(x, y) | (x, y) ∈
r and (y, x) ∈ r} (it is the complement of the symmetric closure of the complement
of r). If θ is a reflexive transitive relation, then θ◦ is easily seen to be the largest
equivalence relation contained within θ.

Lemma 1.1. Let M = 〈M, 0, 1,+,−, ;, 1′〉 be a Boolean monoid. Say that there is
a reflexive, transitive relation θ on a set X and an injective map φ : M → Bm(θ)
preserving {·, ;, 1′}. Then the map φ◦ : a 7→ aφ ∩ θ◦ is an injective map φ◦ :
M → Bm(θ◦) preserving {·, ;, 1′} and with 1φ

◦
equal to the equivalence relation θ.

Moreover, if φ preserves some subset of {0,+,−}, then so does φ◦.

Proof. Now φ◦ clearly preserves ·, as well as any subset of {0,+,−} if φ does. Also,
(1′)φ

◦
= idX = (1′)φ. Note also that if e ≤ 1′, then eφ

◦
= eφ. For preservation of

composition, first consider (x, y) ∈ (a ; b)φ
◦

(for some a, b ∈ M). Then (y, x) ∈ 1φ

and there is z such that (x, z) ∈ aφ and (z, y) ∈ bφ. So (y, z) ∈ 1φ ; aφ ⊆ 1φ and
similarly, (z, x) ∈ 1φ. Hence (x, z) ∈ aφ

◦
and (z, y) ∈ bφ

◦
showing that (x, y) ∈

aφ
◦

; bφ
◦
. The reverse containment is easier and left to the reader.

Finally, we must verify injectivity of φ◦. As φ◦ preserves ·, it suffices to show
that φ◦ separates any two elements a, b ∈M with a < b. Now b · (−a) 6= 0, and by
normality, D(b · (−a)) 6= 0. Hence (D(b · (−a)))φ

◦
= (D(b · (−a)))φ 6= 0φ. However

(D(a · (−a)))φ
◦

= (D(0))φ
◦

= 0φ
◦

= 0φ. Hence aφ
◦ 6= bφ

◦
as required. �

Lemma 1.2. Let θ be a reflexive transitive relation. Then Bm(θ) is a normal
Boolean monoid if and only if θ is symmetric.

Proof. The if direction was observed above. Now say that Bm(θ) is a normal
Boolean monoid, and note that as θ◦ ⊆ θ we have that θ◦ ∈ Bm(θ). Let ι :
Bm(θ) → Bm(θ) be the identity isomorphism. Lemma 1.1 shows that ι◦ is an
injective homomorphism identifying θ and θ◦, showing that θ = θ◦ is symmetric. �

The following lemma is easy, and its proof is omitted.

Lemma 1.3. Let θ be an equivalence relation on a set X. Then Bm(θ) is a subdirect
product of {Bm(x/θ × x/θ) | x ∈ X}.

Let t(x1, . . . , xn) be a term in the Boolean monoid signature, M be a normal
Boolean monoid and X be an equivalence relation. If φ : M → ℘(X × X) is
a function associating each element of M with a binary relation on X, then we
say that t is preserved by φ if (tM(m1, . . . ,mn))φ = tBm(θ)(mφ

1 , . . . ,m
φ
n) for every

m1, . . . ,mn in M .

Lemma 1.4. Let M be a normal Boolean monoid. If there is an injective map
φ : M → ℘(X ×X) for some set X preserving either {x · y + x · z, ;, 1′} or {(x +
y) · (x+ z), ;, 1′}, then M is representable. Moreover, M is finitely representable if
X is finite.
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Proof. Whichever of the two alternative sets of operators is preserved by φ, note
that · and + must also be preserved: in the first case we have x·y = x·y+x·y, x+y =
1 · x+ 1 · y and in the second case x · y = (0 + x) · (0 + y), x+ y = (x+ y) · (x+ y).
Now as 0 ≤ 1′, it is represented as a restriction of the diagonal map. Let Z be the
domain of 0 and Y := X\Z. Define φ′ : M → ℘(Y × Y ) by m 7→ xφ ∩ (Y × Y ). As
0 ·m = 0 and m ; 0 = 0 ;m = 0 for every m ∈M , it is easily seen that φ′ is injective
and preserves {·,+, ;, 1′} as well as correctly representing 0 as the empty relation.
Finally, complementation is preserved relative to 1 because the complement of mφ′

under 1φ is the unique element a for which mφ′ ∩ a = ∅ and mφ′ ∪ a = 1φ
′

(and
(−m)φ

′
has these properties). �

1.2. Relation algebras. A relation algebra A = 〈A, 0, 1,+,−, 1′,`, ;〉 is an al-
gebraic structure on the set A, where ` is a unary operation and the following
properties hold.

Boolean Monoid: 〈A, 0, 1,+,−, 1′, ;〉 is a Boolean monoid.
Operator: ` is additive and normal (i.e. 0` = 0 and (x+ y)` = x` + y`).
Involution: (x`)` = x and (x; y)` = y`;x`.
Triangle Law: x`; (−(x; y)) ≤ −y.

Consider a set X and an equivalence relation θ on X. A motivating example
of a relation algebra Rel(θ) := 〈℘(θ), 0, 1,+,−, 1′,`, ;〉 can be defined on ℘(θ) by
adjoining the operation of relational converse to the Boolean monoid Bm(θ): so
(x, y) ∈ r` if and only if (y, x) ∈ r. (Note that the assumed choice of θ as an
equivalence relation is essentially forced by the fact that Bm(θ) is a Boolean monoid
and 1 = 1`.) A relation algebra representation φ is an isomorphism from a relation
algebra R to a subalgebra of 〈℘(θ),∅, θ,∪,−θ, idθ,`, ;〉 for some equivalence relation
θ (and where −θ is the unary operation of complementation in θ). More generally,
for any signature F consisting of term operations in the relation algebra signature,
an F -representation is an isomorphism from an F -algebra to an algebra of binary
sub-relations of some binary relation θ, where each operator in F is defined using
〈∅, θ,∪,−θ, idθ,`, ;〉, using its term definition. We may say that an algebra is
F -representable in this case.

The representation problem for relation algebras is the problem of deciding if a
finite relation algebra is representable. The representation problem was shown to
be undecidable by the first author and Hodkinson [18]. The finite representation
problem is the problem of deciding if a finite relation algebra is representable over
a finite base set. The decidability of this problem is still open.

In this article we also consider the subreduct problem for a class K of relation
algebras. Fix a signature F consisting of term operations in the relation algebra
signature. The F -subreduct problem for K asks if a given finite algebra of the
same type as F is a F subreduct of some relation algebra in K. When K consists
of representable relation algebras the subreduct problem for K can be shown to be
the same as the F -representability problem. In this article we also consider the
case where K is the class of all relation algebras, and the class of all finite relation
algebras.

The following lemmas are easy consequences of the relation algebra axioms (e.g.,
see [19, lemma 3.12]).

Lemma 1.5. Let R be a relation algebra and a, b, c ∈ R.

a ; b · c = 0 ⇐⇒ b ; c` · a` = 0 ⇐⇒ c` ; a · b` = 0
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Lemma 1.6. Let R be a relation algebra and e ≤ 1′ ∈ R. Then

e` = e and e ; e = e.

Let a ∈ R. Then a ; a` · 1′ = a ; 1 · 1′ (= D(a)).

Lemma 1.7. Let R be a relation algebra and consider two elements z, r ∈ R with
the properties that r ; r = r, r` = r, r · z = z · r = r ; z = z ; r = z ; z = z` = z.
Let S be the set {s ∈ R | z ≤ s ≤ r}, which is a {+, ·, ;,`} subreduct of R. Define
1′S = 1′ · r and −Sa := r · (−a). Then S = 〈S, z, r,+,−S ,`, ;, 1′S〉 is a relation
algebra.

In the following lemma (and elsewhere) the square brackets are used to give two
separate series of equivalent conditions: those when the bracketed statements are
removed, and those where the brackets (but not the statements they bridge) are
removed.

Lemma 1.8. Let M be a normal Boolean monoid that is simple. The following
are equivalent.

(1) M is representable [over a finite base set ].
(2) M has a square representation [over a finite base set ].
(3) M is a {0, 1,+,−, ; , 1′}-subreduct of a simple representable relation algebra

[representable over a finite base set ].
(4) M is a subreduct of a representable relation algebra [representable over a

finite base set ].

Proof. For 1 implies 2, use Lemma 1.1 to obtain a representation into Bm(θ) for
some equivalence relation θ on a set X. Then, use Lemma 1.3 and the fact that M
is (isomorphic to) a simple subalgebra of Bm(θ) to obtain a representation of M
into Bm(Y × Y ), where Y is one of the blocks of θ (note that Y is finite if X is).
Now 1 is represented as Y × Y , a square representation.

For 2 implies 3, use the fact that Bm(Y × Y ) is the {0, 1,+,−, ; , 1′} reduct of
Rel(Y × Y ), which is simple.

Implications 3 implies 4 and 4 implies 1 are trivial. �

Lemma 1.9. Let R be a relation algebra and consider an injective function φ
from R to ℘(X × X) for some set X. If φ preserves either {x · y + x · z, ;, 1′} or
{(x+ y) · (x+ z), ;, 1′}, then R is a representable relation algebra.

Proof. By Lemma 1.4 the Boolean monoid reduct of R is representable. By Lemma
1.1, there is a representation ψ : R → Bm(θ) for the Boolean monoid reduct of R
in which the top element is represented as the equivalence relation θ. It remains to
show that ` can be correctly represented.

Consider any r ∈ R and some pair (x, y) ∈ rψ, and note that (y, x) ∈ 1ψ. We use
the law a ; (−(a`)) ≤ −1′, which is an instance of the triangle axiom. This implies
that (x, x) 6∈ (r ; (−(r`)))ψ = rψ ; (−(r`))ψ. Hence (y, x) 6∈ (−(r`))ψ, showing that
(y, x) ∈ (r`)ψ as required. �

We can also extend Lemma 1.4 to subreducts of relation algebras. The proof is
essentially the same, except that Lemma 1.7 is used.

Lemma 1.10. Let M be a Boolean monoid, R be a relation algebra and consider
an injective function φ from M to R. If φ preserves either {x · y + x · z, ;, 1′} or
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{(x+ y) · (x+ z), ;, 1′}, then M is a subreduct of a relation algebra. Moreover, if R
is finite, then M is a subreduct of a finite relation algebra.

Definition 1.11. Define a unary relation i in the language of relation algebras by

x ∈ i⇔ x ; x` ≤ 1′ & x` ; x ≤ 1′.

Define the diversity element 0′ to be −1′.

It is easy to see that in Rel(θ), the relation i consists of precisely those relations
that are injective partial maps (here called injective functions), while on Rel(X×X),
the diversity element is the relation of inequality 6= on X. The next lemma is
crucial in our main proof and shows that on a relation algebra, the unary relation
i coincides with the solution set of a unary formulas in the language of Boolean
monoids (in fact, in the signature {·, ;, 0′}).
Lemma 1.12. Let R be a relation algebra. Then a ∈ iR if and only if

0′; a · a = 0 = a; 0′ · a.
Proof. First note that a ∈ iR if and only if a ; a` · 0′ = 0 = a` ; a · 0. Now note
that Lemma 1.5 shows that for any a ∈ R, we have a ; a` · 0′ = 0 if and only if
(0′)` ; a · a = 0. Dually, a ; 0′ · a = 0 is equivalent to a` ; a · 0′ = 0 �

Lemma 1.12 shows that we can unambiguously refer to the relation i in a normal
Boolean monoid too.

1.3. Brandt groupoids and complex algebras. In this article we take, for each
cardinal λ and each group G, the Brandt groupoid Brλ(G) (of dimension λ) to be
the partial algebra on the set λ×G× λ with a single partial operation ∗ of binary
multiplication, given by (i, g, j)∗ (j, h, k) = (i, gh, k) for every i, j, k < λ and g ∈ G.
Note that the set of idempotents of Brλ(G) is {(i, e, i) : i < λ}, where e is the group
identity.

The complex algebra C(Brλ(G)) of the Brandt groupoid Brλ(G) is an example of
a normal Boolean monoid on the powerset ℘(Brλ(G)), where 0, 1,+,− take their
usual set theoretic interpretations and composition ; is defined pointwise

A ;B := {a ∗ b | a ∈ A, b ∈ B and a · b is defined}.
The algebra C(Brλ(G)) is a complete atomic normal Boolean monoid and is repre-
sentable. Indeed, C(Brλ(G)) is isomorphic to a subalgebra of Bm((λ×G)×(λ×G))
by identifying the atom {(i, g, j)} with the injective function from domain {i} ×G
to range {j} × G defined by (i, h) 7→ (j, hg) (and extending the representation by
complete additivity of C(Brλ(G))). Note that C(Brλ(G)) is finite iff λ and G are
finite.

A Brandt semigroup is a semigroup obtained from a Brandt groupoid by adjoin-
ing a new element, 0, and making the multiplication totally defined by letting any
undefined products take the value 0. Standard notation for the semigroup formed
from Brλ(G) in this way is Bλ(G). Brandt semigroups play a ubiquitous role in
the study of ideals of semigroups; see any semigroup text (Howie [23] for exam-
ple). The following proposition details an equivalent abstract characterisation, and
follows easily from the Rees-Suskevich Theorem; see [23, Chapter 3].

Proposition 1.13. A semigroup S = 〈S, ;〉 with a multiplicative zero element 0 is
isomorphic to Bλ(G) for some group G if and only if the following three properties
hold.
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0-simplicity: Whenever a, b ∈ S\{0} then there are elements c1, c2, d1, d2 ∈
S ∪ {Λ}, where Λ is an additional identity element, such that c1 ; a ; d1 = b
and c2 ; b ; d2 = a (that is, S is 0-simple).

Primitivity: Every product of distinct idempotent elements is 0.
Dimension n: The cardinality of the set of non-zero idempotents is λ.

A Brandt groupoid also admits a natural inverse: (i, g, j)−1 := (j, g−1, i). This
extends to an operation of converse on the complex algebra C(Brλ(G)) by S` =
{s−1 | s ∈ S}.

Proposition 1.14 ([32, theorem 5.8]). Let A be a relation algebra. The following
are equivalent.

• A ⊆ C(Brλ(G)), for some Brandt groupoid Brλ(G),
• A is representable.

The following lemma provides a way of identifying Brandt semigroups in the
{;}-reduct of a relation algebra and is used in our main proof.

Lemma 1.15. Let R be a relation algebra and say that there are elements a, b ∈ iR

with the following properties:
• a, b ∈ iR;
• R(a) = D(b);
• D(a), R(a) and R(b) are pairwise disjoint (that is, D(a) · R(a) = D(a) ·
R(b) = R(a) ·R(b) = 0).

Let e0, e1 and e2 denote the elements D(a), R(a) and D(b) respectively. Then the
set

B = {x ∈ R | x = 0 or (∃i, j ∈ 3)x ; x` = ei & x` ; x = ej}
is a Brandt semigroup of dimension 3 when given the operation ;.

Proof. The 0-simplicity condition follows easily from the fact the fact that ` is an
involution and the fact that x ;x` = ei and x` ;x = ej imply ei ;x = x = x ;ej . The
primitivity condition will follow from the assumptions on the idempotent elements
ei, provided we can verify that there are no other nonzero idempotent elements.
Say that x is a nonzero idempotent element. Let i, j ∈ 3 be such that x ; x` =
ei & x` ; x = ej . As x = x ; x = x ; ej ; ei ; x we have that ej = ei, or equivalently,
that i = j. Then x = x ; ei = x ; x ; x` = x ; x` = ei. So e1, e2, e3 are the
only nonzero idempotents as required, showing that 〈B, ;〉 is a Brandt semigroup
of dimension 3. �

1.4. Overview of main proof. Hall et al. [14] showed that the class of finite
semigroups that can be embedded into a Brandt semigroup (or into a finite Brandt
semigroup) is nonrecursive. The goal is to find a construction of a Boolean monoid
that incorporates certain elements with similar behaviour to the construction in
[14]. In particular, these key elements will be contained in the unary relation i via
Lemma 1.12. Lemma 1.8 relates representability for normal Boolean monoids to
embeddability into relation algebras and then Lemma 1.15 will show that the key
elements embed in an appropriate way into a Brandt semigroup.

2. Preliminaries: Partial groups and undecidability.

Before presenting the main construction, we recall some useful concepts that are
used in the proof and give the intuition behind the proof.
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2.1. Partial groups. In this article we conceive of a partial group as a system
〈A, ∗, e〉, where A is a set, ∗ : A × A → A is a partial binary operation and e ∈ A
has the property that e ∗ x = x ∗ e = x whenever ∗ is defined at a tuple containing
x. (Usually one requires that e ∗ x = x ∗ e = x but this minor difference has no
impact on our proofs and simplifies later definitions.)

Definition 2.1. Let A = 〈A, ∗, e〉 be a partial group. We say that A is a square
partial group if there is a subset

√
A of A containing e and the following properties

hold.
(1) a ∗ b is defined if and only if a, b ∈

√
A.

(2)
√
A ∗
√
A = A; that is, for every c ∈ A there are a, b ∈

√
A such that

a ∗ b = c.

Note that if
√
A exists then it is completely determined by ∗, and that as e ∈ A,

we have e ∗ a = a ∗ e = a whenever a ∈
√
A. In [14], Hall et al. introduced a notion

of an extension A of rank k of a partial group B, which has been widely used in
a number of subsequent undecidability results in semigroup theory. The notion of
a square partial group essentially corresponds to the rank 2 case, but captures the
information required in our proof more succinctly.

Every group G is a square partial group, where
√
G = G and e is chosen as

the identity element. The following example gives a more typical form for a square
partial group and forms a useful counterexample later.

Example 2.2. The following table defines the structure of a square partial group
F on the set F = {a, b, c, e}, with

√
F = {a, b, e}:
∗ e a b
e e a b
a a b c
b b c a

A homomorphism from a partial group 〈A, ∗, e〉 to a group 〈G, ?, 1〉 is a function
φ : A→ G satisfying (a ∗ b)φ = aφ ? bφ whenever a ∗ b is defined. The partial group
A embeds into a group G if there is an injective homomorphism from A to G.

A cancellative partial group is a partial group satisfying the cancellation laws

(2.1) (x ∗ y = x ∗ z → y = z) & (x ∗ y = z ∗ y → x = z) .

We interpret the truth of equalities in partial algebras to mean that both sides
are defined and equal. Thus the cancellativity property for partial groups simply
ensures that the partial multiplication table has no repeats in any row nor in any
column. Cancellativity is obviously a necessary condition for a partial group to
be embeddable in a group. It is routine to verify that all 2-element and 3-element
cancellative square partial groups embed into finite groups. Thus the following
example from Jackson [24] is of minimal size.

Example 2.3. The 4-element square partial group F of Example 2.2 is cancellative
but does not embed into any group.

Proof. Without loss of generality, we may assume (for contradiction) that the table
for F is a restriction of a multiplication table of some group G. Then associativity
of G forces a ∗ e = a = b ∗ b = (a ∗ a) ∗ (a ∗ a) = a ∗ (a ∗ (a ∗ a)) = a ∗ c, and then
cancellativity of G contradicts e 6= c. �
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2.2. Uniform word problems, partial groups and homotopy embeddings.
Consider a group presentation 〈A | R〉. Let us say that an interpretation of 〈A | R〉
in a group G is a map φ from the free group on A into G such that each word
r ∈ R has rφ = 1. Now fix a class of groups K; in the present article we will be
interested in the case where K is the class of all groups, or where K is the class of
all finite groups.

• The uniform word problem (abbreviated to uwp) for K takes as an instance
a finite group presentation 〈A | R〉 and a group word w in the alphabet
A. This is a YES instance provided every interpretation φ of 〈A | R〉 has
wφ = 1.
• The partial group embedding problem for K takes as an instance a finite

partial group A. This is a YES instance provided that there is a group
G ∈ K and an injective map φ : A→ G preserving all products defined in
A.

Trevor Evans [9] showed that the partial algebra embedding problem for K is
decidable if and only if the uwp for K is decidable. This proof is easily adapted
to show that the problem of deciding embeddability of finite square partial groups
into K is undecidable. In fact we have the following lemma (Lemma 1.1 of [28]),
which uses the extension of Evans’ argument to square partial groups and the fact
that every class of groups containing the class of finite groups has undecidable uwp
(this is essential due to Slobodskoi [51], see Kharlampovic and Sapir [33, §7.4.3]).

Lemma 2.4. Let Gfin denote the class of finite groups and G denote the class of all
groups. If Gfin ⊆H ⊆ G , then the class of finite cancellative square partial groups
embeddable into a group from H is not recursive.

We direct the reader to [28] for a fuller discussion of the proof of this lemma.
The following example (essentially along the lines of that suggested by Evans in
[9]) contains the essence of the idea and serves as a useful counterexample later.

Example 2.5. (1) The table in Figure 1 defines the multiplication of a 13-
element partial group T on the set {1, 2, . . . , 13} that is embeddable in a
group but not in any finite group.

(2) There is a square partial group Q with at most 61 elements and with |
√
Q| =

9 that is embeddable in a group but not in any finite group.

Proof. We consider Higman’s finitely presented group H (see [16]) with group pre-
sentation 〈a, b, c, d : ab = bba, bc = ccb, cd = ddc, da = aad〉. For consistency, we let
e denote the identity element of H. The key property established in [16] is that H
has no nontrivial finite quotients.

Now consider the 9-element set S = {e, a, b, c, d, aa, bb, cc, dd} and let T =
{e, a, aa, b, bb, c, cc, d, dd, ab, bc, cd, da}. Consider the partial group on T with mul-
tiplication x ∗ y defined provided that x, y ∈ S, and

x ∗ y :=



xy if xy ∈ T,
ab if x = bb and y = a,

bc if x = cc and y = b,

cd if x = dd and y = c,

da if x = aa and y = d.
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∗ 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 3 10
3 3 13
4 4 5 11
5 5 10
6 6 7 12
7 7 11
8 8 13 9
9 9 12

Figure 1. A partial group embeddable in a group but not into
any finite group.

All other products are undefined. The definition of the partial multiplication is
simply chosen to be enough to determine the relations in the presentation of H.
The table for T is given in Figure 1, with the numbers 1–12 taking the role of the
elements e, a, aa, b, bb, c, cc, d, dd, ab, bc, cd, da.

It is routine to verify that each element of T is distinct in H; we omit the details.1

Also, each of the defined products in T agree with those in H. So the table of the
partial group T is a restriction of the (infinite) Cayley table for H. However any
group G embedding T has distinct elements a, b, c, d satisfying the relations in the
presentation of H; it follows that there is a nontrivial homomorphism from H into
G, which is therefore infinite, as H has no nontrivial finite quotients.

The partial group T is not a square partial group. To make a square partial
group Q with the desired properties (and with √ equal to the 9-element set S),
one needs to complete the entries of the table in Figure 1, possibly adding new
elements. There are only finitely many ways to do this: there are only 52 unfilled
entries in the table whence at most 52 extra elements are required, and they can
be arranged in only a finite number of ways. (The number 52 may be reduced to at
most 48, taking into account the fact that in Higman’s group a(bb) = (bb)(ab), and
the three other symmetric equalities.) One of these “square completions” coincides
(up to isomorphism) with a restriction of the multiplication table for H (whence
is the desired cancellative square partial group Q embeddable in H, and with at
most 48 + 13 = 61 elements), but none can embed into a finite group, as they all
embed T. �

Consider a partial group A = 〈A, ∗〉. If B = 〈B,×〉 is an algebra with a total
binary operation, then a homotopy from A to B is a triple of functions (α1, α2, α3)
from A into B such that aα1× bα2 = (a∗ b)α3 . (Strictly, we do not need the domain
of α1 to be all of A, only {a ∈ A | (∃b ∈ A) a∗b is defined}, and dually for α2.) The
homotopy (α1, α2, α3) is a homotopy embedding if each of the contributing functions
are injective. The notion of homotopy as described was introduced by Albert in [1]
in the context of quasigroups and latin squares. The following lemma is essentially
the argument in [14].

1Starting from a general group presentation, one does not need to know that the resulting
partial group itself embeds into a group, only that a suitable quotient of it embeds into a group.
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Lemma 2.6. (Hall et al. [14], after Albert [1].) A partial group A = 〈A, ∗, e〉
embeds into a group G if and only if it homotopy embeds into G.

Proof. (Sketch.) The left to right implication is trivial, while the reverse implication
follows because if (α1, α2, α3) is a homotopy embedding into a group G, then the
map a 7→ aα3(eα2)−1(eα1)−1 is an injective homomorphism (see [28, Lemma 1.2]
for details). �

The following example is of some interest from the perspective of Latin squares,
as Lemma 2.6 shows that we can drop the row and column labels from the ta-
ble in Figure 1 and obtain a partial Latin square with similar properties to the
corresponding partial group.

Example 2.7. The content of the table in Figure 1 gives a pattern that does not
appear in any Latin square isotopic to the multiplication table of any finite group
but that does appear in the multiplication table of an infinite group.

An interesting combinatorial problem is to find the smallest number of entries
such a partial Latin square may have. A careful analysis of the proof of [28, Lemma
1.2], shows that in the partial table of Figure 1 we do not need all of the entries
resulting from products with the element 1 (5 entries may be dropped from the
existing 29; again, we omit details).

3. The main construction

Throughout this section we consider a fixed finite, cancellative, square partial
group A. We define a finite (whence complete atomic) Boolean monoid M(A).

The atoms (with respect to the Boolean algebra reduct of M(A)) are

{eii | i ∈ 3} ∪ {wij | i, j ∈ 3} ∪ {a01, a12 | a ∈
√
A} ∪ {b02 | b ∈ A}.

The remaining elements of M(A) are arbitrary sums of these atoms, so that M(A)
has 2n elements, for n = 3+9+2×|

√
A|+ |A|. This determines the Boolean reduct

of M(A); it remains to define the identity element and composition. The identity
is 1′ := e11 + e22 + e33. The elements wij for i, j < 3 are called white.

In order to define composition it is convenient to introduce some notation. We
let 1ij denote the sum of all atoms with subscript ij. Thus

1ij :=


wij if i > j,

wii + eii if i = j,

wij +
∑
a∈
√
A aij if j − i = 1,

wij +
∑
b∈A aij if j − i = 2.

Let 0 denote the empty sum of atoms, 1 :=
∑
i,j∈3 1ij and Aij := 1ij − wij . In

general, we let xij , yij , zij be variables taking values amongst the atoms beneath 1ij .
Composition will defined on the atoms, then extended to arbitrary sums of atoms

using additivity: ∑
S ;
∑

T :=
∑

s∈S,t∈T
s ; t.

Composition is defined on the atoms by the following 6 items.
(1;) xij ; yj′k = 0 if j 6= j′.
(2;) eii ; xij = xij ; ejj = xij .
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(3;) a01 ; b12 = (a ∗ b)02, for a, b ∈
√
A.

(Note that by additivity and (3) we now have (for any i, j, k ∈ 3 with i < j) that
aij ; Ajk =

∑
{(a ∗ b)ik | bjk ∈ Ajk}. The composition Aij ; ajk is similarly forced

when j < k. This enables the next part of the definition.)

(4;) If i < j, then aij ; wjk = 1ik − aij ; Ajk for a ∈
√
A if j − i = 1 and a ∈ A if

j − i = 2.
(5;) Dually, if j < k, then wij ; ajk = 1ik − Aij ; ajk for a ∈

√
A if k − j = 1 and

a ∈ A if k − j = 2.
(6;) wij ; wjk = 1ik.

Thus we arrive at an algebraic structure M = M(A) of the same signature
as a Boolean monoid. Moreover the reduct to {+, ·,−, 0, 1} is a Boolean algebra,
the element 1′ is a multiplicative identity element (by (2)), and the composition is
additive by definition. Note that part (3) of the definition of composition ensures
that there is a homotopy embedding of A into the ;-reduct of M(A) given by
α1(a) = a01, α2(a) = a12 and α3(a) = a02.

We have not yet used the cancellativity condition 2.1 for A. This is used in the
proof of the following lemma to guarantee that composition on M(A) is associative.

Lemma 3.1. M(A) is a finite, simple, normal Boolean monoid with 3 + 9 + 2 ×
|
√
A|+ |A| distinct atoms.

Proof. It remains to check associativity, the normal law and simplicity. For asso-
ciativity, it suffices to show (x; y); z = x; (y; z) for any three atoms x, y, z ∈ At(M).
If the subscripts do not match then both sides will be zero, by definition (1;). Now
suppose the three atoms are xij , yjk, zkl, for some i, j, k, l < 3. We have to check
that

(3.1) (xij ; yjk) ; zkl = xij ; (yjk ; zkl).

The case where i = j and xij = eii is (eii ; yik) ; zkl = yik ; zkl = eii ; (yik ; zkl).
Similarly if j = k and yjk = ejj or k = l and zkl = ekk then (3.1) holds. Now
suppose that none of xij , yjk, zkl is an identity atom. If xij = aij for some a ∈ A
then we must have i < j (we cannot have i = j since we have discounted the case
where xij is an identity atom) and a similar argument applies to yjk, zkl. Since
we cannot have i < j < k < l < 3, at least one of xij , yjk, zkl is white. If two of
xij , yjk, zkl are white then it is easy to check that each side of (3.1) equals 1il.

We are left with the three cases where exactly one of xij , yjk, zkl is white and none
of them is below the identity. The first case is where xij = wij , yjk = bjk, zkl = ckl,
where b, c ∈

√
A and j < k < l, hence j = 0, k = 1, l = 2. If i > 0 then Ai0 = 0 so

(wi0 ; b01) ; c12 = (1i1 −Ai0 ; b01) ; c12 = 1i1 ; c12 = 1i2 (by (5))
= 1i2 −Ai0 ; (b ∗ c)02 (Ai0 = 0)
= wi0 ; (b ∗ c)02 (by (5))
= wi0 ; (b01 ; c12) (by (3)).
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If i = 0 then A00 = e00 so the left hand side of (3.1) is

(w00 ; b01) ; c12 = (101 −A00 ; b01) ; c12 (by (5))
= (101 − b01) ; c12 (A00 = e00)
= (w01 + (A01 − b01)) ; c12 (101 = w01 +A01)
= w01 ; c12 +

∑
b′ 6=b, b′∈

√
(A)

(b′01 ; c12) (additivity)

= w01 ; c12 +
∑
b′ 6=b, b′∈

√
(A)

(b′ ∗ c)02 (by (3))

= 102 − (b ∗ c)02 (by (2.1))
= 102 − e00 ; (b ∗ c)02

= w00 ; (b01 ; c12) (by (5), A00 = e00),

the right hand side of (3.1), as required. The cases yjk = wjk and zkl = wkl are
similar. This proves that M is associative, hence a boolean monoid.

Now to verify that M is normal. For i, j < 3 and any xij ∈ M we have 1ii ≥
xij ; 1ji ≥ eii (see definition of ; on M), hence D(xij) = eii and similarly R(xij) =
ejj . Therefore D(xij) ;xij = eii ;xij = xij = xij ; ejj = xij ;R(xij), so M is normal.

Finally, M is simple because every nontrivial congruence on a Boolean algebra
identifies some nonzero element a with 0. But then as 1;a;1 = 1 and 1;0;1 = 0, every
nontrivial congruence identifies the top element 1 with the bottom element 0. �

The next lemma motivates the construction of M(A) from A and is crucial in
proving the main results.

Lemma 3.2. If A is embeddable in a group G then M(A) is isomorphic to a
subalgebra of the complex algebra of the Brandt groupoid Br3(H) for some group
either equal to G or to G×G×G.

Proof. Say that A is embeddable in the group G (we take the embedding to be
the inclusion map for simplicity). Without loss of generality, we may assume that
|G| > 2|A| (otherwise just replace G by G ×G ×G) and that the multiplication
in A is a restriction of that of G. The identity element of G is e. We now define
a bijection between the atoms of M(A) with the elements of a partition of Br3(G)
and verify that the identity and composition operation are preserved.

The bijection, ι, is as follows.
• aij 7→ {(i, a, j)},
• eii 7→ {(i, e, i)},
• if i > j, then wij 7→ {i} ×G× {j},
• if i = j, then wij 7→ {i} × (G\{e})× {j},
• if j − i = 1, then wij 7→ {i} × (G\

√
A)× {j},

• if j − i = 2, then wij 7→ {i} × (G\A)× {j}.
It is clear that ι maps atoms of M to the elements of a partition of the underlying set
of Br3(G), hence can be extended to a Boolean algebra isomorphism from M to the
Boolean algebra of subsets of Br3(G) generated by the blocks of the partition. Note
that ι(1ij) = {i}×G×{j}. It is also trivial that ι(1′) = {(0, e, 0), (1, e, 1), (2, e, 2)}
of C(Br3(G)), showing that 1′ is preserved as a nullary. Thus it only remains to
verify that composition is preserved.

Let xij and yjk be atoms of M. There are six parts to the definition of composi-
tion; cases (1;)–(3;) are clearly preserved under the proposed embedding. Preserva-
tion of composition in cases (4;) and (5;) follows immediately from the easily verified
group theoretic fact that for g ∈ G and P ⊆ G, we have g ∗ P = G\ (g ∗ (G\P )).
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For the final case (6;) of the definition of composition, note that ι(wij)∗ ι(wjk) ⊆
{i} ×G× {k} = ι(1ik) trivially. Conversely, let (i, g, k) ∈ ι(1ik). Since |G| > 2|A|,
there exists h ∈ G such that neither g ∗ h nor h−1 is contained in A. Then (i, g ∗
h, j) ∈ ({i} ×G\A× {j}) ⊆ ι(wij) and (j, h−1, k) ∈ ({j} ×G\A× {k}) ⊆ ι(wjk),
so that (i, gh, j) ∗ (j, h−1, k) = (i, g, k) ∈ ι(wij) ∗ ι(wjk), showing that ι(1ik) ⊆
ι(wij)∗ι(wjk) also. This completes the final check for preservation of ; and completes
the proof. �

4. Undecidability of representability

Our main results will follow from embellishments of the following proposition.
(Recall that square bracketed statements are a separate series of equivalences.)

Proposition 4.1. Let A be a finite, cancellative, square partial group. The follow-
ing are equivalent :

(1) M(A) is representable [over a finite base set ];
(2) M(A) embeds into Bm(X ×X) for some [finite] set X;
(3) M(A) is a subreduct of a [finitely ] representable relation algebra;
(4) M(A) is a subreduct of a [finite] relation algebra;
(5) A is embeddable in a [finite] group.

Proof. Implication (1) implies (2) follows from Lemma 1.8 and the fact that M(A)
is simple and normal (Lemma 3.1). Implications (2) implies (3) and (3) implies (4)
are trivial. Implication (5) implies (1) follows immediately from Lemma 3.2 and
the fact that C(Br3(H)) has a square representation (over a finite base set if and
only if the group H is finite).

Now we prove the implication (4) implies (5). Assume that M = M(A) is a
sub-Boolean monoid of the Boolean monoid reduct of a relation algebra R. We are
going to show that A embeds into a subgroup of the ;-reduct of R. (Whence if R
is finite, then A embeds into a finite group.)

Let S denote the set

{aij | i, j ∈ 3, a ∈
√
A, and j − i = 1} ∪ {b02 | b ∈ A}.

Claim 1. S ⊆ iM.

Proof. For any xij ∈ S, we have from (4;) that

(4.1) (1ii − eii) ; xij = wii ; xij = 1ij −Aii ; xij = 1ij − eiixij = 1ij − xij

Suppose, for contradiction, that xij 6∈ iM. Then by lemma 1.12 either 0′ ;xij ≥ xij
or xij ; 0′ ≥ xij . In the former case, (1ii − eii) ; xij ≥ xij , contradicting (4.1), and
the latter case is also impossible, similarly. Hence S ⊆ iR. �

Now consider the subset

B := {x ∈ R | x = 0 or (∃i, j ∈ 3)x ; x` = eii & x ; x` = ejj}.

Claim 1 shows that S ⊆ B. As eii ; ejj 6= 0 if and only if i = j, Lemma 1.15
shows that 〈B, ;〉 is a Brandt semigroup of dimension 3 (finite, if R is finite). Say,
〈B, ;〉 ∼= B3(G) for some group G (finite if R is a finite relation algebra).
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The remaining part of the argument is along similar lines to the general argu-
ments in [14]; see in particular [14, Lemma 2.3] and [28, Proposition 3.1]2. Let
ι : 〈B, ;〉 → B3(G) be the isomorphism. The three nonzero idempotent elements of
B3(G) are (0, e, 0), (1, e, 1) and (2, e, 2) and without loss of generality we may as-
sume that eιii = (i, e, i). Then by (1;), for all xij ∈ S we have that xιij ∈ {i}×G×{j}.
This in turn enables the definition of three injective maps from A into G as follows.
For a ∈

√
A, define aα1 to be the group coordinate of aι01 and aα2 to be the group

coordinate of aι12. For a ∈ A define aα3 to be the group coordinate of aι02. Because
|G| ≥ |A|, the maps α1 and α2 can be extended from domain

√
A to injective maps

from A into G (in an arbitrary fashion). Let us assume that we have made one such
extension. We now show that (α1, α2, α3) form a homotopy embedding of A into
G. Certainly all are injective. Now say that a∗ b is defined in A. So a, b ∈

√
A and

a01, b12 are contained in S. Let g, h ∈ G be the values of aα1 and bα2 respectively,
so that aα1bα2 = gh. Now (a ∗ b)α3 is the group coordinate of (a ∗ b)02. We have
(a ∗ b)ι02 = aι01b

ι
12 = (0, g, 1) ; (1, h, 2) = (0, gh, 2). So (a ∗ b)α3 = gh as required.

By Lemma 2.6 we have that A embeds into G. This completes the proof of the
implication (4) implies (5), whence the proof. �

This proposition and Lemma 2.4 give the following corollary.

Corollary 4.2. Let K be any class of finite Boolean monoids containing the class
of finite Boolean monoids that have a finite square representation over a finite base
set, and contained within the class of finite Boolean monoids that are subreducts of
relation algebras. Then K is not recursive.

Example 4.3. (1) Let A be the partial group in Example 2.2. Then M(A)
is an example of a normal Boolean monoid that is not a subreduct of any
relation algebra.

(2) Now let A be the square cancellative partial group shown to exist in Exam-
ple 2.5. Then M(A) is an example of a finite Boolean monoid that is a
subreduct of a relation algebra, but not of any finite relation algebra.

5. Undecidability of representability for reducts.

In fact the proofs of the previous section continue to hold in a much restricted
signature. The most common signatures considered from the perspective of “reducts
of relation algebra” are subsets of {0, 1,+, ·,−,≤,`, ;, 1′}. More generally though,
one may fix any term t in the language of relation algebras, and consider the term
reduct signatures containing t given the status of a fundamental operation (we’ve
already done this in the case of · and the nullary term 0′). Important examples
of term functions are the operation of set subtraction x\y := x · (−y) and its dual
operation of implication x⇒ y := y +−x, as well as the derived unary operations
D and R considered in the present article.

Lemmas 1.4 and 1.10 immediately give us some undecidability results for some
of these reducts, though we note that these will be subsumed by the results of
Section 7 to follow.

2There is an error in the proof of part (b) of [14, Lemma 2.3]. The corrected details can be
found in [28].
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Theorem 5.1. (1) The representation problem is undecidable for any reduct
of the relation algebra signature capable of expressing either {x·y+x·z, ;, 1′}
or {(x+ y) · (x+ z), ;, 1′}.

(2) The finite representation problem is undecidable for any reduct of the Boolean
monoid signature capable of expressing {x · y+ x · z, ;, 1′} or {(x+ y) · (x+
z), ;, 1′}.

(3) The subreduct problems for relation algebras and for finite relation algebras
are undecidable for any reduct of the Boolean monoid signature capable of
expressing {x · y + x · z, ;, 1′} or {(x+ y) · (x+ z), ;, 1′}.

Proof. (1) Consider some reduct signature F expressing either {x · y + x · z, ;, 1′}
or {(x + y) · (x + z), ;, 1′}. Let R be a relation algebra and let RF denote the
F -reduct of R. If R is representable, then so is RF . But by Lemma 1.10, if
RF is representable then so is R. The claim follows because representability is
undecidable for finite relation algebras [18].

(2) has an almost identical proof using Lemma 1.4 and Corollary 4.2, while (3)
follows similarly using Lemma 1.10 in place of Lemma 1.4. �

We give three examples covered by Theorem 5.1.

Example 5.2. Representability and finite representability are undecidable for each
of the signatures {·,+, 1′, ; }, {\, 1′, ; } and {⇒, 1′, ; } (where \ denotes set subtrac-
tion, the term function x\y := x · −y and ⇒ is the term function of implication:
x ⇒ y := −x + y). In each case, the subreduct problem is undecidable for relation
algebras and for finite relation algebras.

Proof. For example, it is routine to verify that term function x · y + x · z can be
written in terms of \ via x · y + x · z = x\[(x\y)\z]. �

Let denote the binary relation of domain equivalence; in other words, if r, s ∈
℘(X ×X) are binary relations then r s when {x ∈ X | (∃y ∈ X) (x, y) ∈ r} =
{x ∈ X | ∃y ∈ X (x, y) ∈ s}. An abstraction of the relation can be defined
on any normal Boolean monoid by x y if D(x) = D(y). (We will use the same
notation for the relation-theoretic and the algebraic , as they coincide in the
algebras of relations we encounter.) Dually, we can define to be the relation
of range equivalence, which can also be defined abstractly using R on a Boolean
monoid.

Recall that a map φ : A→ B between structures whose signature contains some
n-ary relation r is said to preserve r if (a1, . . . , an) ∈ rA implies (aφ1 , . . . , a

φ
n) ∈ rB.

The map φ is an r-embedding if it is an injective r-preserving function such that
(aφ1 , . . . , a

φ
n) ∈ rB implies (a1, . . . , an) ∈ rA.

Now we look more closely at the proof of Proposition 4.1, and find a some further
conditions that can be added to the list of equivalent properties. The main proof
essentially hinges on the ability to define

• the relation i of Lemma 1.12,
• composition,
• the relation of domain equivalence and range equivalence (used in Lemma

1.15).
This is clarified in the proof of the next result.

Proposition 5.3. The following are equivalent for a square cancellative partial
group A.
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(1) There is a {;, i, , }-embedding of M(A) into Rel(X×X) for some set X.
(2) There is a {;}-embedding of M(A) into the {;}-reduct of the representable

relation algebra Rel(X ×X) that preserves the relations i, and .
(3) A embeds into a group G.

Moreover, the set X can be chosen to be finite if and only if the group G can be
chosen to be finite.

Proof. (1) implies (2) is trivial, while (3) implies (1) is trivial once given Lemma 3.2.
To prove (2) implies (3), assume that φ is a faithful representation of the semigroup
〈M(A), ;〉 into 〈℘(X ×X), ;〉 which additionally preserves the relations {i, , }.
The proof is now essentially the same as the proof of (4) implies (5) in Proposi-
tion 4.1, using the concrete relation algebra Rel(X × X) instead of the abstract
relation algebra R. �

As an example, consider the following “constrained representation problem” for
semigroups, which we denote by Rep(;, i, r).
INSTANCE: a finite semigroup S with two subsets I and R of S.
QUESTION: can S be faithfully represented as a semigroup of binary relations in
such a way that the elements of I are injective functions and the elements in R are
reflexive relations?

We let Repfin(;, i, r) denote the same problem, except that the semigroup repre-
sentation is required to be over a finite base set.

Theorem 5.4. The problems Rep(;, i, r) and Repfin(;, i, r) are undecidable.

Proof. Let S be the {;}-reduct of M(A), and choose I to be the relation i as defined
in M(A) and let R be the set {m | m ≥ 1′}. Now notice that if r is a reflexive
relation and a, b are relations with a ; r = b ; r, then a b, and dually r ; a = r ; b
implies a b.

If A embeds under some map φ into a group (or a finite group), then S consti-
tutes a YES instance of Rep(;, i, r). Conversely though, say that S can be faithfully
represented (as a semigroup) with the desired constraints on I and R being pre-
served. Thus, trivially, the relation i on M(A) is preserved. Now say that x y
in M(A). So x ; 1 = y ; 1. Now 1 ∈ R, so 1φ is reflexive. Hence xφ ; 1φ = yφ ; 1φ,
from which it easily follows that D(xφ) = D(yφ). That is xφ yφ. Similarly is
preserved. By Proposition 5.3, the partial group A embeds into a group (finite, if
S was represented over a finite base set). �

A more restrictive formulation of the problem Rep(;, i, r) is to require that the
semigroup S have a representation that is a {i, r}-embedding (rather than just
be {i, r}-preserving). It is clear from the proof and Proposition 5.3 that this
formulation is also undecidable.

Further variations are to replace the “reflexive relation” constraint in Rep(;, i, r)
by other constraints. For example, one may use “full relations”3, “equivalence
relations”, or “symmetric relations”, amongst others (for symmetric relation, one
needs to make use of the fact that 1 ; a ; 1 = 1 for all a 6= 0. Alternatively one may
simply require that some designated element (namely, the element 1 of M(A)) be
represented as the universal relation: essentially the square representation problem
for {1, ;, i}. In each such case there is a corresponding undecidability result.

A similar result can be obtained for ordered semigroups.

3Recall that a binary relation a is said to be full if it D(a) = R(a) = id.
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Theorem 5.5. There is no algorithm to decide if an arbitrary finite ordered semi-
group 〈S,≤〉 with distinguished subset I can be faithfully represented as an ordered
semigroup of binary relations in such a way that the elements of I are injective
functions. The same is true if one requires representability over a finite base set.

Proof. Let S be the {;}-reduct of M(A), and define ≤ to be the boolean ordering
on M(A) and I := iM(A). If A embeds into a group then S is a YES instance
of the decision problem. For the converse, let φ : S → ℘(X × X) be an injective
map preserving ;, embedding ≤ and with s ∈ I implies sφ ∈ i. Now, 1′ ∈ I and is
;-idempotent, which forces (1′)φ to be a restriction of the identity map on X. Also,
as 1′ is a ;-identity element for S we may further assume that (1′)φ is the identity
map on X (otherwise, we may represent S over the domain of (1′)φ). Now follow
the proof of Theorem 5.4 using the fact that the reflexive elements are exactly those
ordered above 1′. �

The restriction of this problem to the case where I is empty corresponds to the
problem of deciding representability of ordered semigroups. Zareckii [57] proved
that every ordered semigroup is isomorphic to an ordered semigroup of binary
relations (over a finite base set, if the semigroup is finite). At the other extreme,
the case where I is forced to be all of S corresponds to the problem of deciding
representability of ordered semigroups as ordered semigroups of injective functions.
Schein [43] (see also [47]) showed that an ordered semigroup is isomorphic to an
ordered semigroup of injective functions (over a finite base set if the semigroup is
finite) if and only if it satisfies xv ≥ z & uv ≥ z & uy ≥ z → xy ≥ z.

We finish this section with a sample of further undecidability results using M(A)
(many other variations can be found as well).

Theorem 5.6. The following problems are undecidable.
(1) Given a finite {·}-semilattice ordered semigroup S = 〈S, ;, ·〉 with distin-

guished element 0′ ∈ S, decide if 〈S, ;, ·, 0′〉 is isomorphic to a ∩-ordered
semigroup of binary relations [over a finite domain] in which 0′ is repre-
sented as the diversity element.

(2) Given an ordered monoid S = 〈S, ;,≤, 1′〉 and a binary operation − on S,
decide if 〈S, ;,−,≤, 1′〉 is isomorphic to an ordered monoid of binary rela-
tions (on the base set X say) in which − is preserved as complementation
in X ×X.

Proof. We give only a sketch in each case. Also, in each case we start by taking
S to be the suitable reduct of M(A). Thus, if A is embeddable into a group (or
finite group), then the corresponding construction of S will be a YES instance
of the decision problem (because M(A) has a square representation as a Boolean
monoid). Thus in each case it suffices to assume that S has been represented in the
desired fashion and then deduce that M(A) is representable as a Boolean monoid
(whence A is embeddable in a group, or even a finite group).

(1) The main argument will require that the element 0 of M(A) is correctly
represented as the empty relation, so we show this first. Let φ denote the represen-
tation of S into Bm(X ×X) (that is, an injective map from M(A) into ℘(X ×X)
preserving {·, ;, 0′}). Assume, for a contradiction that there are x, y ∈ X with
(x, y) ∈ 0φ. Now as 0 · 0′ = 0, we have that 0φ ∩ (0′)φ = 0φ, and as 0′ is the
relation of inequality on X, we have that x 6= y. Hence (y, x) ∈ (0′)φ showing that
(x, x) ∈ 0φ ; (0′)φ = 0φ, contradicting 0 · 0′ = 0. Hence 0φ = ∅.
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Lemma 1.12 shows that relation i can be defined using only ·, ;, 0′, 0, while if 0′

is correctly represented, then 1 = 0′ ; 0′ also is represented correctly. Hence and
are preserved because in M(A) we have x y if and only if x ; 1 = y ; 1 (and

dually for ).
(2) Note that as 0′ is the complement of 1′ it will be correctly represented. Now

we may define i by adjusting the property in Lemma 1.12 as follows: x ∈ i if and
only if −x ≥ x ; 0′ & −x ≥ 0′ ; x. Now we are in the situation of Theorem 5.5. �

The first undecidability result in this theorem provides a quite a sharp boundary
between decidability and undecidability because Bredikhin and Schein [6] showed
that every semilattice ordered semigroup is isomorphic to an ∩-ordered semigroup
of binary relations. Later, Bredikhin [5] gave finite axiomatisations for the repre-
sentable algebras in the signature {·, ;, 1} and {·, ;, 0, 1} (where 1 is to be represented
as the universal relation). A problem related to item (2) is raised in Schein’s [48],
where a characterisation of ordered semigroups of binary relations with complement
is sought.

Many applications of algebras of relations incorporate the unary operation of
reflexive transitive closure; see Pratt [40] or Möller and Struth [38] as a small
sample. We use the notation r∗ to represent the reflexive transitive closure of
the relation r. Unlike for other operations considered in this article, the reflexive
transitive closure of a relation r is not definable from r in the first order theory of
binary relations, though it can be written as an infinite union:

(5.1) r∗ =
⋃
i∈ω

ri,

where r0 := 1′ and ri+1 = r ; ri. From the perspective of axiomatisation, this
undefinability opens the door for extreme complexity: for example the universal
Horn theory of algebras of relations in the signature {+, 0, ;, 1′, ∗} is Π1

1-complete,
hence not recursively enumerable (see Hardin and Kozen [15]). However the issue
of complexity of representability takes as its instance a finite algebra, and in such
cases the infinite union of Equation 5.1 can be expressed as a finite union, because
the ;-reduct will be a periodic semigroup (so that rn = rm for some n 6= m). In the
case of the construction M(A) for example, it is routine to verify that each element
x satisfies x ; x ; x = x ; x, whence x∗ can be expressed as 1′ + x+ x ; x. A similar
statement holds for the tiling algebras of Hirsch and Hodkinson, or in fact any finite
construction whose signature can be extended to include {+, ;, 1′} without affecting
representability. Because of this we can state the following meta-theorem.

Theorem 5.7. Results in the present article that concern undecidability of rep-
resentability or of finite representability for signatures F as algebras of arbitrary
binary relations can be extended to corresponding results for the signature F ∪{∗}.

Expressed differently, Theorem 5.7 applies to all undecidability results of the
article except for those of the next section (where only very specific kinds of binary
relations are allowed).

6. Representability problems for algebras of injective partial
functions

We let I(X) denote the set of all injective partial maps on the set X. Problems
concerning the representation of various kinds of enriched semigroups as algebras of
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injective partial functions have been widely studied. Probably the most important
of the variations that have been considered is the class of inverse semigroups, which
correspond to the signature {◦,−1}. However many other signatures have been
considered. Even the plain semigroup theoretic signature {;} (with or without
nullaries for ∅ and ∆) is interesting and nontrivial. This was first characterised by
Schein [44] who showed it to be a nonfinitely axiomatisable quasivariety (see [50] for
discussion of the history, and Jackson and Volkov [29] for a very elementary proof
of the nonfinite basis property). The signature {;,≤} (with or without constants
for 0 and 1′) was encountered above (after Theorem 5.5) and gives rise to a finitely
based quasivariety [43]. Now define relations and on I(X) (or indeed, on
℘(X ×X)) by f g if the domain of f is a subset of the domain of g. Define
similarly in terms of range. (Note for example, that f g if and only if f g
and g f .) In Schein [47], results are surveyed for signatures that include ; with
various combinations of , and ≤. In [49], Schein characterises semigroups of
injective functions with set subtraction \; they are a finitely based variety. The
elements 0, 1 can also be represented correctly (see Stokes [52] for example). Other
operations that have been considered are

• intersection ·,
• the unary operations of domain D and range R (used extensively in the

present article),
• the unary operation of domain complement P given by P (f) = id∩(−D(f)),
• the unary operation of range complement Q given by Q(f) = id∩ (−R(f)),
• the binary operation n of first restrictive multiplication, given by f n g =
D(f)g, and
• the binary operation n of second restrictive multiplication, given by fog =
fR(g).

For example, the class of unary semigroups representable as semigroups of injec-
tive functions with domain are precisely the class of right type A semigroups (now
called left ample semigroups) in the sense of Fountain [10] (the R case corresponds
to right ample semigroups). The operations P and Q arise in the study of modal
operators. Indeed algebras of relations in the signature {;, P} essentially correspond
to semigroups of modal operators (while Q corresponds to backward modal oper-
ators; see [8] and [38] for example). Restricting to injective functions corresponds
to restricting the allowed modal systems. The operations n and o are considered
by Schein in [45] for example4.

Aside from 0, 1, P,Q, \, ·, all of the operations and relations just discussed can
be defined using inverse and composition: for example, D(x) = x ; x−1. Inverse
semigroups endowed with most of the combinations of 0, 1, P,Q, \, · have been char-
acterised in the literature discussed above and all are finitely based varieties.

Let us divide the above operations and relations into three groupings as follows.
• Domain constructions: {P,D,n, , }.
• Range constructions: {Q,R,o, , }.
• Other: {;, \, ·,≤, 0, 1}.

Lemma 6.1. The relation is definable by a conjunction of atomic formulas in
any signature containing a domain construction and ;. The relation is definable

4Schein uses the notation . instead of n, however this notation has a different meaning in
commonly encountered relation algebra literature.
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by a conjunction of atomic formulas in any signature containing a range construc-
tion and ;.

Proof. This is obvious. For example x y if and only if x y & y x if and
only if x n y = y & y n x = x, and so on. In fact it is easy to see that in the
presence of ;, P defines D, which defines which defines . �

The combination {⊆, , } is mentioned as unsolved in [46] (see page 42), while
the combination { , } is noted as unsolved in Schein [47]. In fact these and other
articles reveal that most of the combinations (of the operations and relations above)
that are not covered by Theorem 6.2 (that is, where not both domain- and range-
related constructions are included) have been characterised.

The signatures between {; } and {; ,≤, 0, 1′} follow from Schein [43], while those
under {; , ·,≤, 0, 1′} can be found in Garvackii [12]. Signatures between {; , \} and
{; , \, ·,≤, 0, 1′} were characterised by Schein [49]. Semigroups of injective functions
with D were mentioned above (the left ample semigroups), while the signatures
{;, P} and {;, P, \} (possibly with some combination of 0, 1′) have been characterised
in a forthcoming article by the second author and Stokes [27].

Gould and Kambites [13] showed that representability and finite representability
as injective functions are undecidable in the signature {;, D,R} (representability
is not explicitly addressed in [13]; the easy connecting details are discussed in [26,
Theorem 6.2]). The main result of this section is an extension of this result.

Theorem 6.2. Let F be any combination of the above operations and relations
that contains composition, at least one domain construction and at least one range
construction. Then the representability and finite representability problems for F -
algebras of injective functions is undecidable.

Proof. We again base our arguments around M(A), however this time we cannot
use it directly, as even the {;}-reduct of M(A) is not representable as a semigroup
of injective functions. Instead we consider the subalgebra of M(A) generated by
the elements

S(A) := {a01, a12 | a ∈
√
A} ∪ {b02 | b ∈ A}

using only the operations and relations of F . Let us denote this subreduct of
M(A) by SF (A). Observe that if F ⊆ {;, ·, 0,≤,n,o, , , , }, then SF (A)
consists of the just the elements of S(A) and 0 and is a 3-nilpotent semigroup (the
composition of any three elements equals 0).

Now, if A embeds into a group (or finite group), then M(A) is isomorphic to
a sub-Boolean monoid of Bm(X ×X) for some set X (or finite set, respectively).
Moreover, the elements of S(A) are represented as injective functions, as they are in
the i relation on M(A). Now, as injective functions are closed under the operations
of F ,it follows that this representation is an F -embedding of SF (A).

Conversely, say that SF (A) is isomorphic to a substructure of I(X) with the
usual interpretations of F . Lemma 6.1 shows that without loss of generality we
may add and to the signature F . Consider now Rel(X × X). We have a
representation of SF (A) into the reduct of Rel(X ×X) to the operations in F , in
which all of the elements of SF (A) have been represented inside the relation i as
defined in Rel(X × X) (as this is exactly the set I(X)). Also for i < j ≤ 2 and
k < ` ≤ 2 we have that aij bk` if and only if i = k, and similarly, aij bk` if
and only if j = `. If we consider any a, b ∈

√
A then the two elements a01 and b12
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are easily seen to satisfy the conditions of Lemma 1.15. Hence we can again follow
the argument given in Proposition 4.1 to show that A embeds into a {;}-subgroup
of Rel(X ×X). �

We mention that Theorem 5.7 applies only vacuously to Theorem 6.2, as the
signatures here do not include union.

7. Starting from tilings

The methods developed in the present article are unable to cover signatures
involving the operation `. On the other hand, the construction used by Hirsch
and Hodkinson [18] to prove the undecidability of representability for Tarski rela-
tion algebras makes essential use of converse. We now revisit that construction to
establish the following result (the proof covers the remainder of the section).

Theorem 7.1. Let F be a relation algebra reduct containing either {·,+, ;, 1′} or
{·,`, ;}. Then the representability problem is undecidable for F .

The signatures {·,`, ;} and {·,`, ;, 1′} were studied and characterised by Jónsson
in [30] and are sometimes referred to as relation algebras in the sense of Jónsson.
Undecidability of finite representability for these signatures remains open.

The notion of an allegory was introduced by Freyd and Scedrov [11] to provide a
category-theoretic model of relations in a signature essentially the same as that of
Jónsson: along with the usual objects and morphisms of a category, there is a binary
operation of intersection and a unary operation of converse. The motivating case
is the allegory Rel(S ), where the objects are sets, morphisms are binary relations
between sets, and intersection and converse have their usual interpretation. The
following is an immediate corollary of Theorem 7.1 and the fact that an algebra of
relations in the signature {·,`, ;, 1′} forms a one-object allegory.

Corollary 7.2. There is no algorithm to decide if a finite one-object allegory em-
beds into the allegory Rel(S ).

Representability of one-object allegories is considered in [11, II.2.158].

7.1. Deterministic tiling problem. The argument of [18] uses an undecidable
tiling problem. Our revisit of this argument will require a slight refinement of the
standard tiling undecidability results.

Let us consider a set of tiles to be a family τ of symbols (which we will think of
as representing squares of unit edge length and refer to as “tiles”, with upper, lower,
left and right edges) and two binary relations ∼L and ∼U on τ : these corresponding
to the allowed neighbourings of tiles; thus we think of s ∼L t as indicating that
tile s can be placed to the left of tile t, while s ∼U t indicates that tile s can be
placed underneath (below) t. A natural geometric consistency condition that can
be imposed is

(s1 ∼L t1 & s2 ∼L t1 & s2 ∼L t2)→ s1 ∼L t2
and analogously for ∼U . These conditions will hold for the tiling instances we
construct.

Let us interpret the relations ∼L and ∼U on the set Z × Z by letting (i, j) ∼L
(i + 1, j) and (i, j) ∼U (i, j + 1). A tiling of the plane is a map γ from Z × Z to
τ preserving the two relations ∼L and ∼U . A partial tiling is a homomorphism γ
from an induced substructure of 〈Z× Z,∼L,∼U 〉 into τ .
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An instance of the tiling completion problem takes as its instance a set of tiles τ
including one distinguished tile5 t. This instance is a YES instance provided that
there is a tiling γ with γ(0, 0) = t. The undecidability of the tiling completion
problem is well known and has a quite transparent proof based on interpreting
the undecidability of the halting problem for Turing machine programs started on
blank tapes. The argument in Robinson [42, §4] is one example.

We now describe a restriction of this problem.

Definition 7.3. A set of tiles τ with distinguished tile t is deterministic if there
is a sequence of triples (u0, v0, t0), (u1, v1, t1), . . . in Z × Z × τ with the following
properties.

• t0 = t, u0 = v0 = 0 (tile t is placed at (0, 0)).
• {(ui, vi) : i < ω} = Z× Z (the sequence of coordinates covers the plane).
• For each i > 0, if the sequence (u0, v0, t0), (u1, v1, t1), . . . , (ui, vi, ti) is a

partial tiling, then either
(a) there is no tile in τ that can be placed at (ui+1, vi+1) such that {(uj , vj , tij) :

j ≤ i + 1} is a partial tiling (in this case the value of ti+1 is unre-
stricted), or

(b) there is a unique tile t′ that can be placed at (ui+1, vi+1) such that
{(uj , vj) : j ≤ i+ 1} is a partial tiling, and ti+1 = t′.

Note that if τ tiles the plane and is deterministic then the described sequence
forces the tiling to be unique. Note also that we do not need to know the tiling
sequence in advance, just that it exists. We show that there is a reduction of the
halting problem to the tiling completion problem in which the constructed tiling
instances are provably deterministic.

Theorem 7.4. The deterministic tiling problem is not decidable.

Proof. We prove the theorem by reducing the Empty Input Non-Halting Problem
(EINHP) to the deterministic tiling problem. Let T = (Q,Σ, δ, q0, F ) be an instance
of EINHP, so Q is a finite set of states, Σ is a finite alphabet, δ : ((Q \ F )× Σ)→
(Q×Σ× {L,R}) is the transition function, q0 ∈ Q is the start state and F ⊆ Q is
the set of final states. T is a yes-instance of EINHP if T never enters a final state
when started in q0 on a blank, two-way infinite tape, it is a no-instance if eventually
T enters a final state.

We reduce T to an instance (τ, t) of the determinstic tiling problem, where the
set of tiles τ is defined to be

(Q× Σ×H × V ) ∪ {B}
where H = {⇒,→,⊥,←,⇐}, V = {Init, Later} and t = (q0, blank,⊥, Init). It may
be helpful to think of the tile (q, s, h, v) as representing a cell in a configuration
of T where the current state is q, s is in the current cell, h is ⇒,→,⊥,←,⇐,
respectively, means that the tape head is at least two to the right, immediately
to the right, at the same position, immediately to the left and at least two to the
left of the current cell and v is Init in the initial configuration but v = Later in all
subsequent configurations. The tile B will be used to cover cells in the lower half
plane. If q ∈ F then there are no tiles that can be placed above (q, s, h, v).

To formalise this, we must define the adjacencies.

5More generally the problem starts with some finite partial tiling by τ , but in the present case
we want the single distinguished tile.
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Horizontal adjacency:
(H0) If x, y ∈ τ and x ∼L y then either x = y = B or B 6∈ {x, y}.
Furthermore, if (q, s, h, v) ∼L (q′, s′, h′, v′) then

(H1) q = q′ and v = v′,
(H2) (h, h′) ∈ {(⇒,⇒), (⇒,→), (→,⊥), (⊥,←), (←,⇐), (⇐,⇐)}, and
(H3) if v is Init then s = s′ = blank.

Vertical adjacency:
(V0) If x ∼U y then x = B ⇐⇒ y = B or ∃q′, s′, h′ such that y =

(q′, s′, h′, Init).
Furthermore, if (q, s, h, v) ∼U (q′, s′, h′, v′) then

(V1) v′ = Later,
(V2) If h 6=⊥ then s = s′,
(V3) If h =⊥ then either (a) δ(q, s) = (q′, s′, R) and h′ =→ or (b) δ(q, s) =

(q′, s′, L) and h′ =←.

This defines the reduction.
We must show that (τ, t) is deterministic. Formally, this should involve the

specification of a sequence ((u0, v0, t0), (u1, v1, t1), . . .) as above. However, we do
not specify such a sequence here, instead we sketch how to determine each tile in
the plane and leave out the details of the exact order that this should be done.

First observe that if t = (q0, blank,⊥, Init) is placed at (0, 0) then by (V0) only
B may be placed at (0,−1) and it is easily seen by repeated use of (H0) and (V0)
that only B can be placed at any position in the lower half plane. Furthermore, by
(H1), (H2) and (H3), the only tile that can be placed at (1, 0) is (q0, blank,←, Init)
and the only possible tile that can be placed at (x, 0) for x > 1 is (q0, blank,⇐, Init).
Similarly, tiles placed at (x, 0) for x < 0 are determined, using (H1), (H2) and (H3).

Suppose now, for some y ≥ 0, that we have determined a tile (q, s0,⊥, v) at
(x, y) (some x ∈ Z) and we have also determined tiles at (x − 1, y), (x + 1, y). By
(H1) and (H2) the tile at (x− 1, y) must be (q, s−1,→, v) (some s−1) and the tile
at (x+ 1, y) must be (q, s1,←, v) (some s1). If q ∈ F then by (V3) there is no tile
that can be placed at (x, y+ 1). If δ(q, s0) = (q′, s′0, R) then the tile at (x, y+ 1) is
determined to be (q′, s′0,→, Later) by (V1) and (V3(a)), and in this case the tiles
at (x− 1, y + 1), (x+ 1, y + 1) are forced to be (q′, s−1,⇒, Later), (q′, s1,⊥, Later),
respectively, by (H0), (H1), (H2) and (V2). Similarly, if δ(q, t) = (q′, t′, L) then
the tiles at (x − 1, y + 1), (x + 1, y + 1) are determined. And provided there is
a tile, say (q′, s2,⇐, v), at (x + 2, y), the tile at (x + 2, y + 1) is determined (if
δ(q, s0) = (q′, s′0, R) then it must be (q′, s2,←, Later) and if δ(q, s0) = (q′, s′0, L) it
must be (q′, s2,⇐, Later)) by (H0), (H1), (H2) and (V2). In this way we can tile as
much as we like of row y + 1.

This shows that (τ, t) is an instance of the deterministic tiling problem. To see
that the reduction is correct, observe that in any tiling, for fixed y ∈ Z, the tiles
at ((x, y) : x ∈ Z) form the configuration of the Turing machine T after y steps.
Let q be the state of this configuration. We cannot have q ∈ F as there is no tile
that could be placed above such a tile, hence T never halts. Conversely, if T never
halts then the tiling procedure above can be continued to give a tiling of the entire
plane. This shows that the reduction is correct. Since EINHP is not recursive, the
theorem follows. �
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7.2. The Tiling Algebra. The following tiling algebra appeared in [18], or see
[19, chapter 18]. Given an instance (τ, T 0) of the tiling problem we construct a
finite relation algebra RA(τ, T 0).
The Atoms. If (τ, T 0) is a tiling instance with k tiles including a specified tile T 0 ∈ τ
then RA(τ, T 0) has 2k + 28 atoms. The elements of RA(τ, T 0) are then arbitrary
sums of these atoms, so |RA(τ, T 0)| = 22k+28. The atoms are

start end Atoms
0 0 e0, w0

0 1 g01, u01, v01, w01

0 2 g02, u02, v02, w02

1 1 e1,+11,−11, w1

2 2 e2,+12,−12, w2

1 2 T12 (T ∈ τ), w12

plus the converses of the (0−1), (0−2) and (1−2) atoms. If i, j < 3, i 6= j, and aij
is any (i–j) atom, we write aji for ăij . Thus, the converse of g02 is g20. We consider
some of the atoms to be coloured: the atoms g01, g10, g02, and g20 are green, and
the atoms w0, w1, w2, w01, w02, w12 and their converses are white.
The Atom Structure. To define the relation algebra RA(τ, T 0) it remains to define
the operations of converse and composition on the atoms. The operations on ar-
bitrary elements are then defined by distribution over disjunction: see [35]. The
identity is e0 +e1 +e2. For converse, we have already defined the converse of atoms
with distinct subscripts. All the rest are self-converse except the following: the
converse of +11 is −11 and the converse of +12 is −12, and vice versa.

Now we define composition. We do this by listing the inconsistent triangles
(a, b, c) of atoms. This is defined to mean that a ; b · c = 0. Recall that the Peircean
transforms of the triangle (a, b, c) are (a, b, c), (b, c̆, ă), (c̆, a, b̆), (b̆, ă, c̆), (c, b̆, a), (b, c̆, ă).
By Lemma 1.5, it follows from the inconsistency of (a, b, c) that its Peircean trans-
forms must also be inconsistent. The following triangles, plus all Peircean trans-
forms of them, are defined to be inconsistent. Firstly, any triangle where the indices
do not match is inconsistent: e.g., (xij , ykl, a) and (xj , ykl, a) are inconsistent if
j 6= k, for any atom a. Secondly, a triangle (ei, x, y) is inconsistent unless x = y.
Thirdly, the following are all inconsistent:

(g10, g02, w12)(7.1)
(T12, T

′
21,+11) any T, T ′ ∈ τ , unless T ∼L T ′(7.2)

(u10, g02, T12) any T ∈ τ \ {T 0}(7.3)
(v10, g01,±11)(7.4)

There are three dual rules for inconsistent triangles, obtained from rules 7.2, 7.3
and 7.4 by swapping the subscripts 1 and 2 throughout and replacing ∼L by ∼U ,
respectively. We will refer to these inconsistent triangles by “rules 7.1 to 7.4”. We
make no use of the atoms u01, v01 in the following, nor of inconsistency rules 7.3, 7.4.
They are used in [18] to prove that a (τ, T 0)-tiling implies the representability of
RA(τ, T 0), but fortunately we can do without them here.

All other triangles are defined to be consistent. This suffices to define composi-
tion.
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Figure 2. Representation implies Tiling

Theorem 7.5. [18] Let (τ, T 0) be an instance of the tiling completion problem.
Then RA(τ, T 0) is a representable relation algebra if and only if (τ, T 0) is a yes
instance of the tiling completion problem.

Theorem 7.6. Let (τ, T 0) be a deterministic instance of the tiling completion prob-
lem. Then (τ, T 0) is a yes instance if and only if there is a {·,`, ;}-representation
of RA(τ, T 0).

Proof. If (τ, T 0) is a yes instance of the deterministic tiling problem then it is also
a yes instance of the ordinary tiling problem so, by the theorem, RA(τ, T 0) is a
representable relation algebra and certainly its reduct to {·,`, ;} is representable.

Conversely, suppose there is a {·,`, ;}-representation φ of RA(τ, T 0). We have to
prove that τ can tile the plane, with T 0 at (0, 0). Let ((u0, v0, t

0), (u1, v1, t
1), . . .)

be the sequence required to show that (τ, T 0) is deterministic, note that t0 = T 0.
Consider the element T 0

12 ∈ At(RA(τ, T 0)). As T 0
12 6= 0 · T 0

12 = 0 and φ respects ·
we have (T 0

12)φ 6= 0φ ∩ (T 0
12)φ = 0φ so 0φ ( (T 0

12)φ and since φ is faithful there is a
pair

(7.5) (x0, y0) ∈ (T 0
12)φ\0φ.

Note that φ need not respect 0, so it is possible that 0φ 6= ∅. As φ preserves converse
we have (y0, x0) ∈ (T 0

21)φ. Now (g10, g02, T
0
12) is not forbidden, so g10 ; g02 ≥ T 0

12,
showing that (x0, y0) ∈ (g10 ; g02)φ = gφ10 ; gφ02. Therefore there is a point z such
that (x0, z) ∈ gφ10 and (z, y0) ∈ gφ02. See Figure 2.

The triple (+11, g10, g10) is not forbidden, so +11 ; g10 ≥ g10. As (x0, z) ∈ gφ10,
there is a point x1 such that (x0, x1) ∈ +1φ1 and (x1, z) ∈ gφ10. Continuing in this
way we may find, for each i ∈ N, points x2, x3, . . . such that (xi, xi+1) ∈ +1φ1 and
(xi, z) ∈ gφ10. Also, as −11 ; g10 ≥ g10 there is x−1 such that (x0, x−1) ∈ (−1)φ

and (x−1, z) ∈ gφ10. Continuing in this way we can find for each i ∈ N points
x−1, x−2, . . . such that

(7.6) (x−(i+1), x−i) ∈ (+1)φ and (x−i, z) ∈ gφ10.

Similarly, using g02 ; (−12) ≥ g02 and g02 ; (+12) ≥ g02, there are points y1, y2, . . .

and y−1, y−2, . . . such that (z, yi) ∈ gφ02 and (yi, yi+1) ∈ (+12)φ and (z, yi) ∈ gφ02 for
i ∈ Z.
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Claim 0. For every i, j ∈ Z the pair (xi, yj) is not contained in 0φ.

Proof. If (xi, yj) was contained in 0φ then as (xk, z) ∈ gφ10 and (z, yk) ∈ gφ02 for
every k we would have

x0 gφ10 z gφ01 xi 0φ yj gφ20 z gφ02 y0,

showing that (x0, y0) ∈ (g10 ; g01 ; 0 ; g20 ; g02)φ = 0φ (and contradicting the choice
of (x0, y0) /∈ 0φ). �

Note also that as g10 ; g02 =
∑
T∈τ T12 by (7.1) we have

(7.7) (xui , yvj ) ∈
(∑
T∈τ

T12

)φ
.

Now we consider the edges (xi, yj) in the order ((xui
, yvi

) | i ∈ N) (recall that
{(ui, vi) | i ∈ N} covers the plane). We now prove by induction that for each k ∈ N

• (xuk
, yvk

) ∈ (tk12)φ,
• (xui , yvi , t

i
12 : i ≤ k) is a partial tiling.

The case k = 0 is already established (7.5). Now let k > 0 assume that the
claim is true for all i < k. The goal is to use the determinism of (τ, T 0) to refine
property (7.7) and replace

∑
T∈τ T12 by the single element tk12 and prove that

(xuk
, yvk

) ∈ (tk12)φ.
Claim 1. Suppose (xuk

, yvk
) ∼L (xui

, yvi
) (some i < k), i.e. xuk

= xui
− 1, yvk

=
yvi , and T ∈ τ is a tile where T 6∼L ti. Then (xuk

, yvk
) ∈ (−T )φ.

Proof. We have (xui
, yvi

) ∈ (ti12)φ, by our induction hypothesis. Also, (xui−1, xui
) ∈

(+11)φ by (7.6). Hence (xui−1, yvi
) ∈ (+11; ti12)φ. Since T 6∼L ti, by (7.2),

+11; ti12 . T = 0 so +11; ti12 ≤ −T . It follows that (xuk
, yvk

) = (xui−1, yvi
) ∈ (−T )φ,

proving the claim. �

Similar claims can be proved for other adjacencies. Now, since (τ, T 0) is de-
terministic and ((ui, vi, ti) : i < k) is a partial tiling, if T ∈ τ \ tk then placing
T at (uk, vk) violates an adjacency with the partial tiling ((ui, vi, ti) : i < k).
By claim 1, for each T ∈ τ \ {tk} we have (xuk

, yvk
) ∈ (−T12)φ, so by (7.7),

(xuk
, yvk

) ∈
⋂
T∈τ\{tk12}

(−T )φ ∩ (
∑
T∈τ T )φ = (tk12)φ. Furthermore, it must be con-

sistent with all the adjacencies to place tk at (uk, vk), else (xuk
, yvk

) ∈ (−tk12)φ, by
claim 1, which would imply that (xuk

, yvk
) ∈ (tk12. − tk12)φ = 0φ, contrary to claim

0. Thus (xuk
, yvk

) ∈ (tk12)φ and ((ui, vi, ti) : i ≤ k) is a partial tiling, completing
the induction step.

By induction, ((ui, vi, ti) : i < ω) is a tiling of the whole plane, hence (τ, T 0) is
a yes-instance of the deterministic tiling problem. �

Proof of Theorem 7.1 Let F be an RA subsignature containing {·,`, ;}. By
Theorems 7.5 and 7.6, the deterministic tiling completion problem reduces to the
representability problem for finite F-algebras. By Theorem 7.4, the deterministic
tiling completion problem is undecidable, hence membership of R(F ) is undecid-
able, for finite F -algebras.

Now suppose F ⊇ {·,+, 1′, ;}. We claim that the map (τ, T 0) 7→ RA(τ, T 0)�F is
a reduction from the deterministic tiling completion problem to the representability
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Signature F Fin. ax. Dec. Eq. Th. Dec. Rep. Fin. Alg.
F = RA ×[39] ×[55] ×[18]
F = BA X[53] X X[53]
F ⊆ {0, 1,+,−,≤, 1′,` } X[48] X[41] X
F ⊆ {0, 1,+, .,≤, 1′,` , ; } d X[2] d
F ⊇ {.,` , ; } ×[21] d ×Thm. 7.1
F ⊇ {+, ., ; } ×[4] d ?
F ⊇ {+, ., 1′, ; } × d ×Thm. 7.1
F = {+, ; } ×[3] X ?
F = {., 1′, ; } ×[20] X ?
F = {≤, ; } X[48] X X[48]
F = {≤, 1′, ; } ×[17] X ?

Figure 3. Finite axiomatisability of R(F ), decidability of the
equational theory of R(F ) and decidability of representability for
finite F -algebras. X means “yes”, × mean “no” and d means that
the result depends on the choice of F .

problem, for finite F -algebras. Certainly, if (τ, T 0) is a yes-instance of the determin-
istic tiling completion problem then by Theorem 7.5, RA(τ, T 0) is a representable
relation algebra, hence RA(τ, T 0)�F is a representable F -algebra. Conversely, sup-
pose RA(τ, T 0)�F is F -representable. By lemma 1.9, RA(τ, T 0) is a representable
relation algebra and by Theorem 7.5, (τ, T 0) is a yes-instance of the deterministic
tiling completion problem, proving the claim. The second part of the theorem now
follows.

8. Conclusion

Ever since Lyndon proved that Tarski’s axiomatisation of relation algebras was
not complete over the class of representable relation algebras [35], the subject has
been dogged by negative results; the results of the current paper can be thought
of as the next in a long line. RRA cannot be defined by any finite set of for-
mulas [39]. Any sound and complete equational axiomatisation of RRA must
involve infinitely many variables [31], it must include infinitely many non-Sahlqvist
equations [56] indeed it must include infinitely many non-canonical equations [22].
Tarski showed that the equational theory of relation algebra, although by defi-
nition finitely axiomatisable, is not decidable. Membership of the class of finite
representable relation algebras is known to be undecidable [18].

Given all these negative results, various researchers investigated reducts of RA
in the hope of finding algebras with better logical and computational behaviour.
Let F be a set of Boolean or non-Boolean operators, definable by relation algebra
operators. R(F ) denotes the class of all F -algebras that are representable as fields
of binary relations, respecting each operator in F . Figure 3 summarises some of the
key discoveries, focussing on the finite axiomatisability of R(F ), the decidability of
the equational theory of R(F ) and the decidability of membership of R(F ) for fi-
nite F -algebras. From the figure, the main positive result is that the equational the-
ory of R(F ) is decidable if F is a positive reduct (definable from {0, 1,+, ., 1′,`, ; })
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or if each operator in F can be defined by {0, 1,+,−, 1′,`} (i.e. without compo-
sition). The results for finite axiomatisability of R(F ) are disappointing: R(F ) is
finitely axiomatisable if F can be defined by {0, 1,+,−, 1′,`}, but the only other
known finitely axiomatisable representation class is for F = {≤, ; }. Similarly, the
results for decidability of membership of R(F ) for finite F -algebras are mostly
negative.

For various signatures F without converse (e.g. the signature of Boolean monoids)
we have shown that membership of R(F ) is not decidable for finite F -algebras, but
we have also shown that finite representability is undecidable for finite F -algebras.
As far as we know, this is the first case where finite representability has been shown
to be undecidable for subsignatures of RA. One key problem remains open: is the
class of finitely representable relation algebras decidable?
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57. K.A. Zareckĭi, The representation of ordered semigroups by binary relations, Izv. Vyss. Ucebn.
Zaved. Matematika 1959 1959 no. 6 (13), 48–50.

Department of Computer Science, University College London, London WC1E 6BT,

U.K.
E-mail address: R.Hirsch@cs.ucl.ac.uk

Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Aus-
tralia

E-mail address: M.G.Jackson@latrobe.edu.au


