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Abstract

We prove that algebras of binary relations whose similarity type includes intersection,
union, and one of the residuals of relation composition form a non-finitely axiomatizable
quasivariety and that the equational theory is not finitely based. We apply this result to the
problem of the completeness of the positive fragment of relevance logic with respect to binary
relations.
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1 Introduction

Recently there has been a renewed interest in relation-algebraic semantics for substructural and,
in particular, relevance logics, see, e.g., [BDM09, Ko07, Ma07, Ma10, Mi09, Mi10]. The idea is
roughly the following: formulas are interpreted as binary relations and valid formulas correspond
to valid algebraic equations of binary relations. In this paper, we look at the positive fragment
R+ of relevance logic and the associated semantics by binary relations, and prove a non-finite
axiomatizability result, Theorem 2.2.

Probably the simplest way of providing an algebraic semantics to (substructural) logics is to
consider the Lindenbaum–Tarski algebra of the logic. For instance, the Lambek calculus (LC)
is complete w.r.t. ordered residuated semigroups. Similar completeness result holds for relevance
logic Rt w.r.t. De Morgan monoids, cf. [Du66, AB75, RM73]. This type of semantics is rather
abstract: the semantics is given by a class of algebras usually defined by a set of axioms.

A more concrete, Kripke-style semantics can be given by evaluating formulas over possible
worlds, considering certain connectives as modalities and interpreting them by accessibility rela-
tions over the set of possible worlds. For instance, fusion ◦ is treated as a binary modality with a
corresponding ternary accessibility relation R:

a |= ϕ ◦ ψ ⇐⇒ there are b, c such that Rabc, b |= ϕ and c |= ψ (1)

cf. [RM72]. Hence we can interpret certain logics via classes of frames of the form (S,Ri), where S
is the set of possible worlds and the Ris are accessibility relations over S interpreting the intensional
connectives such as fusion or various modalities (in the above example of fusion, R ⊆ S × S × S).
Of course, we may have to restrict the class of frames, e.g., commutativity of ◦ requires: for all
a, b, c,

R(a, b, c) ⇒ R(a, c, b) (2)
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and idempotency of ◦ requires: for every a,

R(a, a, a) (3)

Examples of this type of semantics include the Routley–Meyer semantics for relevance logic R
and its positive fragment R+ [ABD92, RM73] and relational semantics for LC [Do92, Du93]. In
passing we note that the above algebraic and Kripke-style semantics are not independent: certain
axiomatically given classes of algebras can be characterized as (subalgebras of) complex algebras
of classes of frames. We mention the classical result of [JT52] that every relation algebra (see
Definition 2.1 below) is a subalgebra of the complex algebra of a frame (or, using the terminology
of algebraic logic, of an atom structure). Similar connections via canonical extensions can be
established for substructural logics, see, e.g., [DGP05].

Even more concrete semantics can be provided by requiring that the possible worlds have
certain properties and the accessibility relations are determined by the nature of the possible
worlds. For instance, we may require that possible worlds are ordered pairs, hence formulas are
interpreted as binary relations, and the accessibility relation interpreting fusion is

R(a0, a1)(b0, b1)(c0, c1) ⇐⇒ a0 = b0, a1 = c1 and b1 = c0 (4)

i.e., fusion is interpreted as relation composition. This bonds well with the intuition behind dy-
namic semantics, see, e.g., [vB96]. In this setting, possible worlds can be thought of as transitions
(or information channels) and fusion as dynamic conjunction (the conjuncts are executed/stated
sequentially). Implication can be interpreted as the residual(s)1 of composition

(a0, a1) |= ϕ→ ψ ⇐⇒ for every x, (x, a0) |= ϕ implies (x, a1) |= ψ (5)

and relevant (or De Morgan) negation as converse-complement

(a0, a1) |=∼ ϕ⇐⇒ (a1, a0) 6|= ϕ (6)

Finite axiomatizability w.r.t. this type of semantics includes the completeness of the relevance
logic RM [Ma10] and the LC [AM94], and the representation of De Morgan lattices (distributive
lattices with de Morgan negation) [Du82].

Looking at the relevance logic R, propositions are interpreted over a family of commuting and
dense binary relations, and the interpretation of the logical connectives is as follows: conjunction ∧
is intersection, disjunction ∨ is union, fusion ◦ is relation composition, implication → is interpreted
as the residual of relation composition, and relevant negation ∼ as converse-complement. While
formulas are evaluated at sets of transitions, truth is restricted to states (or situations), i.e.,
to ordered pairs of the form (a, a) — see the precise definition of this semantics in Section 2.3.
Recently [Ma07] showed that relevance logic R indeed can be soundly interpreted over commutative
and dense families of relations, and posed the problem of completeness of R w.r.t. this semantics.
It turned out that completeness is impossible in this case, cf. [Mi09], although completeness can
be achieved by adding the mingle axiom to R and the corresponding requirement that all relations
are transitive to the semantics, cf. [Ma10].

As [RM73] points out the Routley–Meyer semantics satisfies the variable sharing, or relevance
principle: if ϕ and ψ do not share atomic propositions, then ϕ → ψ is not valid. Interpreting
implication → as the residual of fusion avoids some arguably counterintuitive features of classical
implication as well. Note that (ϕ1 ∧ϕ2) → ψ |= (ϕ1 → ψ)∨ (ϕ2 → ψ) is classically valid but does
not hold when → is interpreted as the residual of fusion. Let ϕi stand for “you answer question
i” and ψ stand for “you pass the exam”, and assume that the rule is that a student who answers
both questions passes the exam. We expect that a teacher would have difficulties explaining to
two students, one of whom answered question 1 and the other answered question 2, why neither
of them passed the exam.2

1In the special case where composition is commutative, the right and left residuals of composition coincide, see
below.

2We heard a similar example from I. Hodkinson, who attributes it to D. Gabbay.
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Although our results are motivated by substructural logics, they may also be of interest to
those studying pure algebraic logic. Recall that a relation algebra A = (A, 0, 1, · ,+,−, ;,^, 1′)
is a Boolean algebra with operators, and it is representable, an RRA, if it is isomorphic to an
algebra of binary relations — see the precise definition in Section 2.2. It is known that RRA is a
variety [Ta55], but it cannot be defined by any finite set of first-order formulas [Mo64], hence the
equational theory is not finitely based. There has been some interest in identifying subsignatures τ
of the full relation algebra signature such that the corresponding representation class Q(τ) (defined
formally below) is defined by a finite set of axioms, or where the set of equations valid over Q(τ)
follows from a finite set of equations, see [Sc91, Mi04, AM10] for surveys. It is known that Q(τ) is
a finitely axiomatizable quasivariety if τ ⊆ {0, 1,+, · ,−, 1′,^}. But the general rule is that Q(τ)
is not finitely axiomatizable whenever ; ∈ τ . A notable exception is τ = {· , ;}, see [BS78], but
Q(τ) is known to be not finitely axiomatizable when τ contains {· ,^, ;} or {+, · , ;}, see [HM00]
and [An91], respectively. Also Q(τ) is not finitely axiomatizable if τ equals {+, ;}, {· , 1′, ;}, or
{≤, 1′, ;}, cf. [An88], [HM07], [Hi05] for respective proofs. If we restrict τ to positive subsignatures
of RRA, and we look at the variety V(τ) generated by Q(τ), then the picture is more promising:
V(τ) is finitely based if and only if not all of ;, · and ^ are contained in τ , see [AM10] for this
result and for precise references to specific cases.

In this paper we extend these results by looking at generalized subsignatures τ of RRA, where
operations definable in RRA can be included in τ . We show that whenever τ includes · ,+ and
either the left / or the right residual \ of composition, then the quasivariety Q(τ) cannot be defined
by finitely many formulas, nor can the variety V(τ) generated by Q(τ) be finitely axiomatized, cf.
Theorem 2.3 below. Our proof works with the additional requirement of the algebras being dense
and commutative, a sufficient condition for soundly interpreting relevance logic R, see below.
Hence we can apply these results to the positive fragment of the relevance logic R: the relevance
logic R+ of the language {∧,∨,→} is not complete w.r.t. algebras of binary relations even if we
include finitely many additional axioms to the standard axiomatization of R+, Theorem 2.2.

The rest of the paper is organized as follows. In the next section, we recall the basics of
relevance logic and relation algebras, and state our main results. Section 3 is devoted to the
proofs of the key lemmas of the algebraic result. We conclude with some open problems.

2 Relevance logic and relation algebras

We continue with recalling the basics of relevance logic.

2.1 Relevance logic

We recall that the logic R of relevant implication is a finite Hilbert-style derivation system in the
language L(R) = {→,∧,∼} see, e.g., [RM73, AB75, ABD92]. In R the connectives ∨ and ◦ are
defined as

ϕ ∨ ψ =∼ (∼ ϕ∧ ∼ ψ) and ϕ ◦ ψ =∼ (ϕ→∼ ψ)
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In [AB75], R is defined by the following axioms

A1 ϕ→ ϕ

A2 ϕ→ ((ϕ→ ψ) → ψ)
A3 (ϕ→ ψ) → ((ψ → η) → (ϕ→ η))
A4 (ϕ→ (ϕ→ ψ)) → (ϕ→ ψ)
A5 (ϕ ∧ ψ) → ϕ

A6 (ϕ ∧ ψ) → ψ

A7 ((ϕ→ ψ) ∧ (ϕ→ η)) → (ϕ→ (ψ ∧ η))
A8 ϕ→ (ϕ ∨ ψ)
A9 ψ → (ϕ ∨ ψ)
A10 ((ϕ→ η) ∧ (ψ → η)) → ((ϕ ∨ ψ) → η))
A11 (ϕ ∧ (ψ ∨ η)) → ((ϕ ∧ ψ) ∨ η)
A12 (ϕ→∼ ψ) → (ψ →∼ ϕ)
A13 ∼∼ ϕ→ ϕ

and inference rules

R1 ϕ,ϕ→ ψ ` ψ
R2 ϕ,ψ ` ϕ ∧ ψ

We will write R ` ϕ if ϕ is derivable from the axioms, i.e., if ϕ is a theorem of R.
The derivation system RM has the additional mingle axiom

ϕ→ (ϕ→ ϕ)

The logic Rt is defined by expanding the language of R by a logical constant t: L(Rt) = L(R)∪
{t}, and adding the following two axioms to those of R:

t and t → (ϕ→ ϕ)

The positive fragment R+ of R is defined by the axioms A1−A11 and the derivation rules R1 and
R2. For more details on relevance logic we refer the reader to the monographs [AB75, ABD92].

[Ma07] observes that a sound semantics is provided for relevance logic by algebras of binary
relations. Next we recall the definition of representable relation algebras and then describe how
to interpret relevance logic.

2.2 Relation algebras

Let us recall the basic definitions about relation algebras, cf. [HH02, Ma06].

Definition 2.1 1. A relation algebra, an RA, is an algebra

A = (A, 0, 1, · ,+,−, ;,^, 1′)

such that (A, 0, 1, · ,+,−) is a Boolean algebra, and the following equations hold, for every
x, y, z ∈ A:

(R1) x ; (y ; z) = (x ; y) ; z
(R2) (x+ y) ; z = (x ; z) + (y ; z)
(R3) x ; 1′ = x

(R4) x^^ = x

(R5) (x+ y)^ = x^ + y^

(R6) (x ; y)^ = y^ ; x^

(R7) x^ ; (−(x ; y)) ≤ −y
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where x ≤ y abbreviates x + y = y. We denote the class of all relation algebras by RA.
We call a relation algebra A integral if 1′ is an atom (minimal non-zero element) in A, and
symmetric if every element is self converse (x = x^).

2. By a proper relation algebra, a PRA, we mean an algebra A = (A, 0, 1, · ,+,−, ;,^, 1′) such
that A ⊆ P(W ) (the power set of W ) for some equivalence relation W , 0 = ∅, 1 = W , · is
intersection, + is union, − is complement w.r.t. W , ; is relation composition, ^ is relation
converse, and 1′ is the identity relation IdW restricted to W . More formally, for all elements
x, y ∈ A,

x ; y = {(u, v) ∈W : (u,w) ∈ x and (w, v) ∈ y for some w}
x^ = {(u, v) ∈W : (v, u) ∈ x}

1′ = {(u, v) ∈W : u = v}

We denote the class of proper relation algebras by PRA. Given an A ∈ PRA and W as above,
we call W the unit of A. By a relation set algebra, an Rs, we mean a proper relation algebra
A with a square unit: W = U × U for some set U , the base of A. We denote the class of
relation set algebras by Rs.

The class RRA of representable relation algebras is defined as

RRA = IPRA

i.e., we close the class PRA under isomorphic copies.

Note that the (quasi)equational theories of Rs, PRA and RRA coincide. In fact we have

RRA = IPRA = SPRs

i.e., representable algebras are given by the closure of the class Rs under products and (isomorphic
copies of) subalgebras. Indeed, if we take an arbitrary A ⊆

∏
i∈I Ai where each Ai ∈ Rs, then A

may be embedded into the full algebra on P(W ), where W is the disjoint union of the units Wi

of Ai, i.e., A ∈ RRA. Conversely, an A ∈ PRA with an equivalence relation unit W is a subalgebra
of the product of the restrictions Ai of A to the equivalence classes Wi of W , whence A ∈ SPRs,
see [HH02, Lemma 3.7].

We may introduce additional operations in addition to, or instead of, the operations for RA
as follows. An RA-definable operation is a term t(x̄) using only the constants and the operations
in {0, 1,+, · ,−, 1′,^, ;} and the variables in x̄ (a sequence of variables). The main additional
operations considered in this paper are the two residuals of composition, \ and /

x \ y = −(x^ ;−y) and x / y = −(−x ; y^)

It is easy to check that in any relation algebra A, and for any x, y, z ∈ A,

y ≤ x \ z iff x ; y ≤ z iff x ≤ z / y (7)

We note that for any x1, x2, y ∈ A,

(x1 \ y) · (x2 \ y) = (x1 + x2) \ y
(y \ x1) · (y \ x2) = y \ (x1 · x2)

(8)

with similar equations holding for the left residual. Thus each residual is monotonic in one
argument and reverse monotonic (or antitonic, or downward monotonic) in the other argument.
The interpretation of the residuals in a PRA with unit W is given by

x \ y = {(u, v) ∈W : for every w, (w, u) ∈ x implies (w, v) ∈ y}
x / y = {(u, v) ∈W : for every w, (v, w) ∈ y implies (u,w) ∈ x}
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Figure 1: Composition and its residuals

see Figure 1. We also note that converse-complement ∼ x is defined as ∼ x = −(x^) in RA, and
it is interpreted in a PRA with unit W as

∼ x = {(u, v) ∈W : (v, u) /∈ x}

Let τ be a subset of the definable operations in RA. We will denote the class of subalgebras of
the τ -reducts, the τ -subreducts, of the elements of Rs by R(τ).

Next we define subclasses of R(τ) satisfying some extra conditions. We call an algebra A in
R(τ) commutative if, for every x, y ∈ A and u, v, w,

(u,w) ∈ x and (w, v) ∈ y imply (u,w′) ∈ y and (w′, v) ∈ x for some w′ (9)

and dense if, for every x ∈ A and u, v,

(u, v) ∈ x implies (u,w) ∈ x and (w, v) ∈ x for some w (10)

cf. the similar “frame conditions” (2) and (3) on Routley–Meyer frames [RM73]. Let Rcd(τ) denote
the subclass of R(τ) where each algebra is commutative and dense. If composition ; is definable in
R(τ), then commutativity and density are expressible by the equations x ; y = y ; x and x ≤ x ; x,
respectively. It is easy to check that x \ y and y / x coincide in commutative algebras, hence in
Rcd(+, · , \).

Let Q(τ) and Qcd(τ) denote the quasivarieties generated by R(τ) and Rcd(τ), respectively, and
let V(τ) and Vcd(τ) denote the corresponding varieties. In general, Q(τ) and Qcd(τ) are not closed
under homomorphic images, whence the generated varieties V(τ) and Vcd(τ) might be strictly
bigger than these quasivarieties (in contrast to the case of the full RA signature). In passing
we note that R(τ) is closed under ultraproducts (but may not be closed under products), whence
Q(τ) = SPR(τ), i.e., elements of the generated quasivariety are representable as algebras of binary
relations just like in the case of the full RA signature.

2.3 Main results

Relevance logic R can be interpreted into Rcd(· ,∼, \) as follows. Let A ∈ Rcd(· ,∼, \) with unit
W . A valuation is a map v from the set of propositional atoms into A that is extended to
compound formulas by interpreting the logical connectives ∧, → and ∼ by the corresponding
algebraic operations · , \ and ∼, respectively. We define

IdW = {(u, v) ∈W : u = v}

Note that a \ a ⊇ IdW for any a ∈ A, but IdW may not be an element of A. Nevertheless, it can
be used to define the semantics of R in A as follows:

A |= ϕ iff IdW ⊆ v(ϕ) for every valuation v.
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The formula ϕ is valid in Rcd(· ,∼, \), in symbols Rcd(· ,∼, \) |= ϕ, iff A |= ϕ for every A ∈ Rcd(· ,∼
, \). As [Ma07] shows this is a sound semantics for R:

R ` ϕ implies Rcd(· ,∼, \) |= ϕ

In [Mi09] it is shown that completeness does not hold. In passing we note that RM is complete
and sound w.r.t. Rcdt(· ,∼, \), the subclass of Rcd(τ) defined by the additional requirement of
transitivity: x ; x ≤ x, [Ma10].

The proof in [Mi09] heavily uses the existence of the connective ∼. Thus it leaves the problem
whether R+ is complete w.r.t. Rcd(· ,+, \) open (of course, ∨ is interpreted as +). A related ques-
tion is whether we can finitely axiomatize the logic of Rcd(· ,+, \, ;) (where ; is the interpretation
of fusion ◦). Here we show that no completeness is possible in these cases.

Theorem 2.2 Relevance logic R+ is not complete w.r.t. to the semantics Rcd(· ,+, \). In fact,
the logic of Rcd(· ,+, \) is not axiomatizable by a finite set of axioms and the derivation rules R1
and R2. The same non-finite axiomatizability holds for Rcd(τ) and R(τ), where {· ,+, \} ⊆ τ and
the elements of τ are definable using · , +, \, /, ∼ and 1′.

Proof: Observe that an equation σ ≤ τ is valid in A ∈ Rcd(· ,+, \) if and only if IdW ⊆ σ \ τ in
A. Thus the theorem is an immediate consequence of Theorem 2.3 below.

We formulate the main algebraic result of the paper.

Theorem 2.3 Let τ be a similarity type, definable by the operations of relation algebra, such
that +, · , \ are definable by τ . Then the equational and quasiequational theories of R(τ) and
Rcd(τ) are not finitely based.

Symmetrically, we may prove the same results if τ defines +, · , /.

Proof: For every n ∈ ω we will define commutative and dense An ∈ RA and show that

1. for every 2 ≤ n ∈ ω and τ ⊇ {· ,+, \}, the τ -reduct Dn of An is not in the variety V(τ)
generated by R(τ), since there is an equation en in the language {· ,+, \} such that en fails
in Dn, but en is valid in R(τ), hence in V(τ), Lemma 3.1.

2. any non-trivial ultraproduct of An is representable (is in RRA), whence the ultraproduct of
Dn is in Qcd(τ) ⊆ Vcd(τ), Lemma 3.10.

Hence the complements of the classes Q(τ), V(τ), Qcd(τ) and Vcd(τ) are not closed under ultra-
products, and the result follows by  Loś theorem.

3 Non-finite axiomatizability

The rest of the paper is devoted to make the proof of Theorem 2.3 complete.

3.1 Rainbow algebras

It is, in general, very difficult to know whether a given relation algebra is representable, indeed
for finite algebras this question is undecidable [HH01b]. Nevertheless, special types of relation
algebras can be defined where it is relatively easy to determine if the algebra is representable or
not. The idea is to define relation algebras so that it is not too hard to work out how many rounds
the second player can survive in a game to test representability (see Definition 3.2 below). A group
of such constructions goes under the name of rainbow algebra, mainly because each non-identity
atom of these algebras has a colour — green, yellow, white, black or red. Rainbow algebras
have been used to solve many combinatorial problems for relation algebras and their fragments
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[Hi95, HH97, Ho97, HM00, HH00, HH01a] and there is a version for cylindric algebras [HH09]. It
is typically the case with these algebras that the first player (∀) can use green and yellow atoms to
force the existence of a large set of points where each distinct pair of points from this set is forced
(by the consistency rules) to be labelled by a red atom. In [HH02, Definition 16.10] these sets are
called red cliques. The second player (∃) is allowed to choose, within the constraints of consistency,
which red atom to use. We will see that the constraints in the finite algebras An defined below
restrict the moves of ∃ so that she eventually loses the representability game, whence An is not
representable. But as n grows, she can survive more and more rounds in the game played on
An, and in fact ∃ can win the game played on the ultraproduct A of An (n ∈ ω), whence A is
representable.

Rainbow algebras are integral, but commutativity, symmetry and density may fail. It is not
hard to make rainbow algebras symmetric (hence commutative) and a symmetric relation algebra
with a rule like (20) below was defined in [HM00]. In the definition below we modify the construc-
tion so that the algebras are also dense, this type of construction appeared in [Mi09]. In these
modified rainbow algebras, it is possible for player ∀ to make a series of moves using green and
yellow atoms to force a large set of points where nearly all pairs of distinct points from the set
are labelled by a red atom, but some edges may be labelled by a yellow atom. We call these sets
‘red clusters’, and the strategy to deal with them is new. We will explain this more carefully in
the remainder of this section.

We define relation algebras An for n ∈ ω. Let n be any natural number n = {0, 1, . . . , n− 1}.
We define An to be the finite relation algebra (in RA) with the following atoms At(An):

• identity: 1′

• greens: gi for i ∈ n+ 1

• yellows: yi for i ∈ n

• blacks: bi for i ∈ n

• whites: wS for S ⊆ (n+ 1)× n, |S| ≤ 2

• reds: ri for i ∈ n

All the atoms are self converse. Given this, a triple (x, y, z) of atoms is said to be an inconsistent
(or forbidden) triangle if x · (y ; z) = y · (z ; x) = z · (x ; y) = 0. Using additivity, composition is
determined by specifying that the set of inconsistent triangles are precisely the permutations of
the following:

(1′, x, y) unless x = y (11)
(gi, gj , yk) unless |i− j| = 1 (12)
(gi, gj , gk) unless i = j = k (13)
(gi, gj ,wS) (14)
(gi, gj , rk) unless k = |i− j| ≤ 5 or 5 < |i− j| ≡5 k (15)
(yi, yj , bk) (16)
(yi, yj , yk) unless i = j = k (17)
(yi, rj , bk) unless i = k (18)

(gi, yj ,wS) unless (i, j) ∈ S (19)
(ri, rj , rk) unless i = j = k or i+ j = k or i+ k = j or j + k = i (20)

where ≡5 denotes equivalence modulo 5. For any three integers i, j, k we define T (i, j, k) to mean
that either i = j = k, i + j = k, i + k = j or j + k = i. So (20) says that (ri, rj , rk) is forbidden
unless T (i, j, k). We might also use the phrase ‘the indices add up’ in case T (i, j, k). The set of
consistent triangles of atoms is denoted by C:

C = {(x, y, z) : x, y, z ∈ At(An), (x, y, z) is consistent}
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Note that An is a dense (x ≤ x ;x), commutative (x ; y = y ;x), integral (x ; y = 0 implies x = 0 or
y = 0, hence 1′ is an atom) and symmetric (x^ = x) algebra. Also, for any natural numbers i, j, k,
if i ≤ j ≤ k, then |j − i|+ |k − j| = |k − i|, hence for arbitrary i, j, k if |i− j|, |j − k|, |i− k| < n,
then the triangle

(r|j−i|, r|k−j|, r|k−i|) (21)

is consistent.
It is not difficult to check that An is indeed a relation algebra, for n ≥ 5. All the axioms

but (R1) are straightforward to check. Below we sketch why (R1) holds. It suffices to show that
whenever we have atoms a, x, y, z such that a ≤ (x ;y);z, then there is an atom b such that a ≤ x ;b
and b ≤ y ; z. If x = a and y = z, then we can choose b = 1′. Otherwise we can try to use a
white atom or a black atom for b. The only case when this might not work is when both x and a
are green and both y and z are yellow (or the other way round), say x = gi, a = gj and y = yk,
z = yl. In this case, we can choose b = r|i−j|(mod 5).

3.2 Non-representability

Next we show that the non-representability of Dn, the {· ,+, \}-reduct of An, is witnessed by an
equation en.

Lemma 3.1 For every 2 ≤ n ∈ ω, there is an equation en in the language {· ,+, \} such that

1. en fails in the {· ,+, \}-reduct Dn of An,

2. en is valid over Rs, hence over R(· ,+, \).

Hence Dn /∈ V(· ,+, \).

Proof: For each atom α ∈ At(An), let vα be a variable symbol, and let V = {vα : α ∈ At(An)}
denote the collection of the above variables. Note that V is finite since An is finite. For each atom
α ∈ At(An) let vα stand for

∑
{vβ : β ∈ At(An)r{α}}. Let Ω =

∑
{vα· vβ : α, β ∈ At(An), α 6= β}.

For each atom α ∈ At(An), we define terms σn(α) by induction.

σ0(α) = vα · (Ω \ Ω)

σm+1(α) = σm(α) ·
∏

β∈At(An)

(vβ \
∑

(α,β,γ)∈C

σm(γ))

Terms τm are also defined by induction:

τ0 = vg0

τm+1 = vgm+1 + (σm(ym) \ τm)

We can now define the equation en as
σn(gn) ≤ τn

For item 1, let ι be the evaluation of the variables that maps vα to α, for α ∈ At(An). Note
that ι(Ω) = 0 and ι(vα) = −ι(vα) = −α, for any α ∈ At(An). We will show that ι(σn(gn)) = gn

and ι(τn) = −gn, whence en fails in Dn.
For any α ∈ At(An), we have ι(σ0(α)) = ι(vα · Ω \ Ω) = α · 0 \ 0 = α, and inductively

ι(σm+1(α)) = α ·
∏

β∈At(An)

(β \
∑

(α,β,γ)∈C

γ) = α

since α ; β = β ; α ≤
∑

(α,β,γ)∈C γ, whence α ≤ β \
∑

(α,β,γ)∈C γ by equivalence (7). Hence
ι(σn(α)) = α, and in particular ι(σn(gn)) = gn.
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Next we show that ι(τm) = −gm, for m ≤ n, by induction over m. We have ι(τ0) = ι(vg0) =
−g0. By the previous paragraph, ι(σm(ym)) = ym. Then, inductively,

ι(τm+1) = −gm+1 + (ym \ −gm) = −gm+1

since gm+1 6≤ ym \ −gm by (ym, gm+1, gm) ∈ C.
For item 2, assume that we have a representable algebra D ∈ R(· ,+, \). We have to show that

en is valid in D. We will establish this by reductio ad absurdum. To this end, assume that we
have a valuation ι : V → D and a pair (un, v) such that (un, v) ∈ ι(σn(gn)) but (un, v) /∈ ι(τn).
See Figure 2 for the argument below.
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σ0(g0) // v

Figure 2: The sequence of points

Since (un, v) 6∈ ι(τn), we have (un, v) 6∈ ι(σn−1(yn−1))\ι(τn−1), so there is un−1 with (un−1, un) ∈
ι(σn−1(yn−1)) and (un−1, v) 6∈ ι(τn−1). Continuing in the same way, there are u0, u1, . . . , un such
that

(ui, ui+1) ∈ ι(σi(yi)) and (ui, v) 6∈ ι(τi)

In particular, (ui, ui+1) ∈ ι(vyi) = yi, since ι(vyi) ⊇ ι(σi(yi)), and (ui, v) /∈ ι(vgi), since ι(τi) ⊇
ι(vgi).

We noted that (ui, v) /∈ ι(vgi). It follows that (ui, v) /∈ ι(vα) for any α ∈ At(An) such that
α 6= gi, whence (ui, v) 6∈ ι(Ω) by the definition of Ω.

We claim that
(ui, v) ∈ ι(σi(gi))

for every i ∈ n + 1. We know that (un, v) ∈ ι(σn(gn)) by assumption. This implies (un, v) ∈∏
α∈At(An)(vα \

∑
(α,gn,γ)∈C ι(σn−1(γ))). Since (un−1, un) ∈ ι(vyn−1), by considering α = yn−1 and

the interpretation of \ in representable algebras, we deduce that (un−1, v) ∈ ι(σn−1(γ)), for some
γ ∈ At(An) such that (yn−1, gn, γ) ∈ C. We know that (un−1, v) 6∈ ι(vgn−1), hence γ = gn−1 and
(un−1, v) ∈ ι(σn−1(gn−1)). The claim follows inductively.
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Our next claim is that
(ui, uj) 6∈ ι(Ω)

for i < j ≤ n. In passing we note that from this claim it follows that all the points ui are distinct.
We have already seen that (ui, v) 6∈ ι(Ω). Suppose for contradiction that (ui, uj) ∈ ι(Ω), for some
i < j ≤ n. If j < n, then (uj , uj+1) ∈ ι(σj(yj)) ⊆ ι(Ω \ Ω). Since (ui, uj) ∈ ι(Ω) by the indirect
assumption, we get (ui, uj+1) ∈ Ω. Repeating this, we deduce that (ui, un) ∈ ι(Ω). Repeating one
extra time, since (un, v) ∈ ι(Ω \ Ω), we get (ui, v) ∈ ι(Ω), a contradiction.

Next we claim that, for each i < j ≤ n, there is a unique atom αij ∈ At(An) such that

(ui, uj) ∈ ι(σi(αij)) ⊆ ι(vαij
)

and for any i < k < j ≤ n,
(αik, αkj , αij) ∈ C (22)

First recall that (ui, uj) 6∈ ι(Ω), hence such an atom αij , if it exists at all, is unique. We have
already seen that (ui, ui+1) ∈ ι(σi(yi)) ⊆ ι(vyi), so

αi,i+1 = yi (23)

for i < n. Now assume that |j − i| ≥ 2 and let i < k < j. Then, inductively, (uk, uj) ∈
ι(σk(αkj)) ⊆ ι(

∏
α∈At(An)(vα \

∑
(α,αkj ,γ)∈C σk−1(γ))) ⊆ ι(vαik

\
∑

(αik,akj ,γ)∈C σk−1(γ)). By the
inductive hypothesis, we have (ui, uk) ∈ ι(vαik

). Then by the definition of \ in representable
algebras, (ui, uj) ∈ ι(σk−1(γ)) for some γ = αij such that the triple (αik, αkj , αij) ∈ C. Since
i ≤ k − 1, we get (ui, uj) ∈ ι(σk−1(γ)) ⊆ ι(σi(γ)) ⊆ ι(vγ) = γ.

We claim that
(αij , gj , gi) ∈ C (24)

for i < j ≤ n as well. Since (uj , v) ∈ ι(σj(gj)), we have (uj , v) ∈ ι(vgj · (vαij \
∑

(αij ,gj ,γ)∈C vγ)).
Recall that (ui, uj) ∈ ι(vαij

). Hence (ui, v) ∈ ι(vγ) ∈ At(An) such that (αij , gj , γ) ∈ C. But we
have seen that (ui, v) 6∈ ι(vgi), hence γ = gi and (αij , gj , gi) ∈ C as desired.

Next we claim that for i+ 2 ≤ j ≤ n,

αij = rj−i

The case i = 0, j = n will then provide a contradiction, since there is no atom rn. See Figure 3
(where we use the notation ι(vα) = α for any variable vα with α ∈ At(An)) for the argument
below. We will use that certain triples of elements must satisfy the consistency conditions on
atomic triangles on An, cf. the claims (22) and (24) above.

We prove the claim by induction over j− i, the base case is j− i = 2. We know that αi,i+1 = yi

and αi+1,i+2 = yi+1 by (23), so (yi, yi+1, αi,i+2) ∈ C by (22). Thus αi,i+2 cannot be the identity,
yellow or black by (11), (17) and (16). We also know that (αi,i+2, gi, gi+2) ∈ C by (24). So αi,i+2

cannot be green or white by (13) and (14) Hence it must be red. By (15), the only possibility is
αi,i+2 = r2, proving the base case.

Next we suppose i < j ≤ n and j = i + 3 ≤ n, and we consider the atom αi,i+3. We already
have αi,i+2 = αi+1,i+3 = r2 and αi,i+1 = yi and αi+2,i+3 = yi+2. So αi,i+3 must satisfy

(yi, r2, αi,i+3), (r2, yi+2, αi,i+3), (αi,i+3, gi, gi+3) ∈ C

and hence αi,i+3 = r3, by (13), (12), (14), and (15). Similarly, αij = rj−i whenever i < j ≤ n and
j − i ≤ 5.

Now let i < j ≤ n and 5 < j − i. Assume, as an induction hypothesis, that αi′,j′ = rj′−i′

whenever i′ < j′ ≤ n and j′ − i′ < j − i. As before, αij cannot be the identity, black, yellow,
green or white, so αij = rm, for some m < n. By (24), (rm, gi, gj) ∈ C, and by (15) it follows
that m ≡5 j − i. Also, by (22), (r2, rj−i−2, rm) ∈ C, and hence by (20) the indices must add up:
S(2, j− i− 2,m). That is, either (i) m = 2 = j− i− 2, or (ii) m = (j− i− 2) + 2 (= j− i), or (iii)
j−i−2 = 2+m (so j−i−4 = m), or (iv) 2 = m+(j−i−2). The first alternative is impossible, since
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Figure 3: Red arrows

j − i− 2 ≥ 3 > 2. The fourth alternative is impossible, since m ≥ 0 and j − i− 2 > 5− 2 = 3 > 2.
The third alternative is also impossible, since m ≡5 j − i but j − i − 4 6≡5 j − i. Hence it is the
second alternative that must hold, and thus αij = rj−i. This completes the induction step.

In particular, we would have (u0, un) ∈ ρ for a red atom ρ with index n, but rn does not exist.
We have arrived at a contradiction, hence en holds in D.

To complete the proof of Theorem 2.3 it remains to show that an ultraproduct of An is repre-
sentable. To this end we recall from [HH97] a (variant of the) game connected to representability.

3.3 The game

Definition 3.2 Let A be a relation-type algebra.

1. A network is a complete, directed, finite graph with edges labeled by atoms of A: i.e.,
N = (N1, N2) for some set N1 (the set of nodes) and some map N2 : N1 ×N1 → At(A) that
satisfies, for every x, y, z ∈ N1,

(a) N2(x, y) ≤ 1′ iff x = y,

(b) N2(x, y) ;N2(y, z) ≥ N2(x, z).

Given two networks N = (N1, N2) and N ′ = (N ′
1, N

′
2), we write N ⊆ N ′ if N1 ⊆ N ′

1 and for
all x, y ∈ N1, N

′
2(x, y) = N2(x, y).

If no confusion is likely, we will henceforth omit the subscripts and let N denote the network,
the set of nodes and the labelling function, distinguishing cases by context. Sometimes, when
confusion is possible, we may write nodes(N) for the set of nodes N1 of the network.

2. Let t ∈ ω. We define a game Gt(A) between two players, ∀ (male), and ∃ (female). During
a match of the game, they build a finite chain N0 ⊆ N1 ⊆ · · · ⊆ Nt of networks in the
following way. In the initial round ∀ picks any atom α and ∃ plays a network N0 containing
nodes m0, n0 such that N(m0, n0) = α (if α ≤ 1′, then m0 = n0, else m0 6= n0). If m0 6= n0,
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the edges (m0, n0) and (n0,m0) belong to ∀. In a subsequent round i (i < t), after Ni−1 has
been played,

• ∀ chooses an edge (m,n) fromNi−1 and atoms x, y ∈ At(A) such that x;y ≥ Ni−1(m,n),
• ∃ responds with a network Ni ⊇ Ni−1 containing a node l such that Ni(m, l) = x and
Ni(l, n) = y.

For irreflexive edges of Ni where both nodes belong to Ni−1, the owner of the edge in Ni is
the same as it was in Ni−1. The edges (m, l), (l, n) and their converses belong to ∀. All other
irreflexive edges in Ni belong to ∃. ∃ wins a match of the game Gt(A) if she can respond to
every move of ∀ by a network Ni (i ≤ t). We say that ∃ has a winning strategy if she can
win all matches.

The following proposition [HH97, Proposition 15] provides us with a sufficient condition for rep-
resentability of atomic relation algebras.

Proposition 3.3 Let A be an atomic relation algebra. Then ∃ has a winning strategy in Gt(A)
for all t ∈ ω iff A is elementarily equivalent to a completely representable relation algebra.3

Hence, because RRA is elementary, if ∃ has a winning strategy in Gt(A) for all t ∈ ω, then A is
representable.

Definition 3.4 Let N be a network over An and let x ∈ N . Define

GN (x) = {y ∈ N : N(x, y) is green}
YN (x) = {y ∈ N : N(x, y) is yellow}

If GN (x) is non-empty, define an equivalence relation ∼x over GN (x) by letting y ∼x z iff there is
a yellow path (ρ0, . . . , ρk) contained in GN (x), where y = ρ0, z = ρk and N(ρi, ρi+1) is yellow for
every i < k.

Certain subsets of X ⊆ nodes(N) are called red clusters. There are two types, see Figure 4.
The set X is a red cluster if |X| ≥ 2 and either

Type 1: there are distinct nodes x, y ∈ N such that N(x, y) is not green or white (the case where
N(x, y) is green is covered by the other type of red cluster, the case where N(x, y) is white
is not a red cluster and is handled separately) and

X = GN (x) ∩ YN (y)

Type 2: there is x ∈ N and X is a ∼x-equivalence class of GN (x).

If X is a red cluster and X = GN (x)∩YN (y) or X is a ∼x-equivalence class of GN (x) (some x, y),
then x is called a green root of the red cluster X. If X = GN (x) ∩ YN (y) is a red cluster of the
second type, the node y is called a yellow root of X. By definition, every red cluster has a green
root, but we do not assume that it has a unique green root.

Let s ∈ ω and let x ∈ N . If X ⊆ GN (x), then an s-good map f over x is a map f : X → (n+1)
such that for y, z ∈ X if N(x, y) = gi and N(x, z) = gj (some i, j ≤ n), then (i) i ≤ j ⇐⇒ f(y) ≤
f(z), (ii) f(y)−f(z) ≡5 j−i, (iii) if |i−j| < 6 ·2s, then f(y)−f(z) = i−j and (iv) if |i−j| ≥ 6 ·2s,
then |f(y)− f(z)| ≥ 6 · 2s.

Observe by the definition of red cluster above, that the red clusters of the network N are completely
determined by the sets of green, yellow and white edges of N , in other words if N,N ′ are two
networks with the same set of nodes and for all u, v ∈ nodes(N), N(u, v) is green (yellow, white)
if and only if N ′(u, v) is green (respectively yellow, white), then for any X ⊆ nodes(N), X is a
red cluster of N iff X is a red cluster of N ′, and x is a green (or yellow) root of the red cluster X
in N iff it is a green (or yellow) root of the same red cluster in N ′.

The following proposition can be shown by a standard binary chop argument, cf. [HM00].
3A complete representation of a relation algebra B is an isomorphism from B to a representable relation algebra

that preserves arbitrary meets and joins whenever they exist in B. The algebras considered here are finite, and for
finite algebras representability is the same as complete representability.
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Figure 4: Type 1 and 2 red clusters

Proposition 3.5 Let x ∈ N , X ⊆ GN (x), f : X → (n + 1) be an s-good map over x and
l ∈ GN (x) r X. Then there is an (s − 1)-good map f+ : X ∪ {l} → (n + 1) over x extending f .
Furthermore, if n ≥ 6 · 2t and |X| = 2, then there is a t-good map f : X → (n+ 1).

3.4 The ultraproduct

We will now show that an ultraproduct of the An (n ∈ ω) is representable. First we describe a
winning strategy for ∃ in the game Gt(An) with 6 · 2t ≤ n.

Suppose after s < t rounds of Gt(An) the network Ns has just been played. In the next round
∀ picks nodes m,n ∈ Ns and atoms α, β such that α ; β ≥ N(m,n). We assume the following.

Inductive hypothesis: For any red cluster X and any green root p of X, there is an associated
(t − s)-good function f = fN,X,p : X → (n + 1) over p, and for all distinct y, z ∈ X either
N(y, z) is yellow or N(y, z) = r|f(y)−f(z)|.

∃’s strategy is to follow the first applicable of the instructions below.

1. If there is a node l ∈ Ns such that Ns(m, l) = α and Ns(l, n) = β, then she does not extend
Ns.

Suppose there is no such node in Ns. In each of the following cases, ∃ will extend Ns to Ns+1

containing exactly one extra node l such that Ns+1(m, l) = α and Ns+1(l, n) = β. To define Ns+1

she has to define each label Ns+1(l, p) for p ∈ Ns r {m,n} (she lets Ns+1(p, l) = Ns+1(l, p), since
the algebra is symmetric). She only ever uses white, black or red for her labels.

2. For each p ∈ Ns, if either Ns(p,m) or x are not green and either Ns(p, n) or y are not green,
then ∃ lets Ns+1(p, l) = wS where

S =
{

(i, j) : {N(p,m), α} = {gi, yj} or {N(p, n), β} = {gi, yj}
}

Observe that |S| ≤ 2.

In the remaining cases, ∃ only uses black or red atoms to label edges, see parts 3, 4 and 5 of ∃’s
strategy below. Hence the red clusters of Ns+1 are already determined, as we remarked. It is

14



therefore safe to refer to a red cluster of Ns+1, although we have not yet completed the definition
of Ns+1.

The following Proposition is a consequence of the first two parts of ∃’s strategy.

Proposition 3.6 Let N be a network played in a match of Gt(An) in which ∃ never uses green or
yellow to label edges and she always uses parts 1 and 2 of her strategy whenever they apply (other
edges may be labelled by arbitrary black or red atoms). Let X ⊆ nodes(N) be a set of at least
four nodes. In the play of the match so far, let x ∈ X be the node which was last to be added (we
may refer to x as the most recently added node of X). Then x is incident with at most two edges
in X labelled by ∀. Suppose there are u, v ∈ X such that (u, x), (v, x) were labelled by ∀. For
all y ∈ X r {x, u, v}, (i) it is not the case that N(x, u) = N(u, y) and N(x, v) = N(v, y) and (ii)
either N(y, u) and N(u, x) are both green or N(y, v) and N(v, x) are both green or N(x, y) = wS

where
S =

{
(i, j) : {gi, yj} = {N(x, u), N(u, y)} or {gi, yj} = {N(x, v), N(v, y)}

}
Lemma 3.7 Let N occur in a play of Gt(An) in which ∃ never chooses green or yellow to label
edges, and she always uses parts 1 and 2 of her strategy whenever they apply. If X and Y are
distinct red clusters of N , and u, v are distinct nodes in X ∩ Y , then N(u, v) is yellow.

Proof: Both red clusters X and Y can be of type one or type two. First we consider two red
clusters which are both of the first type, X = GN (x) ∩ YN (y) and Y = GN (x′) ∩ YN (y′), where
x, y, x′, y′ ∈ N . Since X and Y are clusters of the first type, we know that N(x, y) and N(x′, y′)
are not white or green. In this case there cannot be two distinct nodes in the intersection of the
two clusters because of the following. Suppose for contradiction that u, v ∈ (GN (x) ∩ YN (y)) ∩
(GN (x′) ∩ YN (y′)) where u 6= v. Consider the set of nodes Z = {x, y, x′, y′, u, v}. If x is the most
recently added node from this set then, by Proposition 3.6 and since (x, u), (x, v) belong to ∀, ∃
chose N(x, y) and she chose a white atom N(x, y) = wS , for some S, contrary to our assumptions.
Similarly, y, x′, y′ cannot be the most recently added node, hence it must be u or v. Now for all
w ∈ {x, y, x′, y′}, N(u,w) and N(v, w) are green or yellow, hence (u,w) and (v, w) belong to ∀.
Since either u or v is incident with at most two ∀-edges in Z, we must have |{x, y, x′, y′}| ≤ 2.
Hence {x, y} = {x′, y′} as x 6= y and x′ 6= y′. Note that x = y′ is impossible, since N(x, u) is green
and N(y′, u) is yellow. Similarly y = x′ is impossible, hence x = x′ and y = y′. This contradicts
our assumption that GN (x) ∩ YN (x), GN (x′) ∩ YN (y′) were distinct red clusters.

Now consider a red cluster GN (x) ∩ YN (y) of the first type and a red cluster Y of the second
type, say Y is a ∼x′ -equivalence class of GN (x′), for some x′ ∈ N . For contradiction suppose
u 6= v, u, v ∈ (GN (x) ∩ YN (y)) ∩ Y and N(u, v) is not yellow. Let (ρ0, . . . , ρk) be a yellow path
from u to v in GN (x′). By our assumption that N(u, v) is not yellow we know that k ≥ 2.
Consider the set Z = {x, y, x′, ρi : i ≤ k}. As before, the most recently added node from this
set cannot be x, y, x′, ρ1, . . . , ρk−1, either because the node is incident with three ∀-edges in Z
or, in the cases of x and y, because it would imply, by Proposition 3.6, that N(x, y) was white,
contrary to assumption. Hence the most recently added node is either u or v. But u is incident
with the ∀-edges (u, x), (u, y), (u, x′) and (u, ρ1), while v is incident with (v, x), (v, y), (v, x′) and
(v, ρk−1). Since either u or v is incident with at most two ∀-edges in Z, either {x′, ρ1} ⊆ {x, y}
or {x′, ρk−1} ⊆ {x, y}. Now, x′ = y is impossible as N(y, u) is yellow but N(x′, u) is green, hence
x′ = x. Since ρi = x is impossible (N(x′, ρi) is not the identity), either ρ1 = y or ρk−1 = y. Either
alternative, ρ1 = y or ρk−1 = y, is impossible as N(x′, ρi) is green but N(x, y) is not green.

Finally, consider two red clusters X and Y of the second type, say X is a ∼x-equivalence class
over GN (x) and Y is a ∼y-equivalence class over GN (y), for some x, y ∈ N . Let u, v be distinct
nodes in X ∩ Y . Let (ρ0, . . . , ρk) be a yellow path from u to v in GN (x) and let (ρ′0, . . . , ρ

′
m)

be a yellow path from u to v in GN (y). Let Z = {x, y, ρi, ρ
′
j : i ≤ k, j ≤ m}. Suppose, for

contradiction, that N(u, v) is not yellow. Then each of the two yellow paths from u to v must
have length at least two. But then x, y and each of the internal nodes of the two yellow paths are
incident with at least three ∀-edges in Z. That leaves the two external nodes of the paths, namely
u and v, as the only candidates for most recently added edge. But u is incident with the ∀-edges
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Figure 5: Choosing a black atom to label (l, p)

(x, u), (y, u), (u, ρ1) and (u, ρ′1) in Z, while v is incident with the ∀-edges (x, v), (y, v), (ρk−1, v)
and (ρ′m−1, v). By Proposition 3.6, either u or v is incident with at most two ∀-edges in Z. Hence
x = y and either ρ1 = ρ′1 or ρk−1 = ρ′m−1. But then X,Y are ∼x-equivalence classes of GN (x) with
a non-empty intersection, whence identical, contradicting our assumption that X,Y are distinct.

Recall that the red clusters of Ns+1 are already determined.

Lemma 3.8 If X is a red cluster of Ns+1 and l ∈ Ns+1 rNs, then either

• |X| = 2 or

• X r {l} is a red cluster of N .

Proof: Let X be a red cluster of Ns+1 and suppose |X| > 2. The new node l cannot be a green
or yellow root of X since it is incident with at most two green edges and at most two yellow edges
(if l is a green (yellow) root of X, then each edge (l, x) for x ∈ X is green (yellow)). Let x ∈ Ns

be a green root of X. Since Ns+1 is an extension of N , the set X r {l} is a red cluster of N with
green root x.

Hence, by Proposition 3.5, we can associate a (t− (s+1))-good map with each red cluster of Ns+1

in such a way that if X r {l} is a red cluster of Ns then the (t − (s + 1))-good map associated
with X is an extension of the (t− s)-good map associated with X r {l} in N .

We continue with ∃’s strategy. From now on, we will assume that α and Ns(m, p) are both
green. The case where β and Ns(n, p) are both green is entirely symmetric.

3. Suppose that Ns(p,m) and α are green. Suppose p and l do not belong to the same red
cluster of Ns+1. Suppose also it is not the case that β and Ns(n, p) are both yellow. Then
∃ lets Ns+1(l, p) = bj for some j < n determined as follows (see Figure 5).

(a) If β = yj and Ns(n, p) is red, then ∃ lets Ns+1(p, l) = bj .

(b) If β is red and Ns(n, p) = yj , then ∃ lets Ns+1(p, l) = bj .

(c) If β is yellow and there is q ∈ Ns such that Ns(m, q) is green, Ns(q, n) is yellow and
Ns(p, q) = yj , then ∃ lets Ns+1(p, l) = bj .

(d) Otherwise (none of the previous subcases apply) ∃ lets Ns+1(p, l) = b0.

We will check that this part of the strategy is well defined later. In the remaining cases, α and
Ns(m, p) are both green and either β and Ns(n, p) are both yellow, or l and p belong to the same
red cluster of Ns+1 (both conditions might apply). In these cases ∃ lets Ns+1(l, p) be a red atom.
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Figure 6: If 3 applied in two ways

4. If α = gi and Ns(m, p) = gj are both green, β and Ns(n, p) are both yellow and Ns(m,n) =
wS (some S), then ∃ lets Ns+1(l, p) = r|i−j|(mod 5).

5. Suppose that l and p belong to the same red cluster X of Ns+1. The edge Ns+1(l, p) will be
red (not yellow) so, by Lemma 3.7, this red cluster is unique. Let f+ be the (t−(s+1))-good
map associated with X. ∃ lets Ns+1(l, p) = r|f+(l)−f+(p)|.

It remains to prove that this strategy is well defined and that Ns+1 is in fact a network.
We must show that ∃’s strategy is well defined in case 3, where she chooses black atoms. We

claim that when labelling the edge (l, p) (some p ∈ Ns), it is impossible for two different parts
from 3a–3c to apply, and if there are nodes q, q′ ∈ Ns such that 3c applies using q and also using
q′, then q = q′. To prove this claim it is clear first of all that if 3b applies (so α and β are green
and red, respectively), then none of the other parts can apply (for parts 3a and 3c, α and β are
green and yellow, respectively).

Suppose, for contradiction, that 3a and 3c both apply, as in the first part of Figure 6. By
3a, Ns(m, p) is green, Ns(n, p) is red, and by 3c there is q ∈ Ns such that Ns(p, q) is yellow,
Ns(n, q) = yj (some j < n) and Ns(m, q) = gi (some i ≤ n). We also know by the conditions for
part 3 of ∃’s strategy, that l and p do not belong to the same red cluster of Ns+1. We claim that
under these conditions

Ns(m,n) = w{(i,j)}

To prove this claim, consider the nodes {m,n, p, q}. It is easily seen, by our assumptions, that
the four nodes are distinct. One of these four nodes was the most recently added node from
the set. By Proposition 3.6, this node is incident with at most two edges belonging to ∀ within
that set. This most recently added node cannot be q, since it is incident with green/yellow edges
(q, n), (q,m) and (q, p). If the most recent node is p, then by Proposition 3.6 either Ns(m,n) is
green or Ns(p, n) is white. The latter contradicts our assumption that Ns(p, n) is red. If Ns(m,n)
is green, then l and p belong to the same red cluster of Ns+1, since there is a yellow path from
l to p in GNs+1(m), namely (l, n, q, p) — again this is contrary to our assumptions. Hence the
most recently added node from {m,n, p, q} must be m or n. If it is m, then by Proposition 3.6,
∃ would have let Ns(m,n) = w{(i,j)}. If n is the most recently added node from {m,n, p, q},
then we have to consider two possibilities. It could be that Ns(p, n) was labelled by ∀, but then
n is incident with two ∀-edges, namely (p, n) and (n, q), and then by Proposition 3.6 we have
Ns(m,n) = w{(i,j)}, as before. The other possibility is that, in the round when n was first played,
the two edges labelled by ∀ were (q, n) and (u, n), for some u ∈ N r {m,n, p, q}. Now consider
{m,n, p, q, u}. Recall that n is the most recently added node. Since Ns(p, n) is red and labelled
by ∃, it must be that Ns(p, u) and Ns(u, n) are both green, by Proposition 3.6. But then, by
Proposition 3.6 again, Ns(m,n) = w{(i,j)}, as before. This proves the claim.
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Figure 7: Checking consistency

But then, since the two atoms α and β used in ∀’s current move have to satisfy α ;β ≥ Ns(m,n)
and we are assuming that α is green and β is yellow, it must be that α = gi and β = yj . Then
∃ would have used part 1 of her strategy, since there is a witness node q ∈ Ns, contrary to
assumption. This proves that 3a and 3c cannot simultaneously apply.

Finally we check that 3c cannot apply simultaneously because of distinct nodes q, q′ ∈ Ns,
see the second part of Figure 6. For contradiction suppose it did. Then Ns(m, p), Ns(m, q) and
Ns(m, q′) are all green and Ns(p, q), Ns(q, n), Ns(p, q′) and Ns(q′, n) are all yellow. Consider the
nodes {m,n, p, q, q′}. It is easy to check that there are at least four nodes in this set (the only
possible equality is q = q′). By Proposition 3.6, the most recently added node is n, as all the
other nodes are incident with at least three ∀-edges from this set. Proposition 3.6 also implies that
Ns(m,n) = w{(i,j),(i′,j′)} where Ns(m, q) = gi, Ns(q, n) = yj , Ns(m, q′) = gi′ and Ns(q′, n) = yj′ .
But then the current move (m,n, x, y) would have been covered by part 1 of her strategy (using
either q for α = gi and β = yj or q′ for α = gi′ and β = yj′ as a witness), contrary to assumption.

Now we check that her strategy is well defined when she uses parts 4 and 5 and chooses a red
atom. If part 5 applies, then by Definition 3.4, whether the red cluster is of type one or type two,
Ns(m,n) cannot be white, hence part 4 cannot apply. If part 5 applies, then it is well defined,
since the red cluster containing l and p is unique, by Lemma 3.7.

Note that the use of part 5 of ∃’s strategy ensures that our inductive condition remains true
in Ns+1. Having shown that ∃’s strategy is well defined, we are now ready to prove that she can
win the game.

Lemma 3.9 If 6 · 2t ≤ n, then ∃ has a winning strategy in Gt(An).

Proof: It suffices to prove that Ns+1 is indeed a network. Triangles not involving the new node l
are consistent, since Ns is a network. The triangle (m,n, l) must be consistent, since ∀ is required
to pick α and β with α ;β ≥ Ns(m,n). Primary triangles (l,m, p) and (l, n, p) for p ∈ Ns r {m,n}
can easily be checked to be consistent, by inspecting each case of ∃’s strategy. It remains to
check the secondary triangles (l, p, q), where p, q ∈ Ns r{m,n}. From her strategy, Ns+1(l, p) and
Ns+1(l, q) are white, black or red. The only forbidden triples involving two atoms of these colours
are (18) and (20).

To check forbidden triple (18), suppose that Ns+1(l, p) = bi, Ns+1(l, q) = rj (some i, j < n)
and Ns(p, q) = yk (some k < n). Then α, Ns(m, p) and Ns(m, q) are all green (or symmetrically
β, Ns(n, p) and Ns(n, q) are all green), otherwise ∃ would have chosen white instead of red and
black. See Figure 7. Since Ns+1(l, p) is black, ∃ must have used part 3 of her strategy when
labelling (l, p). There are two possibilities which account for Ns+1(l, q) being red, viz. parts 4 and
5. So either β and N(n, q) are both yellow, or there is a yellow path from l to q within GNs+1(m).
Either way β is yellow, as shown in the figure. First suppose that Ns(n, q) is yellow and Ns(m,n)
is not green (this covers the cases where (l, q) was labelled using part 4 of ∃’s strategy, and also
part 5 when l and q belong to a red cluster of the first type). In this case, part 3c applies when
labelling (l, p), so ∃ must have selected Ns+1(l, p) = bk, i.e., k = i, so the triangle is consistent.
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Next suppose that there is a yellow path ρ from l to q within GNs+1(m). Then, by appending p to
ρ, we see that there is a yellow path from l to p within GNs+1(m), so l and p belong to the same
red cluster of Ns+1. This is contrary to our assumption that part 3 applied when labelling (l, p).

To check forbidden triple (20), suppose Ns+1(l, p), Ns+1(l, q) and N(p, q) are all red. Since
Ns+1(l, p) is red, it must have been selected by either part 4 or 5 of ∃’s strategy. In the former case,
Ns(m,n) = wS , α and Ns(m, p) are green, β and Ns(n, p) are yellow. Since Ns(m,n) is white,
(l, q) must also have been labelled using part 4 of ∃’s strategy (part 5 requires that Ns(m,n) is
not white), so Ns(m, q) is also green and Ns(n, q) is yellow. Consider the set {m,n, p, q}. By
Proposition 3.6 there are two possibilities for the most recently added node. If it is either m or
n, then ∃ chose Ns(m,n) = w{(i′,j′),(i∗,j∗)} where Ns(m, p) = gi′ , Ns(p, n) = yj′ , Ns(m, q) = gi∗

and Ns(q, n) = yj∗ . If α = gi and β = yj , then, since α ; β ≥ Ns(m,n) = w{(i′,j′),(i∗,j∗)},
either (i, j) = (i′, j′) or (i, j) = (i∗, j∗). Either way, ∃ would have responded to the current move
using part 1 of her strategy, using either p or q as a witness, contrary to assumption. The other
possibility is that the most recently added node of {m,n, p, q} is either p or q, but then ∃ would
have chosen a white atom to label Ns(p, q), by Proposition 3.6, contrary to our assumption that
Ns(p, q) is red.

So we may suppose that both (l, p) and (l, q) were labelled using part 5 of ∃’s strategy. Thus l
and p belong to a red cluster of Ns+1, and l and q belong to a red cluster of Ns+1. We claim that
l, p and q all belong to the same red cluster of Ns+1. To prove this claim, note that each node in
a red cluster is incident with at least one green edge and at least one yellow edge, so α must be
green and β must be yellow (or the other way round). If the red cluster containing l and p is of
type 1, then Ns(m,n) is neither white nor green, so the red cluster containing l and q is also of
type 1. In this case, α, Ns(m, p) and Ns(m, q) are green, and β, Ns(n, p) and Ns(n, q) are yellow,
so l, p, q ∈ GNs+1(m)∩YNs+1(n), i.e., all three points belong to the same red cluster. If l, p belong
to a red cluster of type 2, then Ns(m,n) must be green and there is a yellow path from l to p in
GNs+1(m). Then the red cluster containing l and q must also be of type 2, and there is a yellow
path from l to q in GNs+1(m). Hence, l, p and q all belong to the same ∼m-equivalence class of
GNs+1(m), so again all three points belong to the same red cluster, as claimed.

But then l, p and q belong to a red cluster X of Ns+1 with associated (t− (s+ 1))-good map
f+ : X → (n + 1), and the edges of the triangle (l, p, q) have labels r|f(l)−f(p)|, r|f(p)−f(q)| and
r|f(l)−f(q)|, whence the triangle is consistent by 21.

Lemma 3.10 Any non-principal ultraproduct A of (An : n ∈ ω) over ω is in RRA. Hence the
ultraproduct D of the {· ,+, \}-reducts Dn of An is representable as well: D ∈ Qcd(· ,+, \).

Proof: We have seen that ∃ has a winning strategy in Gt(An), provided 6 · 2t ≤ n. A standard
argument now shows that ∃ has a winning strategy in a countably long game over a non-principal
ultraproduct A of the Ans. The rough idea of ∃’s winning strategy in Gω(A) is the following. For
each n, let t(n) = blog2(n

6 )c. Let U be the non-principal ultrafilter used to define the ultraproduct.
In the initial round of Gω(A), ∀ picks an atom [a] of A. Here a = (a0, a1, . . .) for some sequence
of elements ai ∈ Ai, and [a] denotes the equivalence class of a (where equivalence is ‘identical
over a set of indices belonging to U ’). For a ‘large’ set S0 of indices n (i.e., S0 ∈ U) the element
an must be an atom of An. There are only finitely many values of n for which t(n) = 0, hence
S1 = {n ∈ S0 : t(n) > 0} ∈ U . For each n ∈ S1, ∃ supposes that ∀ plays the atom an in the
initial round of Gt(n)(An), and she responds using her winning strategy for Gt(n)(An) with the
An-network Nn

0 . We may suppose that each of these networks has at most two nodes for a ‘large’
subset S2 ⊆ S1, and that they all have the same set of nodes, i.e., {Nn

0 : n ∈ S2} all have the
same nodes, X say. For indices n not in S2 we may (re-)define Nn

0 as an arbitrary network with
nodes X. We may define the ‘ultraproduct’ N0 of the Nn

0 s as the network with nodes X and
for x, y ∈ X we have N0(x, y) = [(Nn

0 (x, y) : n ∈ ω)]. N0 is the initial network in the match of
Gω(A). At the start of round r > 0, suppose inductively that we have An-networks Nn

r−1 and that
Nr−1 is the ultraproduct of the Nn

r−1s in the above sense. We also suppose inductively that for
‘many’ indices n, the network Nn

r−1 occurs in a match of Gt(n)(An) in which ∃ has been using her
winning strategy. For his move, ∀ picks an edge (x, y) of Nr−1 and atoms [a], [b] of A such that
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Figure 8: Reducts and ultraproducts

[a]; [b] ≥ Nr−1(x, y). Let a = (a0, a1, . . .) and b = (b0, b1, . . .). For each n > 6 · 2r, ∃ supposes that
∀ plays the edge (x, y) and an, bn ∈ At(An) in round r of Gt(n)(An). For ‘many’ values of n, this
will be a legitimate move for ∀ in that game. For all of these games, provided n > 6 · 2r, ∃ plays
the network Nn

r according to her winning strategy in that game — note that only finitely many
strategies will have expired. For values of n outside this ‘large’ set, we can let Nn

r be an arbitrary
network — this will not have any effect on the ultraproduct network Nr. In this way, ∃ maintains
the inductive hypotheses. Since Nr is the ultraproduct of a sequence of networks Nn

r , it must be
indeed a network of A, hence ∃ will not lose in round r. The details of this argument may be
found in [HH97, Proposition 15], or for a more general argument see [HH02, Section 10.5.1].

Trivially, since ∃ has a winning strategy in Gω(A), she has a winning strategy in Gn(A) for all
n ∈ ω. By Proposition 3.3, the ultraproduct A ∈ RRA = SPRs. Hence there are Bi ∈ Rs for i ∈ I
such that A ⊆

∏
i∈I Bi. Note that A is commutative and dense, since each An (n ∈ ω) has these

properties. Since every Bi (i ∈ I) is a homomorphic image of A, see [HH02, Lemma 3.7], each Bi is
commutative and dense as well. Let Dn be the {· ,+, \}-reduct of An, let D be the ultraproduct of
Dn (n ∈ ω) and Ci be the {· ,+, \}-reduct of Bi for i ∈ I, i.e., Ci ∈ Rcd(· ,+, \), see Figure 8. Then
D is the {+, · , \}-reduct of A, and hence D ⊆

∏
i∈I Ci. That is, D ∈ SPRcd(· ,+, \) ⊆ Qcd(· ,+, \)

as desired.

4 Conclusion

The variety and quasivariety generated by R(· , ;, \, /) coincide, and it is a finitely axiomatizable
class, [AM94]. By adding the axioms of commutativity and density, we get finite axiomatization
for the (quasi)variety Qcd(· , ;, \) generated by Rcd(· , ;, \). We have seen above that we lose finite
axiomatizability (with or without commutativity and/or density) if we include +.

Problem 4.1 Are the (quasi)equational theories of (commutative and/or dense subclasses of)
R(+, \, /) and R(+, \, /, ;) finitely based?

We showed in Theorem 2.3 that both the equational and quasiequational theories of R(· ,+, \, /)
are not finitely axiomatizable, but we left the question whether Q(· ,+, \, /) and V(· ,+, \, /) co-
incide open. We can formulate the problem in a more general setting.

Problem 4.2 For which similarity types τ of residuated algebras Q(τ) = V(τ)?

In connection with this problem we note that Q(· , ;, \, /) = V(· , ;, \, /), cf. [Pr90, Mi10], and it
would be interesting to see a more general method for translating quasiequations to equivalent
equations using the residuals.

A challenging line of research is to find finite quasiequational axiomatizations for non-finitely
axiomatizable varieties.

Problem 4.3 For a non-finitely axiomatizable variety V, find a finitely axiomatizable quasivariety
Q such that V is the variety generated by Q.
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Translating such a result to logic would provide us with a weakly sound and complete Hilbert-style
calculus. We note that the axiomatization given in [Ko94a] for Kleene algebras is such an example.

Finally we note that Theorem 2.3 can be strengthened so that τ includes the reflexive-transitive
closure ∗ operation as well. Indeed, in An, a ; a ; a = 1 for every non-identity atom a. Thus we can
define

x∗ =

{
1′ x ∈ {0, 1′}
1 otherwise

for every x ∈ An. Thus x∗ can be defined as (x ; x ; x) + 1′ in An, hence in the ultraproduct A.
As before, the τ -reduct of An is not representable. By the definition of ∗ above, we have that the
ultraproduct is representable even if ∗ ∈ τ . In particular, we have non-finite axiomatizability for
representable residuated Kleene lattices, a.k.a. action lattices [Ko94b].

Corollary 4.4 The quasivariety and variety generated by R(· ,+, ;, \, /, ∗, 0, 1′) are not finitely
axiomatizable.

Acknowledgements Thanks are due to the two anonymous referees for their useful comments
and suggestions.
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[BDM09] K. Bimbó, J.M. Dunn and R.D. Maddux, “Relevance logic and relation algebras”,
Review of Symbolic Logic, 2(1):102–131, 2009.

[BS78] D.A. Bredikhin and B.M. Schein, “Representation of ordered semigroups and lattices
by binary relations”, Colloquium Mathematicum, 39:1–12, 1978.
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