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Abstract. We give a finite axiomatisation to representable ordered domain
algebras and show that finite algebras are representable on finite bases.

1. Introduction

Domain algebras provide an elegant, one-sorted formalism for automated rea-
soning about program and system verification, see [DS11, DS08] and [HM11] for
details and further motivation. The algebraic behaviour of domain algebras have
been investigated, e.g. in [DJS09a, DJS09b]. Their primary models are algebras of
relations, viz. representable domain algebras. P. Jipsen and G. Struth raised the
question whether the class R(;, dom) of representable domain algebras of the mini-
mal signature (;, dom) is finitely axiomatisable. To formulate the question precisely,
let us recall the definition of representable domain algebras R(;, dom).

Definition 1.1. The class R(;, dom) is defined as the isomorphs of A = (A, ;, dom)
where A ⊆ ℘(U × U) for some base set U and

x ; y = {(u, v) ∈ U × U : (u,w) ∈ x and (w, v) ∈ y for some w ∈ U}
dom(x) = {(u, u) ∈ U × U : (u, v) ∈ x for some v ∈ U}

for every x, y ∈ A.

The signature (;, dom) can be expanded to larger signatures τ by including other
operations. For instance, we can define

ran(x) = {(v, v) ∈ U × U : (u, v) ∈ x for some u ∈ U}
x^ = {(v, u) ∈ U × U : (u, v) ∈ x}

1′ = {(u, v) ∈ U × U : u = v}

and also include the bottom element 0 (interpreted as the empty set ∅) and the
ordering ≤ (interpreted as the subset relation ⊆) to yield representable algebraic
structures. The corresponding representation classes R(τ) for larger signatures τ
are defined analogously to the definition of R(;, dom).

It turned out that the answer to the above problem is negative.

Theorem 1.2. [[HM11]] Let τ be a similarity type such that (;, dom) ⊆ τ ⊆
(;, dom, ran, 0, 1′). The class R(τ) of representable τ -algebras is not finitely axioma-
tisable in first-order logic.

Note that the above theorem does not apply to signatures where the ordering ≤
is present. In fact, D.A. Bredikhin proved [Bre77] that the class R(;, dom, ran,^,≤)
of representable algebraic structures is finitely axiomatisable. Bredikhin proves fi-
nite axiomatisability by reducing the problem of representing an ordered domain
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algebra (see the definition below for this axiomatically given class of algebraic struc-
tures) to that of an ordered involuted semigroup. Representable (ordered) involuted
semigroups were characterised independently by Bredikhin [Bre75] and B.M. Schein
[Sch74]. These characterisations use infinitely many quasi-equations (in fact, the
class of representable involuted semigroups is a non-finitely axiomatisable quasi-
variety [Bre77]) and the representations are rather involved (in the case of Schein’s
proof, an infinitary construction called “graph-theoretic scaffolding” is used).

In this paper we take a more direct approach in proving finite axiomatisation
of representable ordered domain algebras. The advantage of our proof is that it
uses a Cayley-type representation of abstract algebraic structures that also shows
finite representability, i.e. that finite elements of R(;, dom, ran,^, 0, 1′,≤) can be
represented on finite bases. In passing we note that if composition is not definable
in τ , then R(τ) has the finite representation property, but it can be shown that
every signature containing (·, ;, 1′) or (·, ;,^) (where · is interpreted as intersection)
fails to have the finite representation property.

2. Main result

Let Ax denote the following formulas. These axioms are essentially the same as
in [Bre77], we just made slight adjustments to include the constants 1′ and 0 as
well.

Partial order: The ordering ≤ is reflexive, transitive and antisymmetric,
with lower bound 0.

Monotonicity and normality: The operations ;, dom, ran,^ are monotonic,
e.g. a ≤ b implies a ; c ≤ b ; c etc. and normal 0^ = 0 ; a = a ; 0 = dom(0) =
ran(0) = 0.

Involuted monoid: The operation ; is associative, the constant 1′ is a left
and right identity for ;, ^ is an involution (a^)^ = a and (a;b)^ = b^ ;a^,
and 1′^ = 1′.

Domain/range axioms:

dom(a) = (dom(a))^ ≤ 1′ = dom(1′)(1)

dom(a) ≤ a ; a^(2)

dom(a^) = ran(a)(3)

dom(dom(a)) = dom(a) = ran(dom(a))(4)

dom(a) ; a = a(5)

dom(a ; b) = dom(a ; dom(b))(6)

dom(dom(a) ; dom(b)) = dom(a) ; dom(b) = dom(b) ; dom(a)(7)

A model A = (A, ;, dom, ran,^, 0, 1′,≤) of these axioms is called an ordered domain
algebra, and the class of ordered domain algebras is denoted by ODA.

Each of the axioms (1)–(7) has a dual axiom, obtained by swapping domain and
range and reversing the order of compositions. We denote the dual axiom by a ∂

superscript, thus for example, (6)
∂

is ran(b ; a) = ran(ran(b) ; a). The dual axioms
can be obtained from the axioms above, using the involution axioms and (3).
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The operations can be easily extended to subsets of elements as follows. Let
A ∈ ODA and X,Y ⊆ A. We define

X^ = {x^ : x ∈ X}
X ; Y = {x ; y : x ∈ X, y ∈ Y }

dom(X) = {dom(x) : x ∈ X}
ran(X) = {ran(x) : x ∈ X}

Note that we do not claim that the algebra of subsets satisfy the axioms.
We will need the following notation

X↑ = {a ∈ A : a ≥ x for some x ∈ X}
that is, we will consider subsets which are closed upward. If X = {x} is a singleton
set, then we simply write x↑ for {x}↑ and similarly x ; Y for {x} ; Y and x↑ ; Y for
{x}↑ ; Y , etc.

Next we define closed sets that we will use as a base of the representation of
abstract algebras.

Definition 2.1. We say that X ⊆ A is closed if 0 /∈ X and

X = {dom(x) ; y ; ran(z) : x, y, z ∈ X}↑

and let Γ[A] denote the set of closed subsets of A.

Our main result is the following.

Theorem 2.2. The class R(;, dom, ran,^, 0, 1′,≤) is finitely axiomatisable:

A ∈ R(;, dom, ran,^, 0, 1′,≤) iff A ∈ ODA

and has the finite representation property, i.e. every finite ODA is isomorphic to
some R(;, dom, ran,^, 0, 1′,≤) for some finite base U .

Proof. Let A ∈ ODA. We define the map h from A to a structure with base Γ[A]
by setting

(8) (X,Y ) ∈ h(a) ⇐⇒ X ; a ⊆ Y and Y ; a^ ⊆ X
for every a ∈ A.

We will show that h is injective (Lemma 4.1) and that the ordering and the
operations are correctly represented, see Lemma 4.2, 4.3 and 4.5, whence h is
indeed an isomorphism.

Clearly, when A is finite, the base Γ[A] of this representation is also finite. �

The rest of the paper is devoted to make the above proof complete.

3. Closed sets

We mention some easy consequences of the axioms. A consequence of axioms (4)
and (5) is

(9) dom(a) ; dom(a) = dom(a)

Let ∆[A] denote the set of domain elements ofA ∈ ODA — those elements d ∈ A for
which dom(d) = d. Then it is easy to check that (∆[A], ;) forms a lower semilattice
(ordered by ≤).

Another consequence of the axioms is the following lemma, which we shall use
later.
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Lemma 3.1. Let A ∈ ODA and b, c ∈ A. Then

dom(b ; c) ; b ≥ b ; dom(c) and b ; ran(c ; b) ≥ ran(c); b

Proof.

dom(b ; c) ; b = dom(b ; dom(c)) ; b by (6)

≥ dom(b ; dom(c)) ; b ; dom(c) by (1)

= b ; dom(c) by (5)

The other part is similar using the dual axioms. �

We will need some properties of closed sets. Note that it is enough to show that
dom(X) ;X ⊆ X and X ; ran(X) ⊆ X for establishing that X is closed.

Lemma 3.2. Let A ∈ ODA.

(1) For any a ∈ A, a↑ is closed.
(2) If X is closed, then so are dom(X) and ran(X).
(3) If X is closed and a ∈ A, then (X ; a↑) ; ran(X ; a↑) ⊆ (X ; a↑)↑ and

(ran(X ; a↑))↑ = (ran(X ; a))↑ is closed.
(4) If X is closed, a ∈ A and dom(a) ∈ ran(X), then (X ; a↑)↑ is closed.
(5) If X,Y are closed, and dom(X) = dom(Y ) and ran(X) = ran(Y ), then

X ∪ Y is closed.

Proof. (1): By monotonicity and (5).
(2): To prove that dom(X) is closed we must check that

dom(dom(X)) ; dom(X) ⊆ dom(X) and dom(X) ; ran(dom(X)) ⊆ dom(X)

First note that dom(dom(X)) = dom(X) by (4). Thus we need that dom(x) ;
dom(x′) ∈ dom(X) for every x, x′ ∈ X. By (7) and (6), dom(x) ; dom(x′) =
dom(dom(x) ; x′). Since X is closed, dom(x) ; x′ ∈ X, whence dom(dom(x) ; x′) ∈
dom(X) as desired. The other requirement follows similarly by observing that
ran(dom(x)) = dom(x), by (4).

Showing that ran(X) is closed is completely analogous.
(3): For every x, x′ ∈ X,

(x ; a) ; ran(x′ ; a) = (x ; a) ; ran(ran(x′) ; a) by (6)
∂

≥ x ; ran(x′) ; a ; ran(ran(x′) ; a) by (1)
∂

= x ; ran(x′) ; a by (5)
∂

∈ X ; a as X ∈ Γ[A]

whence (X ; a↑) ; ran(X ; a↑) ⊆ (X ; a↑)↑ follows by monotonicity.
For the second part, let xi ∈ X (for i = 1, 2, 3). We show that

dom(ran(x1 ; a)) ; ran(x2 ; a) ; ran(ran(x3 ; a)) ∈ (ran(X ; a))↑.
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Well,

dom(ran(x1 ; a)) ; ran(x2 ; a) ; ran(ran(x3 ; a))

= ran(x1 ; a) ; ran(x2 ; a) ; ran(x3 ; a) by (4)
∂

≥ ran(x1 ; ran(x2) ; ran(x3)︸ ︷︷ ︸
∈X

; a) by (1)
∂
, (6)

∂
, X ∈ Γ[A]

∈ ran(X ; a)

as desired. Thus the claim follows by monotonicity.
(4): We have seen in the previous item that (X ; a) ; ran(X ; a) ⊆ (X ; a)↑. Thus

it remains to show that dom(X ; a) ; (X ; a) ⊆ X ; a.

dom(X ; a) = dom(X ; dom(a)) by (6)

= dom(X ; ran(X) ; dom(a)) as X ∈ Γ[A]

⊆ dom(X ; ran(X)) as ran(X) ∈ Γ[A], dom(a) ∈ ran(X)

= dom(X) as X ∈ Γ[A]

whence dom(X ; a) ; (X ; a) ⊆ dom(X) ;X ; a = X ; a as X is closed.
(5): Immediate from the definition of closed and the fact that Z ; (X ∪ Y ) =

(Z ;X) ∪ (Z ; Y ). �

4. Representing ordered domain algebras

We recall that h was defined in (8) by

(X,Y ) ∈ h(a) ⇐⇒ X ; a ⊆ Y and Y ; a^ ⊆ X

for every X,Y ∈ Γ[A].

Lemma 4.1. The map h is injective.

Proof. Let a 6≤ b ∈ A. By (5) dom(a) ; a = a and by (2) a ; a^ ≥ dom(a), so
((dom(a))↑, a↑) ∈ h(a) by monotonicity. Also, we cannot have a ≤ dom(a) ; b, else
a = dom(a) ; a ≤ dom(a) ; b ≤ b by (1) and (5) contrary to our assumption that
a 6≤ b. Thus ((dom(a))↑, a↑) 6∈ h(b), and we are done. �

Lemma 4.2. The operation ^, the constants 0 and 1′ and the ordering ≤ are
correctly represented.

Proof. For any closed set X, we have 0 ∈ X ; 0, hence there is no closed set
containing X ; 0, so h(0) = ∅. If (X,Y ) ∈ h(a) and a ≤ b, then X ; b ⊆ X ; a ⊆ Y ,
similarly Y ; b^ ⊆ X, so (X,Y ) ∈ h(b). If (X,Y ) ∈ h(1′), then X = X ; 1′ ⊆ Y
and Y = Y ; 1′^ ⊆ X, so X = Y . Conversely for any closed set X, we have
(X,X) ∈ h(1′), hence h(1′) = {(X,X) : X ∈ Γ[A]}. Finally, (X,Y ) ∈ h(a) iff
X ;a ⊆ Y and Y ;a^ ⊆ X iff Y ;a^ ⊆ X and X ;(a^)^ ⊆ Y iff (Y,X) ∈ h(a^). �

Lemma 4.3. The operation ; is correctly represented.

Proof. If (X,Y ) ∈ h(a) and (Y,Z) ∈ h(b), then X ; a ⊆ Y, Y ; a^ ⊆ X, Y ; b ⊆ Z
and Z ; b^ ⊆ Y . Hence X ; (a ; b) ⊆ Z and Z ; ((a ; b)^) = Z ; (b^ ; a^) ⊆ X by
associativity and the involution axioms. So (X,Z) ∈ h(a ; b).
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Conversely, assume that (X,Z) ∈ h(a;b), i.e. X ;(a;b) ⊆ Z and Z ;(b^ ;a^) ⊆ X
for some Z ∈ Γ[A]. Let

α = (X ; a ; ran(Z ; b^))↑ and β = (Z ; b^ ; ran(X ; a))↑

and Y = α ∪ β. We need the following claim.

Claim 4.4. The subsets α, β and α ∪ β defined above are closed.

Proof. Consider α = (X ; a ; ran(Z ; b^))↑ first. If z ∈ Z, then

dom(a ; ran(z ; b^)) = dom(a ; dom(b ; ran(z)) by (3), (6), (4)
∂

= dom(a ; b ; ran(z)) by (6)

= ran(ran(z); b^; a^) by (3)

= ran(z ; b^ ; a^) by (6)
∂

∈ ran(X) as Z; b^; a^ ⊆ X

whence dom(a ; ran(Z ; b^)) ⊆ ran(X).
Write D = ran(Z ; b^). Observe that D↑ is closed by Lemma 3.2(3). Let xi ∈ X

and di ∈ D (for i = 1, 2, 3). We are required to prove that

dom(x1 ; a ; d1) ; (x2 ; a ; d2) ; ran(x3 ; a ; d3) ∈ (X ; a ;D)↑.

For this,

dom(x1 ; a ; d1) ; (x2 ; a ; d2) ; ran(x3 ; a ; d3)

= dom(x1 ; dom(a ; d1)) ; x2 ; a ; d2 ; ran(ran(x3 ; a) ; d3) by (6), (6)
∂

= dom(x1 ; dom(a ; d1)) ; x2 ; a ; ran(x3 ; a) ; d2 ; d3 by (7)
∂

= dom(x1 ; dom(a ; d1)) ; x2︸ ︷︷ ︸
=x4∈X

; a ; ran(x3 ; a) ; d2 ; d3 as X ∈ Γ[A], ran(X) ⊇ dom(a ;D)

≥ x4 ; ran(x3) ; a ; d2 ; d3 by Lemma 3.1

∈ X ; a ;D↑ as X ∈ Γ[A], D↑ ∈ ∆[A]

⊆ (X ; a ;D)↑ by monotonicity

Thus α is closed. Similarly β is closed.
For any closed sets V,W , we have dom(V ) ⊆ dom(V ; W )↑ by (1) and (6), so

dom(X) ⊆ (dom(X ;a ; ran(Z ; b^)))↑ = dom(α) = dom((X ;a ; b ;Z^)↑) ⊆ dom((Z ;
Z^)↑) ⊆ dom((Z ; ran(Z))↑) = dom(Z). Similarly dom(Z) ⊆ dom(β) ⊆ dom(X).
Hence dom(α) = dom(β). In the same way, ran(α) = ran(β). Then α ∪ β is also
closed, by Lemma 3.2(5). �

By Claim 4.4, Y is closed. We claim that (X,Y ) ∈ h(a) (similarly (Y,Z) ∈ h(b)).
To prove the claim we must show that X ; a ⊆ Y and Y ; a^ ⊆ X. For the first
inclusion, we have X ; a ⊆ α ⊆ Y . For the other inclusion, let y ∈ Y . We have to
prove that y ;a^ ∈ X. Since y ∈ Y = (X ;a;ran(Z ;b^))↑∪(Z ;b^ ;ran(X ;a))↑, there
are x ∈ X and z ∈ Z such that either y ≥ x ; a ; ran(z; b^) or y ≥ z ; b^ ; ran(x ; a).



ORDERED DOMAIN ALGEBRAS 7

In the former case,

y ; a^ ≥ x ; a ; ran(z ; b^) ; a^

≥ x ; a ; ran(z ; b^) ; ran(z ; b^) ; a^

≥ x ; a ; ran(z ; b^) ; (a ; ran(z ; b^))^

≥ x ; ran(ran(z ; b^) ; a^) by (2)
∂
, (3)

∂

≥ x ; ran(z ; b^ ; a^) by (6)
∂

∈ X as Z ; b^ ; a^ ⊆ X,X ∈ Γ[A]

while in the latter case

y ; a^ ≥ z ; b^ ; ran(x ; a) ; a^

≥ z ; b^ ; dom(a^ ; ran(x)) ; a^ by (3), (6)

≥ z ; b^ ; a^ ; ran(x) by Lemma 3.1, (6)

∈ X ; ran(X) as X ∈ Γ[A]

= X

as desired. �

Lemma 4.5. The operations dom and ran are correctly represented.

Proof. Suppose (X,Y ) ∈ h(dom(a)). We must prove that X = Y and there is a
closed set Z with (X,Z) ∈ h(a). Since (X,Y ) ∈ h(dom(a)), we have X ;dom(a) ⊆ Y
and Y ; dom(a)^ ⊆ X. Now dom(a) ≤ 1′ by (1), so we have that for every x ∈ X,
there is y ∈ Y such that x ≥ x ; dom(a) ≥ y. Since Y is (upward) closed, we
get X ⊆ Y . Similarly, we get Y ⊆ X by Y ⊆ Y ; dom(a)^ = Y ; dom(a) ⊆ X,
thus X = Y . Note also that dom(a) ∈ ran(X), since for every y ∈ Y , dom(a) =

dom(a)^ ≥ ran(y ; dom(a)^) ∈ ran(X), by (1) and (6)
∂
. Now define Z = (X ; a↑)↑.

By Lemma 3.2(4), Z is closed. Then (X,Z) ∈ h(a), since X ; a ⊆ Z by definition,
and X ; a ; (a^) ⊆ X ; dom(a) ⊆ X by (2), (5), since dom(a) ∈ ran(X).

Conversely, suppose (X,Z) ∈ h(a) for some Z ∈ Γ[A]. Then X ; a ⊆ Z and
Z ; a^ ⊆ X. Since Z ; a^ ⊆ X, we have dom(a) = ran(a^) ∈ (ran(Z ; a^))↑ ⊆
(ran(X))↑, by (3) and (6)

∂
. Hence X ; dom(a) ⊆ X, i.e. (X,X) ∈ h(dom(a)). So

dom is correctly represented.
Showing that ran is properly represented is similar. �
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