ORDERED DOMAIN ALGEBRAS

ROBIN HIRSCH AND SZABOLCS MIKULAS

ABSTRACT. We give a finite axiomatisation to representable ordered domain
algebras and show that finite algebras are representable on finite bases.

1. INTRODUCTION

Domain algebras provide an elegant, one-sorted formalism for automated rea-
soning about program and system verification, see [DS11, DS08] and [HM11] for
details and further motivation. The algebraic behaviour of domain algebras have
been investigated, e.g. in [DJS09a, DJS09b]. Their primary models are algebras of
relations, viz. representable domain algebras. P. Jipsen and G. Struth raised the
question whether the class R(;,dom) of representable domain algebras of the mini-
mal signature (;,dom) is finitely axiomatisable. To formulate the question precisely,
let us recall the definition of representable domain algebras R(;, dom).

Definition 1.1. The class R(;,dom) is defined as the isomorphs of A = (A, ;,dom)
where A C (U x U) for some base set U and

x;y={(u,v) €U xU: (u,w) €z and (w,v) € y for some w € U}
dom(z) = {(u,u) € U X U : (u,v) € x for some v € U}
for every z,y € A.

The signature (;,dom) can be expanded to larger signatures 7 by including other
operations. For instance, we can define

ran(z) = {(v,v) € U x U : (u,v) € x for some u € U}
7 ={(v,u) €U x U : (u,v) € x}
"={(u,v) €U XU :u=v}

and also include the bottom element 0 (interpreted as the empty set @) and the
ordering < (interpreted as the subset relation C) to yield representable algebraic
structures. The corresponding representation classes R(7) for larger signatures
are defined analogously to the definition of R(;, dom).

It turned out that the answer to the above problem is negative.

Theorem 1.2. [[HM11]] Let 7 be a similarity type such that (;,dom) C 7 C
(;,dom,ran,0,1"). The class R(T) of representable T-algebras is not finitely axioma-
tisable in first-order logic.

Note that the above theorem does not apply to signatures where the ordering <
is present. In fact, D.A. Bredikhin proved [Bre77] that the class R(;,dom, ran, —, <)
of representable algebraic structures is finitely axiomatisable. Bredikhin proves fi-
nite axiomatisability by reducing the problem of representing an ordered domain
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algebra (see the definition below for this axiomatically given class of algebraic struc-
tures) to that of an ordered involuted semigroup. Representable (ordered) involuted
semigroups were characterised independently by Bredikhin [Bre75] and B.M. Schein
[Sch74]. These characterisations use infinitely many quasi-equations (in fact, the
class of representable involuted semigroups is a non-finitely axiomatisable quasi-
variety [Bre77]) and the representations are rather involved (in the case of Schein’s
proof, an infinitary construction called “graph-theoretic scaffolding” is used).

In this paper we take a more direct approach in proving finite axiomatisation
of representable ordered domain algebras. The advantage of our proof is that it
uses a Cayley-type representation of abstract algebraic structures that also shows
finite representability, i.e. that finite elements of R(;,dom,ran,~,0,1", <) can be
represented on finite bases. In passing we note that if composition is not definable
in 7, then R(7) has the finite representation property, but it can be shown that
every signature containing (-,;,1’) or (-,;, ™) (where - is interpreted as intersection)
fails to have the finite representation property.

2. MAIN RESULT

Let Az denote the following formulas. These axioms are essentially the same as
in [Bre77], we just made slight adjustments to include the constants 1’ and 0 as
well.

Partial order: The ordering < is reflexive, transitive and antisymmetric,
with lower bound 0.

Monotonicity and normality: The operations ;,dom, ran, ~ are monotonic,
e.g. a < bimplies a;c < b;c etc. and normal 0~ =0;a =a;0 =dom(0) =
ran(0) = 0.

Involuted monoid: The operation ; is associative, the constant 1’ is a left
and right identity for ;, = is an involution (¢~ )~ = a and (a;b)~ =b";a,
and 1’ =1".

Domain/range axioms:

(1) dom(a) = (dom(a))~ < 1’ = dom(1’)

(2) dom(a) <a;a™

(3) dom(a™) = ran(a)

(4) dom(dom(a)) = dom(a) = ran(dom(a))

(5) dom(a);a=a

(6) dom(a ; b) = dom(a ; dom(b))

(7) dom(dom(a) ; dom(b)) = dom(a) ; dom(b) = dom(b) ; dom(a)

A model A = (4,;,dom,ran, —,0,1’, <) of these axioms is called an ordered domain
algebra, and the class of ordered domain algebras is denoted by ODA.

Each of the axioms (1)—(7) has a dual axiom, obtained by swapping domain and
range and reversing the order of compositions. We denote the dual axiom by a 0
superscript, thus for example, (6)a is ran(b; a) = ran(ran(b) ; a). The dual axioms
can be obtained from the axioms above, using the involution axioms and (3).
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The operations can be easily extended to subsets of elements as follows. Let
A € ODA and X, Y C A. We define

X" ={z7 e X}
X;VY={z;y:zeX, yeY}
dom(X) = {dom(z) : z € X}
ran(X) = {ran(z) : z € X}
Note that we do not claim that the algebra of subsets satisfy the axioms.
We will need the following notation
X'={a€cA:a>zforsomezec X}

that is, we will consider subsets which are closed upward. If X = {z} is a singleton
set, then we simply write 2T for {z}T and similarly z ;Y for {z};Y and 2T;Y for
{2}V, etc.

Next we define closed sets that we will use as a base of the representation of
abstract algebras.

Definition 2.1. We say that X C A is closed if 0 ¢ X and
X = {dom(x);y;ran(z): z,y,z € X}
and let T'[A] denote the set of closed subsets of A.
Our main result is the following.

Theorem 2.2. The class R(;,dom,ran, =,0,1’, <) is finitely axiomatisable:
A € R(;,dom,ran, ~,0,1', <) iff A € ODA

and has the finite representation property, i.e. every finite ODA is isomorphic to
some R(;,dom,ran, =, 0,1’ <) for some finite base U.
Proof. Let A € ODA. We define the map h from A to a structure with base T'[A]
by setting
(8) (X,)Y)eh(a) <= X;aCYandY;a7 CX
for every a € A.

We will show that h is injective (Lemma 4.1) and that the ordering and the
operations are correctly represented, see Lemma 4.2, 4.3 and 4.5, whence h is

indeed an isomorphism.
Clearly, when A is finite, the base I'[A] of this representation is also finite. O

The rest of the paper is devoted to make the above proof complete.

3. CLOSED SETS

We mention some easy consequences of the axioms. A consequence of axioms (4)
and (5) is
(9) dom(a) ; dom(a) = dom(a)
Let A[A] denote the set of domain elements of A € ODA — those elements d € A for
which dom(d) = d. Then it is easy to check that (A[A],;) forms a lower semilattice
(ordered by <).

Another consequence of the axioms is the following lemma, which we shall use
later.
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Lemma 3.1. Let A € ODA and b,c € A. Then

dom(b;c);b>b;dom(c) and b;ran(c;b) > ran(c);b

Proof.
dom(b;c);b=dom(b;dom(c));b by (6)
> dom(b; dom(c)) ; b; dom(c) by (1)
=b;dom(c) by (5)
The other part is similar using the dual axioms. O

We will need some properties of closed sets. Note that it is enough to show that
dom(X); X C X and X ;ran(X) C X for establishing that X is closed.

Lemma 3.2. Let A € ODA.

(1) For any a € A, a' is closed.

(2) If X is closed, then so are dom(X) and ran(X).

(3) If X is closed and a € A, then (X ;a');ran(X ;a") C (X ;a") and
(ran(X ;a"))" = (ran(X ; a))" is closed.

(4) If X is closed, a € A and dom(a) € ran(X), then (X ;a™)" is closed.

(5) If X,Y are closed, and dom(X) = dom(Y) and ran(X) = ran(Y’), then
X UY is closed.

Proof. (1): By monotonicity and (5).
(2): To prove that dom(X) is closed we must check that

dom(dom(X)) ; dom(X) C dom(X) and dom(X) ; ran(dom(X)) C dom(X)

First note that dom(dom(X)) = dom(X) by (4). Thus we need that dom(zx) ;
dom(z’) € dom(X) for every xz,2’ € X. By (7) and (6), dom(x) ; dom(z’) =
dom(dom(z) ; 2’). Since X is closed, dom(z) ; 2’ € X, whence dom(dom(x) ; z') €
dom(X) as desired. The other requirement follows similarly by observing that
ran(dom(z)) = dom(z), by (4).

Showing that ran(X) is closed is completely analogous.

(3): For every z,z’ € X,

(x;a);ran(z’;a) = (z;a);ran(ran(z’) ; a) by (6)°
> x;ran(z’) ;a;ran(ran(z’) 5 a) by (1)°
=z;ran(2');a by (5)°
€X;a as X € T'[A]

whence (X ;al);ran(X ;a’) C (X ;a")T follows by monotonicity.
For the second part, let 2; € X (for i = 1,2,3). We show that

dom(ran(zy ; a)) ;ran(xs ; a) ; ran(ran(xs 5 a)) € (ran(X ;a))T.
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Well,
dom(ran(zy ;a));ran(xz;a);ran(ran(zs ; a))
=ran(zy ;a);ran(zy;a);ran(zs;a) by (4)8
> ran(zy ; ran(zz) ;ran(xs) ;a) by (1)?, (6), X € T'[A]
ex
eran(X ;a)

as desired. Thus the claim follows by monotonicity.
(4): We have seen in the previous item that (X ;a);ran(X ;a) C (X ;a). Thus
it remains to show that dom(X ;a); (X ;a) C X ;a.

dom(X ;a) = dom(X ; dom(a)) by (6)
=dom(X ;ran(X);dom(a)) as X €T[A]
C dom(X ;ran(X)) as ran(X) € I'[A], dom(a) € ran(X)
= dom(X) as X € I'[4]

whence dom(X ;a); (X ;a) Cdom(X); X ;a= X ;a as X is closed.
(5): Immediate from the definition of closed and the fact that Z ; (X UY)
(Z; X)U(Z;Y).

Ol

4. REPRESENTING ORDERED DOMAIN ALGEBRAS
We recall that h was defined in (8) by
(X,)Y)eh(a) <= X;aCYandY;a  CX
for every X, Y € T'[A].
Lemma 4.1. The map h is injective.

Proof. Let a £ b € A. By (5) dom(a) ;@ = a and by (2) a;a~ > dom(a), so
((dom(a))T,a") € h(a) by monotonicity. Also, we cannot have a < dom(a) ; b, else
a = dom(a);a < dom(a);b < b by (1) and (5) contrary to our assumption that
a £ b. Thus ((dom(a))T,a’) & h(b), and we are done. O

~—

Lemma 4.2. The operation ~, the constants 0 and 1’ and the ordering < are

correctly represented.

Proof. For any closed set X, we have 0 € X ; 0, hence there is no closed set
containing X ; 0, so h(0) = 0. If (X,Y) € h(a) and a < b, then X ;b C X ;a C Y,
similarly Y ; 0~ C X, s0 (X,Y) € h(b). If (X,Y) € h(1'), then X = X;1' C Y
and Y =Y ;17 C X, s0 X =Y. Conversely for any closed set X, we have
(X,X) € h(l"), hence h(1') = {(X,X) : X € T[A]}. Finally, (X,Y) € h(a) iff
X;aCYandY;a” CXiff Via” C Xand X;(a7)” CYiff (V,X) € h(a™). O

Lemma 4.3. The operation ; is correctly represented.

Proof. If (X,Y) € h(a) and (Y, Z) € h(b), then X ;6 CY, YV;a7  C X, YV;bC Z
and Z ;067 CY. Hence X ;(a;b) C Zand Z;((a;b)7)=2Z;(b";a7) C X by
associativity and the involution axioms. So (X, Z) € h(a ;).
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Conversely, assume that (X, Z) € h(a;b), i.e. X;(a;b) C Zand Z;(b7;07) C X
for some Z € I'[A]. Let

a=(X:a;ran(Z;b7 ) and B=(Z ;b ;ran(X ;a))"
and Y = a U . We need the following claim.
Claim 4.4. The subsets o, B and o U 8 defined above are closed.

Proof. Consider o = (X ;a;ran(Z ;b)) first. If 2 € Z, then

dom(a;ran(z ;b)) = dom(a ; dom(b;ran(z)) by (3), (6), (4)8
=dom(a;b;ran(z)) by (6)
=ran(ran(z);b7;a™) by (3)
=ran(z;b7 ;a7) by (6)°
€ ran(X) as Z;b ;a7 C X

whence dom(a ;ran(Z ;b)) C ran(X).
Write D = ran(Z ;b~). Observe that DT is closed by Lemma 3.2(3). Let z; € X
and d; € D (for i = 1,2,3). We are required to prove that

dom(zy;a;dy); (za;a;dy);ran(zs;a;ds) € (X ;a; D).
For this,

dom(zy;a;dy); (x2;a;ds);ran(zs;asds)

= dom(x; ;dom(a;dy));x2;a;ds;ran(ran(zs;a);ds) by (6), (6)8

=dom(zy ;dom(a;dy));za;a;ran(zs;a);ds;ds by (7)6

= dom(z; ;dom(a;dy));xe ;a;ran(zs;a);ds;ds as X € T'[A4], ran(X) D dom(a; D)
=z,€X

> xy;ran(z3);a;ds;ds by Lemma 3.1

€X;a;D' as X € T'[A], DT € A[4]

C(X;a;D)! by monotonicity

Thus « is closed. Similarly § is closed.

For any closed sets V, W, we have dom(V) C dom(V ; W)" by (1) and (6), so
dom(X) C (dom(X ;a;ran(Z;b7)))T = dom(a) = dom((X ;a;b; Z~)") C dom((Z;
Z=)") C dom((Z ;ran(Z))") = dom(Z). Similarly dom(Z) C dom(3) C dom(X).
Hence dom(a) = dom(3). In the same way, ran(a) = ran(8). Then o U S is also
closed, by Lemma 3.2(5). O

By Claim 4.4, Y is closed. We claim that (X,Y") € h(a) (similarly (Y, Z) € h(b)).
To prove the claim we must show that X ;a C Y and Y ;a~ C X. For the first
inclusion, we have X ;a C o C Y. For the other inclusion, let y € Y. We have to
prove that y;a~ € X. Sincey € Y = (X;a;ran(Z;6~))TU(Z;b~ ;ran(X;a))T, there
are ¢ € X and z € Z such that either y > x;a;ran(z;07) or y > z ;b ;ran(x ; a).
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In the former case,
y;a” >xz;azran(z;07) s a

>xya;ran(z; b7 ) sran(z;07) ;a7

>xsazran(z;b7) s (asran(z;07))

>z ;ran(ran(z;07) ;a7) by (2),(3)°

>ax;ran(z;b 7 ;a7) by (6)°

eX as Z;b7 ;a7 C X, X e T[A]

while in the latter case

y;a~ >z;b7 ;ran(z;a);a”

> z;b7 ;dom(a™ ;ran(x));a™ by (3), (6)
>z:;b7 ;a7 jran(x) by Lemma 3.1, (6)
€ X ;ran(X) as X € T'[A]
=X
as desired. 0

Lemma 4.5. The operations dom and ran are correctly represented.

Proof. Suppose (X,Y) € h(dom(a)). We must prove that X =Y and there is a
closed set Z with (X, Z) € h(a). Since (X,Y) € h(dom(a)), we have X ;dom(a) CY
and Y ; dom(a)~ C X. Now dom(a) < 1’ by (1), so we have that for every z € X,
there is y € Y such that x > z ;dom(a) > y. Since Y is (upward) closed, we
get X C Y. Similarly, we get YV C X byY CY;dom(a)” =Y ;dom(a) C X,
thus X = Y. Note also that dom(a) € ran(X), since for every y € Y, dom(a) =
dom(a)~ > ran(y;dom(a)~) € ran(X), by (1) and (6)°. Now define Z = (X ;a™)".
By Lemma 3.2(4), Z is closed. Then (X, Z) € h(a), since X ; a C Z by definition,
and X ;a;(a”) C X ;dom(a) C X by (2), (5), since dom(a) € ran(X).

Conversely, suppose (X,Z) € h(a) for some Z € I'[A]. Then X ;a0 C Z a d
Z ;a4 C X. Since Z ;a~ C X, we have dom(a) = ran(a™) € (ran( ;a ))
(ran(X))T, by (3) and (6)°. Hence X ;dom(a) C X, i.e. (X,X) € h(dom(a)).
dom is correctly represented.

Showing that ran is properly represented is similar. [
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