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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Risk evaluation formulas convert program spectrum data from test executions into suspicious-
ness score, according to which statements are ranked to aid debugging activities. Designing
such formulas remained largely a manual task until Genetic Programming has been recently
applied: resulting formulas showed promising performance in empirical evaluation. We in-
vestigate the GP-evolved formulas theoretically and prove that GP has produced four maximal
formulas that had not been known before. More interestingly, some of the newly found max-
imal formulas show characteristics that may seem inconsistent with human intuition. This is
the first SBSE result with provable human competitiveness.
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1 Introduction

As a promising automatic fault localisation technique, Spectrum-Based Fault localisation (SBFL) has been
proposed and widely studied for years. SBFL uses risk evaluation formulas to convert program spectrum
data collected during the test execution into relative suspiciousness score for each program statement.
Statements are then ranked according to this score: the faulty statement should ideally be ranked at the top.
Designing an effective risk evaluation formula has been one of the most widely studied aspects of SBFL:
known formulas in the literature include Tarantula [Jones et al., 2002], Ochiai [Abreu et al., 2006], Naish1
and Naish2 [Naish et al., 2011], etc.

However, designing risk evaluation formulas has remained a manual task that involves a great deal of
human intelligence and efforts. Recently, Genetic Programming (GP) has been successfully applied to
automatic design of risk evaluation formulas [Yoo, 2012]. Empirical results showed that among the 30
GP-evolved formulas, six are very effective and can outperform some formulas designed by human.

While most of the studies on SBFL focused on empirical evaluation of formulas, Xie et al. developed
a framework to support the theoretical analysis of risk evaluation formulas [Xie et al., 2012]. Xie et al.
analysed 30 manually designed risk evaluation formulas and identified a hierarchy between formulas. The
results of the theoretical analysis showed that there exist two maximal groups of formulas, namely ER1
and ER5, for single-fault scenarios.

In this paper, we apply the same theoretical framework to the 30 GP-evolved formulas reported by
Yoo [Yoo, 2012]. The results show that, among these 30 GP-evolved formulas, four formulas, namely
GP02, GP03, GP13, GP19, have been identified to be maximal: GP13 is proven to be equivalent to ER1,
while the remaining three formulas form three distinct and newly discovered maximal groups on their own
respectively. Interestingly, some GP-evolved maximal formulas display characteristics that can be consid-
ered as inconsistent with human intuition. This finding is the first report of SBSE results that are provably
human competitive.

2 Backgrounds

2.1 Spectrum-Based Fault Localisation (SBFL)

SBFL uses testing results and program spectrum to do fault localisation. The testing result is whether a test
case is failed or passed. While the program spectrum records the run-time profiles about various program
entities for a specific test suite. The program entities could be statements, branches, paths, etc.; and the
run-time information could be the binary coverage status, the execution frequency, etc. The most widely
used program spectrum involves statement and its binary coverage status in a test execution [Jones et al.,
2002; Abreu et al., 2006].

Consider a program PG=<s1, s2, ..., sn> with n statements and a test suite of m test cases TS =
{t1, t2, ..., tm}. Figure 1 shows the information required by SBFL. RE records all the testing results, in
which p and f indicate passed and failed, respectively. Matrix MS represents the program spectrum, where
the (ith, jth) element represents the coverage information of statement si, by test case tj , with 1 indicating
si is executed, and 0 otherwise. In fact, the jth column represents the execution slice of tj .

For each statement si, its relevant testing result can be represented as a vector Ai=<eif , e
i
p, n

i
f , n

i
p>, where

eif and eip represent the number of test cases in TS that execute it and return the testing result of failure or
pass, respectively; ni

f and ni
p denote the number of test cases that do not execute it, and return the testing

result of failure or pass, respectively. A risk evaluation formula R is then applied on each statement si to
calculate a real value indicating its risk of being faulty. A commonly adopted intuition in designing risk
evaluation formulas is that statements associated with more failed or less passed testing results should have
higher risks. Formulas that comply with this intuition include Tarantula [Jones et al., 2002], Jaccard [Chen
et al., 2002], Ochiai [Abreu et al., 2006], Naish1 and Naish2 [Naish et al., 2011] etc.
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Figure 1: Information for conventional SBFL

2.2 Theoretical framework

With the development of more and more risk evaluation formulas, people began to investigate their per-
formance. Xie et al. [2012] have recently developed a theoretical framework to analysis the performance
between different formulas. Since we will apply this theoretical framework in this paper, thus we briefly
describe it before presenting the analysis on GP-evolved formulas.

Definition 2.1. Given a program with n statements PG=<s1, s2, ..., sn>, a test suite of m test cases
TS={t1, t2, ..., tm}, and a risk evaluation formula R, which assigns a risk value to each program statement.
For each statement si, a vector Ai=<eif , e

i
p, n

i
f , n

i
p> can be constructed from TS, and R(si) is a function

of Ai. For any faulty statement sf , following three subsets are defined.

SR
B = {si∈S|R(si)>R(sf ), 1≤i≤n}

SR
F = {si∈S|R(si)=R(sf ), 1≤i≤n}

SR
A = {si∈S|R(si)<R(sf ), 1≤i≤n}

That is, SR
B , SR

F and SR
A consist of statements of which the risk values are higher than, equal to and lower

than the risk value of sf , respectively.

In practice, a tie-breaking scheme may be required to determine the order of the statements with same risk
values. The theoretical analysis only investigates consistent tie-breaking schemes, which are defined as
follows.

Definition 2.2. Given any two sets of statements S1 and S2, which contain elements having the same risk
values. A tie-breaking scheme returns the ordered statement lists O1 and O2 for S1 and S2, respectively.
The tie-breaking scheme is said to be consistent, if all elements common to S1 and S2 have the same
relative order in O1 and O2.

The effectiveness measurement is referred to as Expense metric, which is the percentage of code that needs
to be examined before the faulty statement is identified [Yoo, 2012]. Obviously, a lower Expense of formula
R indicates a better performance.

Let E1 and E2 denote the Expenses with respect to the same faulty statement for risk evaluation formulas
R1 and R2, respectively. We define two types of relations between R1 and R2 as follows.

Definition 2.3 (Better). R1 is said to be better than R2 (denoted as R1 → R2) if for any program, faulty
statement sf , test suite and consistent tie-breaking scheme, we have E1≤E2.

Definition 2.4 (Equivalent). R1 and R2 are said to be equivalent (denoted as R1 ↔ R2), if for any program,
faulty statement sf , test suite and consistent tie-breaking scheme, we have E1=E2.

It is obvious from the definition that R1 → R2 means R1 is more effective than R2. As a reminder, if
R1 → R2 holds but R2 → R1 does not hold, R1 → R2 is said to be a strictly “better” relation. In the
theoretical framework, there are several assumptions, which are listed as follows.
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1. A testing oracle exists, that is, for any test case, the testing result of either fail or pass, can be decided.

2. We have the assumption of perfect bug detection that the fault can always be identified once the faulty
statement is examined.

3. We exclude the omission faults, because SBFL is designed to assign risk values to the existent state-
ments.

4. The test suite is assumed to have 100% statement coverage, that is, for any si, we have eif + eip>0. Also
assumed is that the test suite contains at least one passed test case and one failed test case, that is, for
any si, we have eip + ni

p>0 and eif + ni
f>0.

For readers who are interested in the justifications, validity and impacts of the above assumptions, please
refer to [Xie et al., 2012].

Given a test suite TS, let T denote its size, F denote the number of failed test cases and P denote the num-
ber of passed test cases. Immediately after the definitions and the above assumptions, we have 1≤F<T ,
1≤P<T , and P+F=T , as well as the following lemmas.

Lemma 2.5. For any Ai=<eif , e
i
p, n

i
f , n

i
p>, we have eif+eip>0, eif+ni

f=F , eip+ni
p=P , eif≤F and eip≤P .

Lemma 2.6. For any faulty statement sf with Af=<eff , e
f
p , n

f
f , n

f
p>, if sf is the only faulty statement in

the program, we have eff=F and nf
f=0.

A necessary condition for the equivalence between two risk evaluation formulas is as follows.

Theorem 2.7. Let R1 and R2 be two risk evaluation formulas. If we have SR1
B =SR2

B , SR1
F =SR2

F and
SR1
A =SR2

A for any program, faulty statement sf and test suite, then R1 ↔ R2.

Xie et al. [2012] have applied the above theoretical framework on 30 manually designed formulas, iden-
tifying two groups of most effective formulas for single-fault scenario, namely the maximal groups of
formulas. And our definition of “maximal formula” is as follows.

Definition 2.8. A risk evaluation formula R1 is said to be a maximal formula of a set of formulas, if for
any element R2 of this set of formulas, R2 → R1 implies R2 ↔ R1.

3 Theoretical analysis of GP-evolved risk evaluation formulas

3.1 Risk evaluation formulas generated by GP

Yoo [2012] has generated 30 GP-evolved formulas. As mentioned in Section 1, there are 10 out of the 30
formulas which need unreasonable additional assumptions and hence are excluded in this study. Therefore,
our investigation will focus on the remaining 20 formulas (namely, GP01, GP02, GP03, GP06, GP08,
GP11, GP12, GP13, GP14, GP15, GP16, GP18, GP19, GP20, GP21, GP22, GP24, GP26, GP28 and
GP30). As a reminder, the following analysis is under single-fault scenario.

In [Xie et al., 2012], we have proved the maximality of formula groups ER1 (consists of Naish1 and
Naish2) and ER5 (consists of Wong1, Russel & Rao and Binary) under single-fault scenario. By using the
theoretical framework above, we are able to prove that among the 20 GP-evolved formulas, GP02, GP03,
GP13 and GP19 are maximal formulas under single-fault scenario. More specifically, GP02, GP03 and
GP19 are distinct maximal formulas to ER1 and ER5; while GP13 is equivalent to ER1. In the following
discussion, the group which consists of Naish1, Naish2 and GP13 will be referred to as New ER1. We
have also proved that New ER1 is strictly better than all the other remaining 16 GP-evolved formulas
under investigation. However, since the focus of this paper is to identify the maximal (that is, maximally
effective) GP-evolved formulas, we will only provide the detailed proofs for the maximality of GP02,
GP03, GP13 and GP19. Definitions of the involved formulas are listed in Table 1.
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Table 1: Investigated formulas

Name Formula expression

New ER1

Naish1

{
−1 if ef<F

P − ep if ef=F

Naish2 ef − ep
ep+np+1

GP13 ef (1 +
1

2ep+ef
)

ER5

Wong1 ef

Russel & Rao ef
ef+nf+ep+np

Binary

{
0 if ef<F

1 if ef=F

GP02 2(ef +
√
np) +

√
ep

GP03
√
|e2f −

√
ep|

GP19 ef
√
|ep − ef + nf − np|

3.2 Maximal GP-evolved risk evaluation formulas

Before presenting our proof, we need the following lemmas for ER1 (consists of Naish1 and Naish2) and
GP13.

Lemma 3.1. For Naish1 and Naish2 which are shown to be equivalent [Xie et al., 2012], we have
SN1
B =SN2

B =XOp, SN1
F =SN2

F =Y Op and SN1
A =SN2

A =ZOp, where

XOp={si|eif=F and efp>eip, 1≤i≤n} (1)

Y Op={si|eif=F and efp=eip, 1≤i≤n} (2)

ZOp=S\XOp\Y Op (3)

Lemma 3.2. For GP13, we have SGP13
B =XOp, SGP13

F =Y Op and SGP13
A =ZOp, respectively.

Proof. Since eff=F , it follows immediately from the definition of GP13 that

SGP13
B ={si|eif (1+

1

2eip + eif
)>F (1+

1

2efp+F
), 1≤i≤n} (4)

SGP13
F ={si|eif (1+

1

2eip + eif
)=F (1+

1

2efp+F
), 1≤i≤n} (5)

1. To prove that SGP13
B = XOp.

(1) To prove XOp⊆SGP13
B .

For any si∈XOp, we have F (1+ 1
2eip+F

)>F (1+ 1

2efp+F
) because efp>eip and F>0. Since eif=F , we

have eif (1+
1

2eip+eif
)>F (1+ 1

2efp+F
), which implies si∈SGP13

B . Thus, we have proved XOp⊆SGP13
B .

(2) To prove SGP13
B ⊆XOp.

For any si∈SGP13
B , we have eif (1+

1
2eip+eif

)>F (1+ 1

2efp+F
). Let us consider the following two ex-

haustive cases.
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• Case (i) eif<F . First, consider the sub-case that eif=0. Then we have eif (1+
1

2eip+eif
)=0.

It follows from the definition of SGP13
B that 0>F (1+ 1

2efp+F
), which is however contradic-

tory to F>0 and efp≥0. Thus, it is impossible to have eif=0. Now, consider the sub-case
that 0<eif<F . After re-arranging the terms, the expression eif (1+

1
2eip+eif

)−F (1+ 1

2efp+F
)

becomes (
eif

2eip+eif
− F

2efp+F
)− (F−eif ). Since 0<eif<F , this expression can be further re-

written as ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif ). Since eip
eif
≥0 and efp

F ≥0, we have 0< 1

1+2
eip

ei
f

≤1 and

0< 1

1+2
e
f
p
F

≤1. As a consequence, we have ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<1. Since both F and eif are

positive and non-negative integers, respectively, eif<F implies (F−eif )≥1. Thus, we have
( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif )<0, which however is contradictory to eif (1+
1

2eip+eif
)>F (1+ 1

2efp+F
).

Therefore, it is impossible to have 0<eif<F . Therefore, we have proved that if si∈SGP13
B , we

cannot have eif<F .

• Case (ii) eif=F . Assume further eip≥e
f
p . Obviously, we have F (1+ 1

2eip+F
)≤F (1+ 1

2efp+F
),

which can be re-written as eif (1+
1

2eip+eif
)≤F (1+ 1

2efp+F
). However, this is contradictory to

F (1+ 1
2eip+F

) >F (1+ 1

2efp+F
). Thus, the only possible case is efp>eip.

Therefore, we have proved that if si∈SGP13
B , then eif=F and efp>eip, which imply si∈XOp. There-

fore, SGP13
B ⊆XOp.

In conclusion, we have proved XOp⊆SGP13
B and SGP13

B ⊆XOp. Therefore, SGP13
B = XOp.

2. To prove that SGP13
F = Y Op.

(1) To prove Y Op⊆SGP13
F .

For any si∈Y Op, we have eif (1+
1

2eip+eif
)=F (1+ 1

2efp+F
) because eif=F and efp=eip. After the defi-

nition of SGP13
F , si∈SGP13

F . Thus, we have proved Y Op⊆SGP13
F .

(2) To prove SGP13
F ⊆Y Op.

For any si∈SGP13
F , we have eif (1+

1
2eip+eif

)=F (1+ 1

2efp+F
). Let us consider the following two ex-

haustive cases.

• Case (i) eif<F . First, consider the sub-case that eif=0. Then we have eif (1+
1

2eip+eif
)=0.

It follows from the definition of SGP13
F that 0=F (1+ 1

2efp+F
), which is however contra-

dictory to F>0 and efp≥0. Thus, it is impossible to have eif=0. Now, consider the
sub-case that 0<eif<F . Similar to the above proof of SGP13

B ⊆XOp, we can prove that
( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<(F−eif ), which is however contradictory to eif (1+
1

2eip+eif
)=F (1+ 1

2efp+F
).

Therefore, it is impossible to have 0<eif<F . Therefore, we have proved that if si∈SGP13
F ,

then we cannot have eif<F .

• Case (ii) eif=F . Assume further eip 6=efp . Obviously, we have F (1+ 1
2eip+F

) 6=F (1+ 1

2efp+F
),

which can be re-written as eif (1+
1

2eip+eif
) 6=F (1+ 1

2efp+F
). However, this is contradictory to

eif (1+
1

2eip+eif
) =F (1+ 1

2efp+F
). Thus, the only possible case is efp=eip.

We have proved that if si∈SGP13
F , then eif=F and efp=eip, which imply si∈Y Op. Therefore,

SGP13
F ⊆Y Op.
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In conclusion, we have proved Y Op⊆SGP13
F and SGP13

F ⊆Y Op. Therefore, we have SGP13
F = Y Op.

3. To prove that SGP13
A = ZOp.

After Definition 2.1, we have SGP13
A =S\SGP13

B \SGP13
F and ZOp=S\XOp\Y Op, where S denotes the

set of all investigated statements. Since we have proved SGP13
B = XOp and SGP13

F = Y Op, it is obvious
that SGP13

A = ZOp.

Now, we are ready to prove that GP13, Naish1 and Naish2 belong to the same group of equivalent formulas
(referred to as New ER1).

Proposition 3.3. GP13↔ Naish1 and GP13↔ Naish2.

Proof. Refer to Lemma 3.1 and Lemma 3.2, we have SN1
B =SN2

B =SGP13
B , SN1

F =SN2
F =SGP13

F and
SN1
A =SN2

A =SGP13
A , respectively. After Theorem 2.7, GP13↔ Naish1 and GP13↔ Naish2.

Apart from GP13, we have three new maximal GP-evolved formulas for single-fault scenario, namely,
GP02, GP03 and GP19. Unlike GP13, these three formulas do not belong to New ER1 or ER5.

Proposition 3.4. GP02, GP03, GP19, New ER1 and ER5 are distinct maximal formulas (or groups of
equivalent formulas).

Proof. To prove this, we will demonstrate that neither R1 → R2 nor R2 → R1 is held, where R1 and R2

are any two of these five formulas (or groups of equivalent formulas). Consider the following two program
PG1 and PG2 as shown in Figure 2 and Figure 3, respectively. Suppose two test suites TS11 and TS12
are applied on PG1 and two test suites TS21 and TS22 are applied on PG2. Vector Ai with respect to
these test suites and programs are listed in Table 2.

Figure 2: Program PG1 Figure 3: Program PG2

Table 3 lists the statement divisions for these five formulas with respect to TS11 and TS12 applied on
PG1. and Table 4 lists the statement divisions for these five formulas with respect to TS21 and TS22
applied on PG2.

Suppose we adopt the “ORIGINAL ORDER” as the tie-breaking scheme. Then the corresponding rankings
of the faulty statement for these five formulas are as Table 5. From this table, we have demonstrated that

• With TS12 New ER1→ GP02 does not hold; with TS21 GP02→ New ER1 does not hold.
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Table 2: Ai for PG1 and PG2 with different test suites

Statement
Ai=<eif , e

i
p, n

i
f , n

i
p>

TS11 TS12 TS21 TS22

s1 <1, 6, 0, 0> <1, 8, 0, 0> <2, 15, 0, 0> <10, 15, 0, 0>

s2 <0, 1, 1, 5> <0, 6, 1, 2> <0, 1, 2, 14> <0, 1, 10, 14>

s3 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s4 <1, 4, 0, 2> <1, 1, 0, 7> <1, 7, 1, 8> <9, 0, 1, 15>

s5 <0, 1, 1, 5> <0, 1, 1, 7> <1, 7, 1, 8> <1, 14, 9, 1>

s6 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s7 <1, 4, 0, 2> <1, 1, 0, 7> <1, 8, 1, 7> <5, 6, 5, 9>

s8 <0, 1, 1, 5> <0, 1, 1, 7> <1, 6, 1, 9> <5, 8, 5, 7>

s9 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s10 <1, 4, 0, 2> <1, 1, 0, 7> <1, 9, 1, 6> <1, 12, 9, 3>

s11 <0, 1, 1, 5> <0, 1, 1, 7> <1, 5, 1, 10> <9, 2, 1, 13>

• With TS12 ER5→ GP02 does not hold; with TS21 GP02→ ER5 does not hold

• With TS11 New ER1→ GP03 does not hold; with TS12 GP03→ New ER1 does not hold.

• With TS11 ER5→ GP03 does not hold; with TS12 GP03→ ER5 does not hold.

• With TS11 New ER1→ GP19 does not hold; with TS12 GP19→ New ER1 does not hold.

• With TS11 ER5→ GP19 does not hold; with TS12 GP19→ ER5 does not hold.

• With TS11 GP02→ GP03 does not hold; with TS12 GP03→ GP02 does not hold.

• With TS11 GP02→ GP19 does not hold; with TS12 GP19→ GP02 does not hold.

• With TS21 GP03→ GP19 does not hold; with TS22 GP19→ GP03 does not hold.

In summary, we have proved that for any two of these five formulas (or groups of equivalent formulas) R1

and R2, neither R1 → R2 nor R2 → R1 is held. Therefore, GP02, GP03, GP19, New ER1 and ER5 are
five distinct maximal formulas (or groups of equivalent formulas).

4 Discussion

Yoo [2012] used a small number of programs and faults to evolve new risk evaluation formulas, more pre-
cisely, four subject programs and 20 mutants for evolution. As suggested by Yoo [2012], “the results should
be treated with caution” since “there is no guarantee that the studied programs and faults are representative
of all possible programs and faults”.

In this paper, we use the theoretical framework recently proposed by Xie et al. [2012] to analyze Yoo’s
GP-evolved risk evaluation formulas for single-fault scenario. Among Yoo’s formulas, four have been
proved to be maximal, namely, GP02, GP03, GP13 and GP19, where GP13 forms a new maximal group of
equivalent formulas with Naish1 and Naish2. This new maximal group is referred to as New ER1); while
GP02, GP03 and GP19 are distinct to New ER1 and ER5. Moreover, New ER1 is strictly better than the
remaining 16 GP-evolved formulas under investigation.

Results in this paper are exempt from the inherent disadvantages of experimental studies, and hence are
definite conclusions for any program and fault under the assumptions that are commonly adopted by the
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Table 3: Statement division for PG1 with TS11 and TS12

Statement TS11 TS12

New ER1
SR
B = {s4, s7, s10} SR

B = {s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s5, s8, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s4, s6, s7, s9, s10} SR

F = {s1, s3, s4, s6, s7, s9, s10}
SR
A = {s2, s5, s8, s11} SR

A = {s2, s5, s8, s11}

GP02
SR
B = {s4, s7, s10} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP03
SR
B = {s1} SR

B = {s1, s2, s5, s8, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s4, s7, s10}

GP19
SR
B = {s1} SR

B = {s1, s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s8, s11}

SBFL community. It is a surprise that without exhausting all possible programs and faults, GP can still
deliver maximal formulas. Moreover, such a process is totally automatic and does not involve any human
intelligence. Thus, the cost of designing effective risk evaluation formulas can be significantly reduced.

Apart from generating new maximal formulas, GP actually discloses new intuitions or insights of maximal
formulas. First, as a new member of an existing maximal group of equivalent formulas, GP13 has enriched
the knowledge of this group and provided new insights to maximal formulas. By analyzing the definition
of GP13, we find that it complies with the commonly adopted intuition that statements associated with
more failed or less passed testing results should have higher risks. However, the other three GP-evolved
formulas, though maximal, do not comply with this intuition, as explained below.

For GP02, given two statements s1 and s2,

• if a1ep=a2ep, then a1ef>a2ef implies GP02(s1)>GP02(s2), which is consistent with the commonly
adopted intuition;

• if a1ef=a2ef , then a1ep<a2ep does not necessarily imply GP02(s1)>GP02(s2). For example, a1ef=a2ef=1,
P=8, a1ep=1 and a2ep=2, then we have GP02(s1)=2(1+

√
8−1)+1, which is less than GP02(s2)=2(1+

√
8−2)+

√
2.

Obviously, this does not comply with the commonly adopted intuition.

For GP03, given two statements s1 and s2,

• if a1ep=a2ep, then a1ef>a2ef does not necessarily imply GP03(s1)>GP03(s2). For example, a1ep=a2ep=25,
a1ef=2 and a2ef=1, then we have GP03(s1)=1, which is less than GP03(s2)=2. Obviously, this does
not comply with the commonly adopted intuition.

• if a1ef=a2ef , then a1ep<a2ep does not necessarily imply GP03(s1)>GP03(s2). For example, a1ef=a2ef=1,
a1ep=16 and a2ep=25, then we have GP03(s1)=

√
3, which is less than GP03(s2)=2. Obviously, this

does not comply with the commonly adopted intuition.

For GP19, given two statements s1 and s2,
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Table 4: Statement division for PG2 with TS21 and TS22

Statement TS21 TS22

New ER1
SR
B = ∅ SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s4, s5, s7, s8, s10, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s6, s9} SR

F = {s1, s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s4, s5, s7, s8, s10, s11}

GP02
SR
B = {s4, s5, s7, s8, s10, s11} SR

B = {s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2} SR

A = {s1, s2, s5, s7, s8, s10}

GP03
SR
B = {s2, s4, s5, s7, s8, s10, s11} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP19
SR
B = {s1} SR

B = {s1, s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s7, s8, s10}

Table 5: Rankings of faulty statement for five formulas

Statement
PG1 (sf=s9) PG2 (sf=s3)

TS11 TS12 TS21 TS22

New ER1 6 6 1 1

ER5 6 6 2 2

GP02 6 3 7 3

GP03 4 8 8 1

GP19 4 7 2 4

• if a1ep=a2ep, then a1ef>a2ef does not necessarily imply GP19(s1)>GP19(s2). For example, P=20,
a1ep=a2ep=10; F=4, a1ef=2 and a2ef=1, then we have GP19(s1)=0, which is less than GP19(s2)=

√
2.

Obviously, this does not comply with the commonly adopted intuition.

• if a1ef=a2ef , then a1ep<a2ep does not necessarily imply GP19(s1)>GP19(s2). For example, F=2,
a1ef=a2ef=1; P=10, a1ep=8 and a2ep=9, then we have GP19(s1)=

√
6, which is less than GP19(s2)=

√
8.

Obviously, this does not comply with the commonly adopted intuition.

Generally speaking, formulas defined by human beings are usually confined to the perceived intuition
and background of the proposers. Thus, some maximal formulas may be overlooked by human beings.
However, GP does not suffer from this problem. As explained in the above examples for GP02, GP03
and GP19, GP is able to define maximal formulas based on intuitions that would never be endeavoured by
human beings.

In summary, GP has the advantage of being unbiased and hence has no predefined intuition nor unaccept-
able intuition to design the formulas. This study provides an evidence to show the advantage of using GP
rather than human beings to design formulas. In addition to the delivery of new maximal formulas which
would not be generated by human beings, these maximal formulas provide new perspectives and insights
to enrich our knowledge of effective formulas.
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5 Conclusion

Search-based techniques have been widely used in software engineering, such as testing, maintenance,
etc. [Harman and Jones, 2001; Harman, 2010]. Recently, Yoo [2012] has successfully utilized a search-
based technique, namely, Genetic Programming, to generate effective risk evaluation formulas for SBFL.
In this paper, by using the recently developed theoretical framework [Xie et al., 2012] on Yoo’s GP-evolved
formulas under single-fault scenario, we have demonstrated that four formulas are maximal, namely, GP02,
GP03, GP13 and GP19. Obviously, our results provide a strong support that “Genetic Programming can
be an ideal tool for designing risk evaluation formulas”. Moreover, these four maximal formulas may help
to mine new insights and intuitions of effective formulas, which somehow have been ignored by human
beings.
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