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Abstract

We document a parallel non-recursive beam search GPGPU FCA algorithm written in nVidia
CUDA C. We run it on benchmarks and to analyse software module dependency. Despite
kernel sort removing repeated calculations, 32 bit packing and optimising GPU data
structures and kernels, we do not yet see major speed ups. Instead GeForce 295 GTX and
Tesla C2050 report 141 072 concepts (maximal rectangles, clusters) in about one second. Fu-
ture improvements in graphics hardware may make GPU implementations of Galois lattices
competitive.
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Figure 1: Comparison of increase in speed of graphics cards (+ GPU) and CPU (× X86). (Data supplied
by nVidia.)

1 Introduction

We expand on [Langdon et al., 2011] giving many additional implmentation details.

Formal Concept Analysis [Ganter and Wille, 1999] is a well known technique for grouping objects by the
attributes they have in common. It can be thought of as a discrete data clustering technique. In general the
number of conceptual clusters grows exponentially. However there are a number of specialised algorithms
which render FCA manageable, even on quite large problems provided the object-attribute table is sparse
[Krajca et al., 2010]. [Krajca et al., 2010] report considerable improvement in FCA algorithms in the last
two decades. These successful algorithms treat the problem of finding all the conceptual clusters in an
object-attribute table as a depth first tree search.

Computer graphics gaming cards (GPUs) are relatively cheap. Usually they cost less than the computer
in which they are mounted and yet offer far more computing power than the computer’s CPU alone (see
Figure 1). Indeed, the saturation of single CPU clock speeds at about 3 GHz, means that significant
increases in computing power will only come in future from parallel computing. There are hundreds of
millions of computers fitted with graphics hardware which might be used for general purpose computing
[Del Rizzo, 2008]. Even a humble laptop’s GPU might be used to run Formal Concept Analysis.

For several years engineers and computer scientists have recognised the benefits of general purpose com-
puting on GPUs and have used GPGPU in an increasing range of applications [Owens et al., 2008]. Indeed
the very top end GPUs are now dedicated supercomputers in their own right (rather than simply driving
the computer’s display) and tend to be priced accordingly. A consumer gaming card such as the 295 GTX
contains 480 fully functioning processors and yet costs only a few hundred pounds. Whereas a state of
the art Tesla C2050 costs a few thousand pounds. To get the best performance from a GPU it is neces-
sary to divide the work load up into many thousands of independent computing threads [Langdon, 2011a].
nVidia’s CUDA is probably the best of the tools available to help GPGPU programming, however OpenCL
may become more popular.

[Krajca and Vychodil, 2009b] and [Krajca et al., 2010] report using a distributed computer to over-
come the “major drawback [of FCA’s] computational complexity”. They report their parallel algo-
rithm PCbO gives near linear speed increase with number of computing nodes in a network of up
to 15 PCs. In other work [Krajca and Vychodil, 2009a] they conclude that there is no univer-
sal best FCA data structure. Instead they suggest that the optimum performance will depend upon
the application. In earlier work, Huaiguo Fu had created a parallel implementation of NextClosure
but it was limited to 50 attributes [Fu and Nguifo, 2004] but this was subsequently greatly extended
[Fu and O’Foghlu, 2008]. However, like [Krajca and Vychodil, 2009b] and [Krajca et al., 2010],
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both [Fu and Nguifo, 2004] and [Fu and O’Foghlu, 2008] approaches use conventional distributed
computers composed of a few CPUs rather than hundreds of GPU processing elements. Similarly
[Djoufak Kengue et al., 2007]’s ParCIM implementation used a conventional network of 8 computers
connected in a star fashion with MPI. Ours is the first FCA implementation to run in parallel on computer
graphics cards (GPUs).

Borza, Sabou and Sacarea [Borza et al., 2010] describe an interactive tool for FCA data mining. They
use Andrews’ In-Close algorithm which [Andrews, 2009] reports as some 20 times faster than “Krajca”
[Krajca et al., 2008; Vychodil, 2008]. Their conexplore tool is designed for exploring a few levels of the
search tree. Like “Krajca”, In-Close is a sequential recursive tree searching algorithm. In-Close’s speed up
appears to come from the exploitation of clever ways to prune the recursion.

2 CUDA FCA Implementation

We initially implemented the Krajca sequential algorithm [Krajca et al., 2008] in Python. This was fol-
lowed by a version in C, where ComputeClosure is implemented in parallel on the GPU using nVidia’s
CUDA framework. In several places we explicitly refer to the procedures and data structures defined in
[Krajca et al., 2008] and so it may help to read the following conjunction with [Krajca et al., 2008].

Krajca’s two recursive routines ComputeClosure and GenerateFrom essentially form a depth first
search algorithm which builds and navigates a tree of formal concepts from a binary 0/1 matrix describing
which object has which property. The search starts from the top of the tree with the empty concept: no
object having no attributes.1 Krajca et al.’s parallel algorithm [Krajca et al., 2008] essentially partitions the
tree into large recursive sub-searches, suitable for parallel operation on conventional networks of personal
computers. The trick is to choose partitions so each computer has about the same work to do. Since the
search is recursive and operates on one point in the search tree at one time, such search is fundamentally
unsuitable for parallel operation on graphics cards. Indeed recursion has only recently been supported by
nVidia’s CUDA GPU frame work. Our graphics card parallel version retains the tree but changes the way
and order in which it is searched. Consequently the concepts are printed in a different order. The search is
a variant of beam search.

Instead of proceeding to the first leaf of the tree, recursively backing up and then going forward to the
next leaf and so on, in beam search, we also start from the top of the tree and then proceed along every
branch to the next level. This requires saving information on the beam for every node at that level. Beam
search next expands the search again to cover everything at the next level and so on until all the leafs of
the tree have been reached. Notice instead of working on a single point in the tree the beam covers many
points which can be worked on in parallel. Indeed within a couple of levels we can get a beam containing
tens of thousands of individual search points which can be processed independently. This suits the GPU
architecture which needs literally thousands of independent processing threads for it to deliver its best
performance [Langdon, 2011a]. You will have spotted that in an exponential problem, like FCA, beam
search quickly runs out of memory.

Even for quite modest tree depths the beam width is limited by the available space in the GPU card. (We
have a configuration limit of 1.8 million simultaneous parallel operations.) When a beam search exceeds
this limit, only the first 1.8 million or so search are loaded onto the GPU and the rest of the beam is queued
on the host PC. Typically PC memory is cheaper than graphics memory and it is usual for the host PC
to have more memory than its GPU. (Although we have not done this, in multi-GPU systems it would be
possible to split the beam between the GPUs, allocating up to 1.8 million to each GPU.) The GPU only
searches to the next level. It returns the concepts found by the searches and the newly discovered branches
which remain to be searched. The concepts are printed by the host PC and the new branches are added
to the end of the beam to await their turn. Effectively the beam becomes a queue of points in the tree
waiting to be searched. The number of parallel searches is mostly limited by the need to have space on the

1All rows of the object-attribute matrix are required to have at least one non-zero entry.
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GPU for all the potential new branches. This depends upon the tree’s fan out which is problem dependent.
Nonetheless the GPU can manage modest real software engineering examples (e.g. dependence clustering
of the Linux kernel). Notice the beam will contain a mixture of pending search points at different depths in
the tree.

3 CUDA FCA Kernels

In nVidia’s CUDA a kernel is a special function (typically a few tens of lines of C code) which runs on
nVidia’s graphics cards. Whereas the “Linux kernel” is tens of millions of lines of code which form the
main part of the Linux operating system. CUDA gets is power from being being able to run each kernel on
tens or even hundreds of thousands of data items in parallel.

In our first implementation of [Krajca et al., 2008]’s ComputeClosure was implemented in parallel by
a single CUDA kernel. However to better suite the GPU architecture it has been split into five kernels (see
Figure 2). These are invoked by the host PC in order. At present, no attempt is made to overlap GPU
operations.

3.1 GPU Data Structures and kernel init

In the parallel version of ComputeClosure the four fixed length vectors: A, B, C and D each become
two dimensional arrays. The additional index is needed to identify individual nodes in the tree as it is
being searched in parallel. As with [Krajca et al., 2008], the original index refers to the extent or intent
(depending upon array type). For efficiency, in both the host and GPU code, 32 objects (or attributes)
are packed into an actual unsigned int array element. (Although nVidia GPUs can move wider data
items and perform long addresses and double precision floating point calculations, they essentially deal
with 32 bit integer data.)

On the GPU the order in which array indices (i.e. column first or row first) can make a considerable
difference to performance. One of kernel init’s tasks is the reverse the order of the indices in array
d A. (By convention data stored in the GPU’s global memory is named with a prefix d .)

Most of the large arrays on the GPU do not require initialisation. However two arrays (d MIIndex and
d More) are cleared each time a new set of closures are to be calculated. Surprisingly it turns out to be
more efficient for the programmer to write special kernel code to do this, rather than to use the CUDA
library routines.

3.2 constant table

[Krajca et al., 2008]’s ComputeClosure makes heavy read access to the matrix holding the object-
attribute table. The GPU architecture provides a small but very fast area of read only memory. It was
decided early on to place the object-attribute table in this area of “constant” memory. Since problems of
interest are typically sparse, a sparse memory data structure was devised to maximise the size of the arrays
that could be processed. To maximise the data compression, the sparse array indexes inside table are
packed together as 16 bit unsigned numbers.

Unfortunately “constant” memory proved tricky to get best of [Langdon, 2011c, Sect. 4.4]. Nonetheless,
with care, it can provide very rapid access to important data. For example, it turns out to be much faster if
all members of a group of threads (known as a warp) read the same part of table at the same time. This
was the initial motivation for sorting the data fed into kernel computeClosure (to be described in
Section 3.4) by i. This led to the realisation that kernel computeClosure was being asked to do the
same calculations many times over. This in turn lead to the introduction of kernel sort (next section)
which not only groups data by i but also keeps track of these many duplicates.

The object-attribute table is loaded onto the GPU’s constant memory at the start of the run and remains
there throughout the run.
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Figure 2: Main FCA global data (rectangles) and FCA program kernels (rectangles with rounded corners).
The arrows show the data flows amongst the kernels and between the graphics card and the host PC (oval).
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Even with sparse coding, the use of “constant” memory limits the number object–attribute pairs to at very
most half a million. It would have to be replaced if this limit was even approached. More recent nVidia
GPU include more caches. Even so, replacing constant memory by global memory would have to be done
with care to use data locality to ensure each multiprocessor’s cache was not overwhelmed.

3.3 kernel sort

What is not clear from [Krajca et al., 2008, page 73] is that in a typical problem large parts of calculations
performed by ComputeClosure are identical. The early versions of kernel computeClosure
simply did them all and as a consequence total run time was dominated by the time the GPU spent in
kernel computeClosure.

Typically d C and d D have different dimensions and so kernel computeClosure was split with the
calculation of d C being done in an pre-processing kernel and the results (d Mask) passed to the new sim-
pler kernel computeClosure. All that kernel computeClosure needs is a list of columns (i)
for which there is work to be done. Since the work is identical each column need be passed to the simplified
kernel computeClosure only once. Typically this hugely reduces kernel computeClosure’s
work load and no further optimisation of it is needed. However the pre-processing kernel (now called
kernel sort) needs to both filter out the duplicate columns and remember where they came from and
allocate space on the GPU to where kernel computeClosure’s answers can be saved.

All the other kernels make one pass through their principle data source. This means mostly that they read
global data once (they may have to read ancillary data more than once), process it, then write their output
once. This is the usual way of working on GPU and it suits their parallel architecture. kernel sort is
the only one of our kernels which makes two passes through its input data.

The first pass uses a GPU shared function calculate C to implement line 10 of [Krajca et al., 2008,
ComputeClosure, page 73]). To speed up calculate C kernel sort calls unpack matrixw to un-
pack the sparse form of table each time it is used. calculate C is coded to operate in parallel and take
advantage of the fact that data are packed 32 to a word.

Each multi-processor on the GPU has a limited supply of fast memory that is shared between all the
processing threads running on it. (Each half of the 295 GTX has 30 multi-processors.) To sort the data
being produced in parallel by different threads it must be saved in way that the other threads can read it. To
avoid both synchronisation problems and the delays associated with multiple accesses to global memory,
kernel sort is written to save data in shared memory.

To make the best use of the very limited shared data each multi-processor works exclusively on one column
at a time. On a small problem, with less than 30 columns, this has the drawback that some multi-processors
will be unused. However since we need only spot duplicates for the same column it has the effect of
magnifying the available shared memory by the number of columns in the problem.

The GPU hardware provides synchronisation between all 32 threads in the same warp (warps were de-
scribed in Section 3.2). Therefore up to 32 answers produced calculate C for each warp are saved in a per
warp hash table. (For each multi-processor we use 5 warps on the 295 GTX and 24 on the C2050). At the
end of the first pass, only the first 32 threads are used to combine all the per warp hash tables into one. Both
during initial construction and during combination our function insert() discards duplicates. Thus before
starting the second pass we know exactly how many unique answers calculate C will produce and we can
pass them onto kernel computeClosure (next section) via d Mask. All this is done without explicit
atomic operations and limited use of syncthreads.

In the second pass we repeat the calculation of the first pass. (It is often more efficient to repeat calculations
on the GPU than try and save them somewhere and read them back.) However we no longer need to look
for duplicates. The results of the first pass tell us exactly what to expect. (Since the second pass only reads
the combined hash table there are no synchronisation problems between any of the threads accessing it in
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parallel.) Whenever calculate C produces a duplicate we simply record in d MIndex to which closure it
belongs. Unfortunately this does require atomic operations.

Creating d MIndex and d MIIndex, as well as d Mask, allows kernel computeClosure to do its
calculation once (using d Mask) subsequently kernel Assemble will use d MIndex and d MIIndex to
ensure kernel computeClosure’s results are propagated to multiple places.

kernel sort is by far the largest kernel and consumes the largest proportion of the total run time (see *
in Figure 3).

3.4 kernel computeClosure

kernel computeClosure processes all of the i in d Mask in parallel. For each, unless table[i,j] is
non-zero, it clears the corresponding D[j] in its output.

The implementation needs to take advantage of the fact that table is sparse, i.e. most of it is zero, and
so care is needed to use the sparse coding (Section 3.2) to avoid clearing too much of D[j]. Secondly (as
mentioned in Section 3.1) both table[i,j] and D[j] have 32 bit data packed into unsigned int.

Each processing thread assembles a complete 32 bit value (in local register notDw) and then writes it to
global memory. Thus kernel computeClosure only reads its input from global data once and writes
its output to global data (d D) once.

3.5 kernel Assemble

kernel Assemble is essentially post processing for kernel computeClosure. It does two things.
1) it assembles the part answers (d D). 2) Given j, B and, the newly calculated D[j], it decides if the
recursion is complete.

kernel Assemble sets all the bits in its local version of d D1 (thus implementing lines 4–6 of [Krajca
et al., 2008, ComputeClosure, page 73]). The calculation of the conditional clearing of d D1 (set
d[j] to 0; line 11) has already been done by kernel computeClosure (previous section). However
to avoid repeating the calculation kernel computeClosure does it only once and saves each partial
answer in a location chosen by kernel sort. The two arrays, d MIIndex and d MIndex respectively
tell kernel Assemble how many fragments it must assemble and where they are located. They are
assembled simply by ANDing them with the local copy of d D1. Once this is complete the local copy can
be written to d D1. Notice again global memory (d D1) is only written to once. This is not only more
efficient but also avoids potential problems of synchronisation between parallel processing threads.

If the recursion must be continued, kernel Assemble sets a flag in d More to say so. (d More will
be copied back to the host PC.) kernel init (Section 3.1) has already cleared d More, so that if the
recursion is complete kernel Assemble does not have to write zero into it.

3.6 kernel pack

In a pure serial recursive implementation of ComputeClosure and GenerateFrom the four one
dimensional arrays, A, B, C and D, are repeatedly passed between the recursive calls. In a parallel GPU
implementation each array may have data for thousands of concepts being worked on simultaneously.
Consequently they can be very big. Since passing data between the host PC and its graphics card is time
consuming, we want to minimise the transfers of these four arrays.

Some of these data need to be passed back to the host PC however a copy still remains on the GPU.
kernel pack avoids the same data being passed from the host to the GPU at the next iteration by doing
the same transfer internally within the GPU. Internal transfers are much faster than copying data between
the PC and the GPU.
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Table 1: Performance on random module dependency graphs (seconds). (For 1
2 295 GTX and Tesla C2050

the total time on the GPU is given.)

Dataset Size Density Concepts FCbO Python 295 GTX C2050
krajca 5×7 54% 16 0.00 0.11 0.01 0.01
wiki 10×5 44% 14 0.00 0.03 0.00 0.00
random 10×10 20% 16 0.00 0.04 0.00 0.00
random 100×100 2% 137 0.00 0.40 0.02 0.01
random 200×200 2% 420 0.00 4.33 0.00 0.01
random 500×500 2% 2861 0.01 162.60 0.02 0.02

4 Results

FCbO (version 2010/10/05) was downloaded from fcalgs.sourceforge.net and compiled without changes
on a 2.66 GHz PC with 3 Gigabytes of RAM running 64 bit CentOS 5.0. The performance of FCbO, our
Python code and our CUDA code on two types of GPU are given in Tables 1 and 2. Figure 3 plots the time
taken by our individual CUDA kernels on the largest example.

Tables 1 and 2 show performance on: two bench mark problems, a selection of randomly generated sym-
metric object-attribute pairings and software module dependency graphs of the real world example pro-
grams.2 Except in one case, all the implementations rapidly complete. It is only the Python prototype
of Krajca’s FCbO algorithm [Krajca et al., 2010] which is troubled by the kernel of the Linux operating
system.

The 295 GTX is actually two GPUs in one. As yet the implementation only allows one GPU to be used. It
is expected that in a multiple GPU implementation the time taken by the 295 GTX would be approximately
halved.

Tables 1 and 2 give the elapsed times taken by the CPU implementations. In the case of the 295 GTX and
Tesla C2050 we have given the time taken by the GPU. This excludes an unfortunate start up overhead.
Excluding the delay it causes gives a fairer indication of what the GPUs can do.

It is clear that FCbO is very fast on these examples. It is unclear why the parallel CUDA implementation
does not exceed it.

5 Discussion

The Source Forge C implementation of FCbO is very fast. We expect it to be fast compared to our prototype
Python implementation, since that does not use bit packing and Python is an interpreted language. We
would expect a linear speed advantage for FCbO from both using 64 bit operations and from using compiled
rather than interpreted code. However on sizable examples, the ratio between the speed of FCbO and that of
our Python code is huge. This hints that FCbO has some algorithmic advantage. Although the Python code
directly implements the algorithm given in [Krajca et al., 2008], for implementation reasons it includes a
sorting operation. This may be the cause of the non-linear slowdown of our Python code.

We had hoped it would be straight forward to run FCbO under CUDA and perhaps also try porting [An-
drews, 2009]’s In-close. However it proved very hard to get FCbO running efficiently on the 295 GTX
[Langdon, 2011c; Langdon, 2011b]. Additionally [Andrews, 2009]’s In-Close, like FCbO, uses recursive
search and he says it requires “exponential memory”. It also maintains a global current object which all
searches refer to. Each of these may make it difficult to map In-Close onto a GPU architecture.

2The module dependency graphs are undirected and hence their corresponding object-attribute tables are symmetric. None of
the algorithms have been altered to take advantage of this symmetry.

RN/11/18 Page 7

http://fcalgs.sourceforge.net


FCA Beam Search on GPU W. B. Langdon, Shin Yoo and Mark Harman

Table 2: Performance on Software Engineering datasets [Harman et al., 2005]. Time given in seconds,
except for the longest Python run which is hours:mins:secs. (For 1

2 295 GTX and Tesla C2050 the total
time on the GPU is given.)

Dataset Size Density Concepts FCbO Python 295 GTX C2050
bison 37×37 24% 692 0.00 0.32 0.00 0.01
compiler 33×33 6% 24 0.00 0.05 0.00 0.00
dot 42×42 28% 1302 0.00 0.71 0.00 0.01
grappa 86×86 7% 850 0.00 2.54 0.01 0.01
incl 172×172 2% 238 0.00 1.84 0.00 0.01
ispell 24×24 34% 432 0.00 0.15 0.01 0.01
linuxConverted 955×955 2% 141072 0.73 15:42:51 1.79 0.93
mtunis 20×20 29% 110 0.00 0.05 0.00 0.01
rcs 29×29 37% 1074 0.00 0.46 0.01 0.02
swing 413×413 2% 3654 0.01 208.71 0.03 0.02
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Figure 3: Time taken by the five CUDA kernels and on host–C2050 transfers for the 44 beam searches
needed to process the largest example (linuxConverted). The clustering of data at the right hand side stems
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Calculations on GPUs are often limited by the time taken to move data rather than the time taken to perform
the calculations. One measure of this is “arithmetic intensity”, which is the ratio of calculations per data
item. Typical arithmetic intensity for common numeric three dimensional kernels vary from 4 floating point
operations per transferred data element (4 FLOP/TDE) for a Laplacian stencil kernel up to 63.6 FLOP/TDE
for tricubic interpolation [Christen et al., 2011, p206]. We can estimate the arithmetic intensity for [Krajca
et al., 2008]’s algorithm by considering the given pseudo code (i.e. the procedures ComputeClosure
and GenerateFrom) and concentrating on their inner loops (which are normally responsible for most of
the computation). It appears that mostly ComputeClosure compares table[i,j] to zero (1 arithmetic
operation per transferred data item) whilst GenerateFrom reads two data items and compares them (1
arithmetic operation/2 TDE). This suggests [Krajca et al., 2008]’s algorithm has an arithmetic intensity of
less than 1.0. Notice also, that these are integer or logic operations, which are usually faster than floating
point operations. Thus a potential problem might be there is simply is not enough computation required
by FCA compared to the volume of data. (Although arithmetic intensity is known to be an issue with
GPUs, current CPUs also have the same problem of moving data to where computation is done. Usually
this is ignored but some codes explicitly pre-load data into the CPU’s cache memory in order to improve
performance.)

Newer versions of CUDA have make it easier to overlap GPU operations. However our implementation
does not do this at present. Therefore the next kernel is not started until all the multi-processors have
finished processing the previous kernel. This causes some multi-processors to be idle at some point. Since
the work is spread across the multi-processors, we suspect that idle time is not a major problem.

6 Conclusions

There are many problems (e.g. in artificial intelligence) which are traditionally solved by depth first search.
On a modern serial computer this can be efficiently implemented recursively. However this may not suit
low cost computer graphics GPU hardware. An alternative is beam search.

We have implemented a form of beam search and demonstrated it on several existing FCA benchmarks and
ten software engineering dependence clustering problems [Harman et al., 2005]. GPU beam search may
also be more widely applicable.
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