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Abstract

In this paper, we address the logical gap between provability in the logic BBI,
which is the standard propositional basis for separation logic, and validity in
an intended class of separation models, as employed in applications of separa-
tion logic such as program verification. An intended class of separation models
is usually specified by a collection of axioms describing various useful model
properties, which we call a separation theory.

Our three main contributions are as follows. First, we show that that several
important properties of separation models are not definable in BBI. Second, we
show that these properties become definable when a simple theory of naming is
added to BBI, in the manner familiar from hybrid logic. We initially present a
simple, binder-free hybrid version of BBI and then later add a binder, which can
capture more complex model properties. Third, we present an axiomatic proof
system for our hybrid logic whose extension with any set of syntactically “pure”
axioms is sound and complete with respect to the models satisfying those axioms.
As a corollary of this general result, we obtain sound and complete axiomatic
proof systems for a large class of separation theories which, to the best of our
knowledge, includes all those appearing in the published literature.

Our results are obtained by adaptations of techniques from the general set-
ting of modal and hybrid logics.
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that several important properties of separation models are not defin-
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able when a simple theory of naming is added to BBI, in the man-
ner familiar from hybrid logic. We initially present a simple, binder-
free hybrid version of BBI and then later add a binder, which can
capture more complex model properties. Third, we present an ax-
iomatic proof system for our hybrid logic whose extension with any
set of syntactically “pure” axioms is sound and complete with re-
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tems for a large class of separation theories which, to the best of our
knowledge, includes all those appearing in the published literature.
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1. Introduction
Essentially, all models are wrong, but some are useful.

G.E.P. Box and N.R. Draper [4], 1987

In mathematical logic, there is a notable tension between provabil-
ity in a logic — which captures validity in some general class of
models of that logic — and validity in the intended model(s) of
practical or theoretical interest. For example, the axioms of Peano
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arithmetic (PA) hold in many nonstandard models as well as the
usual standard model of the natural numbers N [18]. Thus, as is
well known, there are many true statements of arithmetic over N
that do not hold in every model of the Peano axioms, and so are not
provable in PA. This incompleteness of logical proof systems with
respect to a particular model of interest is sometimes an unavoid-
able phenomenon. For example, as is well known, true arithmetic is
not recursively enumerable, so cannot be captured by any finitary
proof system. In other cases, it might happen that completeness
for intended models can be gained by adding (perhaps infinitely
many) axioms to the proof system, at the expense of simplicity and
perhaps of desirable structural properties such as cut-elimination.
Thus, when formulating axiomatisations of a theory, some trade-
off is usually inevitable between logical generality on the one hand,
and completeness for the intended model(s) on the other.

In this paper, we consider this trade-off in the context of sep-
aration logic, an established formalism for reasoning about heap-
manipulating programs [7, 24, 26]. The purely propositional part
of separation logic is usually considered to be given by Boolean BI
(from now on BBI), which is a particular flavour of bunched logic
obtained by freely combining the connectives of multiplicative in-
tuitionistic linear logic with those of standard classical logic [17,
23]. Provability in BBI corresponds to validity in the general class
of relational commutative monoids [14]. Applications of separation
logic, on the other hand, typically deal with specific such (classes
of) models, based on the composition of heaps (see [6] for a survey
of the models used in practice). Unsurprisingly, these heap mod-
els exhibit various interesting mathematical properties that are not
true of all relational commutative monoids, and thus are not cap-
tured by provability in BBI. For example, composition of heaps
is a cancellative partial (binary) function, which is a special case
of the ternary relation in a relational commutative monoid. Vari-
ous collections of such properties have previously been advanced
in the literature as a suitable abstraction over concrete heap mod-
els [9, 13]. We list these properties in Definition 3.1, and call a
given collection of such properties a separation theory. Our aim is
to develop logics in which provability corresponds more closely to
validity in the class of models determined by a separation theory.

In this paper, we make three main contributions:

• First, we show in section 3 that BBI is insufficiently expres-
sive to accurately capture most separation theories. Specifically,
we show that several commonly considered model properties are
not definable by any BBI-formula (partial functionality and can-
cellativity of the composition being two of the most prominent
examples). Undefinability of a property means that the logic is fun-
damentally incapable of distinguishing models with the property
from those without it.

• Second, we introduce in section 4 a simple hybrid extension
HyBBI of BBI, which bears the same relation to BBI as nor-
mal hybrid logic does to normal modal logic (see [1–3] for an



overview). That is, HyBBI extends BBI with a theory of naming:
we introduce a second sort of atoms, called nominals, which are
interpreted as individual states in a model; and we also add a unary
hybrid modality @` (parameterised by the nominal `), so that the
hybrid formula @`A is satisfied at any world in a model just when
A is satisfied at the world denoted by the nominal `.

Despite the simplicity of this extension, which is conservative
over standard BBI, the hybrid logic HyBBI is expressive enough
to define most of the separation theories we consider. However,
for more complex model properties such as the cross-split property
of [13], still more expressivity is required: we show in Section 7
how to gain this expressivity by adding the ↓ binder of hybrid logic
to HyBBI.

• Third, we provide a Hilbert-style axiomatic proof system for
HyBBI that is parametrically sound and complete with respect to
any given separation theory. That is, whenever the proof system is
extended with the axioms defining a separation theory, the resulting
extension is sound and complete with respect to the class of models
determined by that theory. Although such axiomatic proof systems
are not very suitable for practical reasoning, they provide a very
useful proof-theoretic characterisation of validity which can be
used as a baseline, e.g., for tableau or sequent-style proof systems.

We present the axiom system and its soundness result in Sec-
tion 5, and give the completeness theorem in Section 6. The ex-
tension of these results to the case of HyBBI with the ↓ binder is
given in Section 7.

All of our technical results are obtained by adaptations of tech-
niques from modal and hybrid logic. This should come as no sur-
prise, since bunched logics can quite straightforwardly be seen as
modal logics. Indeed, this view has been exploited previously in the
literature, e.g., to obtain completeness results for various bunched
logics [5, 8]. However, as far as we know, HyBBI represents the
first explicit application of hybrid logic to the setting of bunched /
separation logic. In particular, previous work on hybrid logics has
seemingly been confined to modal logic with unary modalities con-
nected by de Morgan duality, whereas in this setting we consider
the case of binary modalities connected by residuation.

Interestingly, the key concept from hybrid logic, i.e. the explicit
naming of elements in the underlying model, has been used im-
plicitly several times in the literature on the proof theory of BBI.
For example, the labelled tableau system for BBI provided in [20],
which was recently proven complete for partial functional BBI-
models [19], relies on a system of semantic labels which pick out
individual model states in much the same way as nominal atoms
in hybrid logic. Even more recently, labelled nested [22] and non-
nested [16] sequent calculi for BBI have appeared, employing se-
mantic labels in a broadly similar way. While such works add
names or labels to proof systems as auxiliary tools for simplify-
ing proof search in standard BBI, here we consider these features
to be first class components of the logic. Indeed, we believe that
it should be reasonably straightforward to adapt the labelled proof
systems in the literature to yield cut-free proof theories for our hy-
brid extensions of BBI.

2. Syntax and semantics of BBI
In this section, we give the usual definitions of formulas of BBI and
their Kripke semantics, given by relational commutative monoids
(see e.g. [14]).

Definition 2.1 (BBI-formula). Let V be a denumerably infinite set
of propositional variables. BBI-formulas are built from proposi-
tional variablesP ∈ V using the usual connectives (>,⊥,¬,∧,∨,→)

of classical logic, and the so-called “multiplicative” connectives,
consisting of the constant I and binary operators ∗ and−−∗.

We assume that ¬ has the highest precedence, followed by ∗, ∧
and ∨, with→ and−−∗ having lowest precedence.

Definition 2.2 (BBI frames and models). A BBI-frame is a a tuple
〈W, ◦, E〉, where ◦ : W ×W → P(W ) and E ⊆ W . We extend
◦ pointwise to P(W )× P(W )→ P(W ) by

W1 ◦W2
def
=

⋃
w1∈W1,w2∈W2

w1 ◦ w2

A BBI-frame 〈W, ◦, E〉 is a BBI-model if ◦ is commutative and
associative, and w ◦ E = {w} for all w ∈W .

Definition 2.3 (BBI-validity). Let M = 〈W, ◦, E〉 be a BBI-
frame. A valuation for M is a function ρ that assigns to each
propositional variable P ∈ V a set ρ(P ) ⊆ W . Given any
valuation ρ for M , any w ∈W and any BBI-formula A, we define
the forcing relation M,w |=ρ A by induction on A:

M,w |=ρ P ⇔ w ∈ ρ(P )
M,w |=ρ > always
M,w |=ρ ⊥ never
M,w |=ρ ¬A ⇔ M,w 6|=ρ A

M,w |=ρ A1 ∧A2 ⇔ M,w |=ρ A1 and M,w |=ρ A2

M,w |=ρ A1 ∨A2 ⇔ M,w |=ρ A1 or M,w |=ρ A2

M,w |=ρ A1 → A2 ⇔ M,w |=ρ A1 implies M,w |=ρ A2

M,w |=ρ I ⇔ w ∈ E
M,w |=ρ A1 ∗A2 ⇔ ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and

M,w1 |=ρ A1 and M,w2 |=ρ A2

M,w |=ρ A1 −−∗ A2 ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and
M,w′ |=ρ A1 then M,w′′ |=ρ A2

A is said to be valid in M if M,w |=ρ A for any valuation ρ and
for all w ∈W . A is valid if it is valid in all BBI-models.

Definition 2.4. We define KBBI to be the proof system obtained
by extending a complete Hilbert system for classical logic with the
following axioms and inference rules for ∗,−−∗ and I (whereA ` B
is syntactic sugar for the formula A→ B):

A ∗B ` B ∗A A ∗ (B ∗ C) ` (A ∗B) ∗ C

A ` A ∗ I A ∗ I ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C

A ` B −−∗ C

A ∗B ` C

The following result is due to Galmiche and Larchey-Wendling [14].

Theorem 2.5. A BBI-formula is KBBI-provable if and only if it is
BBI-valid.

3. Definable and undefinable properties in BBI

In this section, we review a number of interesting properties of
BBI-models encountered in the literature on separation logic, and
consider the problem of whether or not these properties can be ex-
pressed, or defined, by formulas of BBI. Specifically, we show that
some important such properties are not definable in BBI, essen-
tially because they are not generally preserved over morphisms be-
tween BBI-models that preserve validity.

Definition 3.1 (Separation theories). Letting M = 〈W, ◦, E〉 be a
BBI-model, we introduce the following properties of interest:

Partial functionality: w,w′ ∈ w1 ◦ w2 implies w = w′;
Cancellativity: (w ◦ w1) ∩ (w ◦ w2) 6= ∅ implies w1 = w2;
Single unit: |E| = 1, i.e. w,w′ ∈ E implies w = w′;
Indivisible units: (w ◦ w′) ∩ E 6= ∅ implies w ∈ E;
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Disjointness: w ◦ w 6= ∅ implies w ∈ E;
Divisibility: 1 for every w 6∈ E there are w1, w2 /∈ E such that

w ∈ w1 ◦ w2;
Cross-split property: whenever (t ◦ u) ∩ (v ◦ w) 6= ∅, there exist

tv , tw , uv , uw such that t ∈ tv ◦ tw , u ∈ uv ◦uw , v ∈ tv ◦uv
and w ∈ tw ◦ uw .

Any given collection of model properties from the above list is
called a separation theory.

Various different separation theories have been considered in
the literature on separation logic. For example, a BBI-model that
is both partial functional and cancellative is called a separation
algebra in [13], while in [9] the same term defines a BBI-model
that is partial functional and cancellative with a single unit, and,
in the views framework [12], the same term again refers to a BBI-
model that is simply partial functional. The significance of the other
properties is explained in detail in [13].

In the following, we abuse notation slightly by identifying a
property of BBI-models with the class of BBI-models satisfying
that property.

Definition 3.2 (Definability). Given a language L of formulas, a
property P of BBI-models is said to be L-definable if there exists
an L-formula A such that for all BBI-models M ,

A is valid in M ⇐⇒ M ∈ P.
We remark that definability could as well be defined on BBI-

frames, not just BBI-models. However, our main concern is with
properties of BBI-models (and in particular those listed in Defi-
nition 3.1). Note that the property of being a BBI-model, among
all frames, is itself BBI-definable: take as the defining formula the
conjunction of the top four axioms in Definition 2.4 (which define
associativity, commutativity and the unit law E ◦ w = {w}).
Proposition 3.3. The indivisible units property and the divisibility
property are both BBI-definable, as follows:

Indivisible units: I ∧ (A ∗B) ` A
Divisibility: ¬I ` ¬I ∗ ¬I

Proof. The case of the indivisible units property is shown in [6].
For the case of divisibility, we proceed as follows:

(⇐) Assume that M is divisible, let ρ be a valuation for M and let
w ∈ W . To show that (sp) is valid, we suppose that M,w |=ρ ¬I,
i.e., that w /∈ E, and require to show that M,w |=ρ (¬I) ∗ (¬I).
Divisibility gives us w1, w2 ∈W \E such that w ∈ w1 ◦w2; thus,
M,w |=ρ (¬I) ∗ (¬I).

(⇒) Assume that (sp) is valid in M , and suppose that w ∈W \E.
Then, M,w |=ρ ¬I, hence by validity of (sp) we have M,w |=ρ

(¬I) ∗ (¬I). This gives us w1, w2 such that w ∈ w1 ◦ w2 where
M,w1 |=ρ ¬I andM,w2 |=ρ ¬I, i.e.w1, w2 /∈ E as required.

We now develop some tools, based on the usual ones from
modal logic [1], for showing that a given property is not definable
in BBI. Our main such tool is a bounded morphism, which is a
structure-preserving function between BBI-frames.

Definition 3.4 (Bounded morphic image). LetM = 〈W, ◦, E〉 and
M ′ = 〈W ′, ◦′, E′〉 be BBI-models. A bounded morphism fromM
to M ′ is a function f : W →W ′ satisfying the following:

1. w ∈ E iff f(w) ∈ E′;
2. w ∈ w1 ◦ w2 implies f(w) ∈ f(w1) ◦′ f(w2);

1 Called “splittability” in [13].

3. f(w) ∈ w′1 ◦′ w′2 implies ∃w1, w2 ∈ W. w ∈ w1 ◦ w2 and
f(w1) = w′1 and f(w2) = w′2;

4. w′2 ∈ f(w) ◦′ w′1 implies ∃w1, w2 ∈ W. w2 ∈ w ◦ w1 and
f(w1) = w′1 and f(w2) = w′2;

We say M ′ is a bounded morphic image of M , written M � M ′,
if there is a surjective bounded morphism from M to M ′.

Lemma 3.5. Let M and M ′ be BBI-models with M �M ′. Then
any BBI-formula valid in M is also valid in M ′.

Proof. We write M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉, and
let f : W → W ′ be a surjective bounded morphism from M to
M ′. Suppose for contradiction that A is valid in M , but not in M ′.
Thus there exists a valuation ρ′ for M ′ and w′ ∈ W ′ such that
M ′, w′ 6|=ρ′ A. We define a valuation ρ for M as follows:

ρ(P )
def
= {w ∈W | f(w) ∈ ρ′(P )}

As f is surjective, there is a w ∈ W such that w′ = f(w). To
obtain the required contradiction, we claim that M,w 6|=ρ A. To
show this claim, we prove by structural induction on A that for all
w ∈ W , we have M,w |=ρ A if and only if M ′, f(w) |=ρ′ A.
We just show one of the cases for the classical connectives, as the
others are either similar, or else trivial.

Case A = P ∈ V . Using the definition of ρ, we have as required:

M,w |=ρ A ⇔ w ∈ ρ(P )
⇔ f(w) ∈ ρ′(P )
⇔ M ′, f(w) |=ρ′ P

Case A = B → C. We proceed as follows:

M,w |=ρ B → C
⇔ M,w |=ρ B implies M,w |=ρ C
⇔ M ′, f(w) |=ρ′ B implies M ′, f(w) |=ρ′ C (by ind. hyp.)
⇔ M ′, f(w) |=ρ′ B → C

Case A = I. Using condition 1 in Defn. 3.4, we have as required:

M,w |=ρ I ⇔ w ∈ E ⇔ f(w) ∈ E′ ⇔ M ′, f(w) |=ρ′ I

Case A = B ∗ C. We show each implication separately.

(⇒) Supposing that M,w |=ρ B ∗ C, we have w ∈ w1 ◦ w2

with M,w1 |=ρ B and M,w2 |=ρ C. By induction hypothesis,
M ′, f(w1) |=ρ′ B and M ′, f(w2) |=ρ′ C. Furthermore, using
condition 2 in Defn. 3.4, we have f(w) ∈ f(w1) ◦′ f(w2). Thus
M ′, f(w) |=ρ′ B ∗ C as required.

(⇐) Supposing that M ′, f(w) |=ρ′ B ∗ C, we have f(w) ∈
w′1 ◦′ w′2 with M ′, w′1 |=ρ′ B and M ′, w′2 |=ρ′ C. By condition
3 in Defn. 3.4, there are w1, w2 ∈ W with w ∈ w1 ◦ w2 and
f(w1) = w′1 and f(w2) = w′2. Thus, by the induction hypothesis,
we have M,w1 |=ρ B and M,w2 |=ρ C. Hence M,w |=ρ B ∗ C
as required.

Case A = B −−∗ C. We show each implication separately.

(⇒) Suppose M,w |=ρ B −−∗ C. To show that M ′, f(w) |=ρ′

B −−∗ C, we assume that w′2 ∈ f(w) ◦′ w′1 and M ′, w′1 |=ρ′ B,
and must show M ′, w′2 |=ρ′ C. By condition 4 in Defn. 3.4, there
are w1, w2 ∈ W with w2 ∈ w ◦ w1 and f(w1) = w′1 and
f(w2) = w′2. Thus, by the induction hypothesis, M,w1 |=ρ B.
Since M,w |=ρ B −−∗ C, we obtain M,w2 |=ρ C, which yields
the required M ′, w′2 |=ρ′ C using the induction hypothesis.

(⇐) Suppose M ′, f(w) |=ρ′ B −−∗ C. To show that M,w |=ρ

B −−∗ C, we assume that w2 ∈ w ◦ w1 and M,w1 |=ρ B, and
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must show M,w2 |=ρ C. By condition 2 in Defn. 3.4, we have
f(w2) ∈ f(w) ◦ f(w1), and by induction hypothesis we have
M ′, f(w1) |=ρ′ B. Since M ′, f(w) |=ρ′ B −−∗ C, we obtain
M ′, f(w2) |=ρ′ C, which then yields the required M,w2 |=ρ C
using the induction hypothesis. This completes all cases.

Lemma 3.6. Let P be a property of BBI-models, and let M,M ′

be BBI-models such that M ∈ P , M ′ 6∈ P and M � M ′. Then
P is not BBI-definable.

Proof. Suppose for contradiction that there exists a BBI-formulaA
valid in exactly those BBI-models with property P . Then, in par-
ticular, A is valid in M . Since M � M ′, we have by Lemma 3.5
that A must be valid in M ′, and hence M ′ ∈ P , contradicting the
assumption that M ′ 6∈ P .

In particular, Lemma 3.6 implies that if M � M ′ and M is a
BBI-model, then so is M ′ (otherwise the class of all BBI-models
would not be BBI-definable among all BBI-frames, contradiction).

Theorem 3.7. Partial functionality is not BBI-definable.

Proof. By Lemma 3.6, it suffices to exhibit a pair of BBI-models
M and M ′ such that M is partial functional, M ′ is not partial
functional and M � M ′. We define BBI-models M = 〈W, ◦, E〉
and M ′ = 〈W ′, ◦′, E′〉 as follows:

W
def
= {e, v1, v2, x1, x2, y, z} E

def
= {e}

w ◦ e = e ◦ w def
= {w} for all w ∈W

x1 ◦ v1 = v1 ◦ x1
def
= {y} x1 ◦ v2 = v2 ◦ x1

def
= {y}

x2 ◦ v1 = v1 ◦ x2
def
= {z} x2 ◦ v2 = v2 ◦ x2

def
= {z}

W ′
def
= {e, v, x, y, z} E′

def
= {e}

w ◦′ e = e ◦′ w def
= {w} for all w ∈W ′

x ◦′ v = v ◦′ x def
= {y, z}

with w1 ◦ w2 = w1 ◦′ w2
def
= ∅ for all other w1 and w2.

First, we verify that M and M ′ are indeed BBI-models. Com-
mutativity and the unit law hold in both models by construction.
Associativity of ◦ and ◦′ is straightforward to check since w1 ◦
(w2 ◦ w3) and w1 ◦′ (w2 ◦′ w3) are always empty unless one of
w1, w2, w3 is e.

Next, we note that M is partial functional since |w1 ◦ w2| ≤ 1
for all w1, w2 ∈ W by construction, whereas M ′ is not partial
functional since z, y ∈ x ◦′ v but z 6= y.

Finally, we claim that M � M ′, i.e., that there is a surjective
bounded morphism from M to M ′. Define f : W →W ′ by:

f(v1) = f(v2)
def
= v f(x1) = f(x2)

def
= x

f(w)
def
= w (w ∈ {e, u, v, y})

Clearly f is surjective, so it just remains to check the 4 bounded
morphism conditions in Definition 3.4:

1. Trivial, since E = E′ = {e} and f(e) = e.
2. We just check that every membership statement in the definition

of ◦ maps under f to a corresponding membership statement in
the definition of ◦′. E.g., since y ∈ x1 ◦ v2, we need to check
that f(y) ∈ f(x1) ◦′ f(v2), i.e., y ∈ x ◦′ v, which is the case.

3. We need to check that every membership statement f(w) ∈
w′1 ◦ w′2 in the definition of ◦′ can be “traced back” under f
to a corresponding membership statement in the definition of ◦.
E.g., since f(z) ∈ x◦′v, we needw1, w2 such that z ∈ w1◦w2

and f(w1) = x, f(w2) = v. By taking, say, w1 = x2 and
w2 = v2, we are done.

4. Similar to item 3 above, but for membership statements of the
form w′2 ∈ f(w) ◦ w′1. E.g., since y ∈ f(v2) ◦′ x, we need
w1, w2 such that w2 ∈ v2 ◦ w1 and f(w1) = x, f(w2) = y.
By taking w1 = x1, w2 = y we are done. This completes the
proof.

At this juncture it is perhaps worth noting that there is no a
priori connection between definability of a property on one hand,
and the existence of complete proof systems for models having
the property on the other. In particular, Theorem 3.7 says nothing
about the existence of proof theories for BBI that are complete for
partial functional models. In fact, Larchey-Wendling and Galmiche
exhibit in [21] a formula that shows that KBBI is incomplete for
such models. What Theorem 3.7 shows in addition is that, if one
were to add enough (perhaps infinitely many) axioms to KBBI

so as to obtain a complete system for partial functional models,
then provability in this system still would not exclude all strictly
relational models. (One can contrast this situation, e.g., with that
of KBBI’s commutativity axiom A ∗B ` B ∗A, which is easily
seen to define commutativity and therefore to exclude all non-
commutative models.)

Theorem 3.8. Cancellativity is not BBI-definable.

Proof. By Lemma 3.6, it suffices to exhibit a pair of BBI-models
M and M ′ such that M is cancellative, M ′ is not cancellative
and M � M ′. We define BBI-models M = 〈W, ◦, E〉 and
M ′ = 〈W ′, ◦′, E′〉 as follows:

W
def
= {e, v1, v2, x, y, z1, z2} E

def
= {e}

w ◦ e = e ◦ w def
= {w} for all w ∈W

v1 ◦ x = x ◦ v1
def
= {z1} v2 ◦ x = x ◦ v2

def
= {z2}

v1 ◦ y = y ◦ v1
def
= {z2} v2 ◦ y = y ◦ v2

def
= {z1}

W ′
def
= {e, x, v, y, z} E′

def
= {e}

w ◦′ e = e ◦′ w def
= {w} for all w ∈W ′

v ◦′ x = x ◦′ v = v ◦′ y = y ◦′ v def
= {z}

First, it is straightforward to verify thatM andM ′ are indeed BBI-
models, with associativity holding because w1 ◦ (w2 ◦ w3) 6= ∅
implies one of w1, w2, w3 is e (and similarly for ◦′).

Next, we note that M is cancellative because, by construction,
w′ ∈ (w ◦ w1) ∩ (w ◦ w2) implies w1 = w2 = e. On the other
hand, M ′ is not cancellative, for z ∈ (v ◦′ x)∩ (v ◦′ y) but x 6= y.

Finally, we need a surjective bounded morphism fromM toM ′.
We define a map f : W →W ′ by

f(v1) = f(v2)
def
= v f(z1) = f(z2)

def
= z

f(w)
def
= w (w ∈ {e, x, y})

The verification that f is indeed a surjective bounded morphism is
similar to that in the proof of Theorem 3.7.

We note that Theorem 3.8 in fact maps a model that is both
partial functional and cancellative with a single unit to a non-
cancellative model. Thus, it also establishes that neither the class of
models that are partial functional and cancellative (the “separation
algebras” of [13]) nor the subclass of such models having a single
unit (the “separation algebras” of [9]) are BBI-definable.

Theorem 3.9. Disjointness is not BBI-definable.

Proof. By Lemma 3.6, it suffices to exhibit a pair of BBI-models
M and M ′ such that M is disjoint, M ′ is not and M � M ′. We
define BBI-models M = 〈W, ◦, E〉 and M ′ = 〈W ′, ◦′, E′〉 as
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follows:
W

def
= {e, x, y} E

def
= {e}

w ◦ e = e ◦ w def
= {w} for all w ∈W

x ◦ y = y ◦ x def
= {x, y}

W ′
def
= {e, x} E′

def
= {e}

w ◦′ e = e ◦′ w def
= {w} for all w ∈W

x ◦′ x def
= {x}

with w1 ◦ w2 = w1 ◦′ w2
def
= ∅ for all other w1 and w2.

Similar to the previous Theorems 3.7 and 3.8, we can easily
verify that M and M ′ are indeed BBI-models, with M disjoint by
construction, whereasM ′ is not disjoint since x 6= e and x◦′x 6= ∅.
We define a surjective bounded morphism f from M to M ′ by

f(e)
def
= e f(x)

def
= x f(y)

def
= x

It just remains to check the bounded morphism conditions, which
is similar to the verifications in Theorems 3.7 and 3.8.

Definition 3.10 (Disjoint union). Let M1 = 〈W1, ◦1, E1〉, M2 =
〈W2, ◦2, E2〉 be BBI-models, where W1 and W2 are disjoint sets.
Then M1 ]M2, the disjoint union of M1 and M2 is defined as

M1 ]M2
def
= 〈W1 ∪W2, ◦1 ∪ ◦2, E1 ∪ E2〉

Lemma 3.11. LetM1,M2 be BBI-models. Then any BBI-formula
valid in both M1 and M2 is also valid in M1 ]M2.

Proof. We write M1 = 〈W1, ◦1, E1〉 and M2 = 〈W2, ◦2, E2〉.
Suppose for contradiction that A is valid in M1 and M2, but not in
M1 ]M2. Thus there exists a valuation ρ and w ∈W1 ∪W2 such
that M1 ] M2, w 6|=ρ A. Without loss of generality, we assume
w ∈ W1 (the other case is similar). We define a valuation for M1

by
ρ1(P )

def
= ρ(P ) ∩M1

To obtain the required contradiction, we claim that M1, w 6|=ρ1 A
(contradicting the supposition that A is valid in M1). To show this
claim, we prove by structural induction on A that for all w ∈ W1,
we have M1, w |=ρ1 A if and only if M1 ] M2, w |=ρ A. We
omit the cases for the classical connectives, since they are trivial or
immediate by induction hypothesis.

Case A = P . Using the fact that w ∈ W1 by assumption, we have
w ∈ ρ1(P ) iffw ∈ ρ(P ), i.e.M1, w |=ρ1 P iffM1]M2, w |=ρ P
as required.

Case A = I. Since E1 and E2 are disjoint, we have w ∈ E1 iff
w ∈ E1∪E2, i.e.M1, w |=ρ1 I iffM1]M2, w |=ρ I, as required.

Case A = B ∗ C. We proceed as follows:

M1 ]M2, w |=ρ B ∗ C
⇔ ∃w1, w2 ∈W1 ∪W2. w ∈ w1(◦1 ∪ ◦2)w2 and
M1 ]M2, w1 |=ρ B and M1 ]M2, w2 |=ρ C

⇔ ∃w1, w2 ∈W1. w ∈ w1 ◦1 w2 and M1 ]M2, w1 |=ρ B
and M1 ]M2, w2 |=ρ C (since W1,W2 disjoint)

⇔ ∃w1, w2 ∈W1. w ∈ w1 ◦1 w2 and M1, w1 |=ρ1 B and
M1, w2 |=ρ1 C (by ind. hyp.)

⇔M1, w |=ρ1 B ∗ C
Case A = B −−∗ C. Similar to the case A = B ∗ C.

Lemma 3.12. Let P be a property of BBI-models, and suppose
that there exist BBI-models M1 and M2 such that M1,M2 ∈ P
but M1 ]M2 6∈ P . Then P is not BBI-definable.

Proof. Suppose for contradiction that there exists a BBI-formula
valid in exactly those BBI-models M ∈ P . Thus, by assumption,
A is valid in M1 and in M2. By Lemma 3.11, A is valid in
M1 ]M2, whence M1 ]M2 ∈ P , contradicting the premise that
M1 ]M2 6∈ P .

Note that, similar to Lemma 3.6, Lemma 3.12 implies that if
M1 and M2 are BBI-models then so must be M1 ]M2 (otherwise
BBI-models would again be undefinable among all BBI-frames).

Theorem 3.13. The single-unit property is not BBI-definable.

Proof. Let M1 = 〈N,+, {0}〉 and M2 = 〈N′,+′, {0′}〉 be dis-
joint, isomorphic copies of the monoid of natural numbers under
addition. M1 and M2 are both single-unit BBI-models. However,
M1 ]M2 is not a single-unit model, as its set of units is {0, 0′}.
Thus, by Lemma 3.12, the single-unit property cannot be BBI-
definable.

There is one property from Definition 3.1 that we have not yet
considered: the cross-split property. In Section 7, we show that
this property is definable in a relatively expressive hybrid extension
of BBI including binders (see Proposition 7.3). The complication
of expressing the property even in that logic leads us to strongly
suspect it is not definable in BBI.

Conjecture 3.14. The cross-split property is not BBI-definable.

Cross-split is seemingly preserved by bounded morphic images,
disjoint unions and by generated submodels (cf. [1]). We believe it
should be possible to show its undefinability in BBI by employing
a model construction based on ultrafilter extensions (cf. [1]), but
that is beyond the scope of the present paper.

4. HyBBI: a basic hybrid extension of BBI
In this section, we present a hybrid extension of BBI, called
HyBBI, based upon a simple fragment of hybrid logic [1–3].
Essentially, compared to standard BBI, our extension allows us
to refer to individual elements of the underlying BBI-model (as
opposed to sets of elements, as denoted by BBI-formulas). We
demonstrate that this simple extension of the logic enables us to
define the separation theory properties shown in the previous sec-
tion to be undefinable in BBI.

Definition 4.1 (HyBBI-formula). We assume a fixed, denumer-
ably infinite set N of nominals, disjoint from the propositional
variables. (We write lower case letters j, k, ` etc. for nominals to
distinguish them from propositional variables.) A HyBBI-formula
is defined as a BBI-formula (Defn. 2.1), except that (a) any nomi-
nal ` ∈ N counts as an atomic HyBBI-formula, and (b) if A is a
HyBBI-formula and ` a nominal then @`A is a HyBBI-formula.

A HyBBI-formula is said to be pure if it contains no proposi-
tional (or formula) variables.

Definition 4.2 (HyBBI-validity). A hybrid valuation ρ for a BBI-
modelM = 〈W, ◦, E〉 extends a standard valuation (see Defn. 2.3)
by additionally mapping every nominal ` ∈ N to an element
ρ(`) ∈W . Given any hybrid valuation ρ for M , any w ∈W and a
HyBBI-formula A, we define the forcing relation M,w |=ρ A by
extending the definition of the forcing relation in Defn. 2.3 by the
following clauses for nominals and the @` modality:

M,w |=ρ ` ⇔ w = ρ(`)
M,w |=ρ @`A ⇔ M,ρ(`) |=ρ A

A is then said to be valid in M if M,w |=ρ A for all hybrid
valuations ρ and all w ∈ W (and simply valid if it is valid in all
BBI-models).
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We observe that HyBBI is a conservative extension of BBI; that
is, every BBI-formula A that is valid according to Definition 2.3 is
also valid according to Definition 4.2 (because the forcing relations
in the two definition coincide on BBI-formulas). Thus every prop-
erty of BBI-models definable in BBI is also definable in HyBBI.
However, HyBBI is strictly more expressive than BBI: several
properties not definable in BBI become definable in HyBBI.

Theorem 4.3. The following properties from Definition 3.1 are
HyBBI-definable via pure formulas:

Functionality: @`(j ∗ k) ∧@`′(j ∗ k) ` @``
′ (pfn)

Cancellativity: ` ∗ j ∧ ` ∗ k ` @jk (cnc)
Single unit: @`1I ∧@`2I ` @`1`2 (su)

Indivisible units: I ∧ (`1 ∗ `2) ` `1 (iu)
Disjointness: ` ∗ ` ` I ∧ ` (dis)
Divisibility: ¬I ` ¬I ∗ ¬I (div)

Proof. The case of divisibility is already covered by Proposi-
tion 3.3, and the case of indivisible units is a straightforward modi-
fication of the argument in [6] (using nominal variables rather than
propositional variables). We treat the other properties individually.

Functionality. (⇐) Assume M is partial functional, let ρ be a
valuation for M and let w ∈ W . To show that (pfn) is valid in
M , we assume that M,w |=ρ @`(j ∗ k) ∧ @`′(j ∗ k), and must
show that M,w |=ρ @``

′, i.e., that ρ(`) = ρ(`′).
By assumption, we have ρ(`) ∈ ρ(j) ◦ ρ(k) and ρ(`′) ∈ ρ(j) ◦

ρ(k), hence by partial functionality of M we have ρ(`) = ρ(`′) as
required.

(⇒) Assume that (pfn) is valid inM , and supposew′, w ∈ w1◦w2.
We require to show that w = w′.

Since (pfn) is valid in M , we have M,w |=ρ (pfn) for all
w ∈ W and for any hybrid valuation ρ. We define a hybrid
valuation ρ for M as follows:

ρ(`) = w ρ(`′) = w′ ρ(j) = w1 ρ(k) = w2

Then, showing that w = w′ means showing that M,ρ(`) |=ρ `
′,

i.e., that M,w |=ρ @``
′. As (pfn) is valid in M , it suffices to show

that M,w |=ρ @`(j ∗ k) ∧ @`′(j ∗ k). Since w,w′ ∈ w1 ◦ w2

by assumption and M,w1 |=ρ j and M,w2 |=ρ k by construction,
we obtain that M,w |=ρ j ∗ k and that M,w′ |=ρ j ∗ k, from
which the result follows.

Cancellativity. (⇐) Assume M is cancellative, let ρ be a val-
uation for M and let w ∈ W . To show that (cnc) is valid
in M , we suppose that M,w |=ρ (` ∗ j) ∧ (` ∗ k), and re-
quire to show that M,w |=ρ @jk, i.e., that ρ(j) = ρ(k).
That M,w |=ρ (` ∗ j) ∧ (` ∗ k) straightforwardly means that
w ∈ (ρ(`) ◦ ρ(j)) ∩ (ρ(`) ◦ ρ(k)). By cancellativity, we thus im-
mediately get that ρ(j) = ρ(k) as required.

(⇒) Assume that (cnc) is valid inM , and supposew′ ∈ (w◦w1)∩
(w ◦w2). We require to show that w1 = w2. Since (cnc) is valid in
M , we have M,w |=ρ (cnc) for all w ∈ W and hybrid valuations
ρ. We define a hybrid valuation ρ for M as follows:

ρ(`) = w ρ(j) = w1 ρ(k) = w2

Then by assumptionM,w′ |=ρ (`∗j)∧(`∗k). By validity of (cnc),
we deduce that M,w′ |=ρ @jk, hence that ρ(j) = ρ(k) hence by
construction that w1 = w2.

Single unit. (⇐) Assume E = {e}, let ρ be a valuation for
M and let w ∈ W . We show (su) is valid. Supposing that

M,w |=ρ @`1I ∧ @`2I, we have that ρ(`1), ρ(`2) ∈ E. Thus
ρ(`1) = ρ(`2) = e, and so we easily have M,w |=ρ @`1`2 as
required.

(⇒) Assume (su) is valid and let e, e′ ∈ E. We need to show
e = e′. Define a valuation ρ for M by

ρ(`1) = e ρ(`2) = e′

Thus, to show e = e′, it suffices to show M,w |=ρ @`1`2
(for any w ∈ w). Since (su) is valid, it suffices to show that
M,w |=ρ @`1I ∧ @`2I. This follows immediately from our con-
struction of ρ.

Disjointness. (⇐) Assume the disjointness property, let ρ be a val-
uation for M and let w ∈ W . To show (dis) is valid, we suppose
that M,w |=ρ ` ∗ ` and require to show that M,w |=ρ I ∧ `,
i.e., that w = ρ(`) and w ∈ E. That M,w |=ρ ` ∗ ` means that
w ∈ ρ(`) ◦ ρ(`). In particular, ρ(`) ◦ ρ(`) 6= ∅ hence, by disjoint-
ness, ρ(`) ∈ E. We thus get w ∈ ρ(`) ◦ ρ(`) = {ρ(`)} hence
w = ρ(`) and also w ∈ E as required.

(⇒) Assume that (dis) is valid in M , and suppose that w ◦ w 6= ∅.
We require to show that w ∈ E. Let w′ ∈ w ◦w and ρ be such that
ρ(`) = w. By construction, we have that M,w′ |=ρ ` ∗ `, hence by
validity of (dis) we get M,w′ |=ρ I ∧ `, i.e., w′ = ρ(`) = w and
w′ ∈ E, hence w ∈ E as required.

Corollary 4.4. Any separation theory not including the cross-split
property is HyBBI-definable.

Proof. Follows by taking as the defining formula the conjunction
of the relevant formulas from Theorem 4.3 defining the properties
of the theory.

As is also the case for BBI (see Conjecture 3.14), we do not
currently know the status of definability of the cross-split property
in HyBBI, but we suspect that it is not definable even with the extra
power of nominals. This is because a straightforward translation
of the property into HyBBI would require some way of binding
or existentially quantifying nominals, which is not provided by
pure nominals or the @` modality. In Section 7 we add a binder
to HyBBI, which enables us to express cross-split.

5. An axiomatic proof system for HyBBI

Here, we present a Hilbert-style axiomatic proof system for HyBBI,
and show that it is sound with respect to validity in BBI-models;
we examine questions of completeness in Section 6.

Definition 5.1. We define KHyBBI to be the proof system obtained
by extending the proof system KBBI (see Definition 2.4) with the
axioms and rules for nominals and @ given in Figure 1.

Our KHyBBI is based on the proof system for basic hybrid
logic in [1]. The axioms and rules have been chosen to make the
subsequent completeness proof as simple as possible, rather than
for minimality.

Proposition 5.2 (Soundness). Any KHyBBI-provable formula is
valid.

Proof. Let M = 〈W, ◦, E〉 be a BBI-model. Then, assuming A
is KHyBBI-provable, we must show that A is valid in M . It suf-
fices to show that all axioms of KHyBBI are valid and that validity
is preserved by every proof rule of KHyBBI. This is a straight-
forward verification for all the rules and axioms except the two
“bridge” axioms and the two “paste” rules. We just show the cases
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(K@) @`(A→ B) ` @`A→ @`B (Nom) @`k ∧@kA ` @`A
(Self-dual) @`A ` ¬@`¬A and ¬@`¬A ` @`A (Agree) @k@`A ` @`A and @`A ` @k@`A
(@-intro) ` ∧A ` @`A (Bridge ∗) @`(k ∗ k′) ∧@kA ∧@k′B ` @`(A ∗B)
(Refl) ` @`` (Bridge−−∗) @`¬(k −−∗ ¬k′) ∧@kA ∧@k′B ` @`¬(A −−∗ ¬B)
(Sym) @`k ` @k`

` A
(Subst)

` A[θ]

` A
(Gen)

` @`A

@`(k ∗ k′) ∧@kA ∧@k′B ` C k, k′ not in A, B, C or {`}
(Paste ∗)@`(A ∗B) ` C

` ` A
` not in A (Name)

` A

@`¬(k −−∗ ¬k′) ∧@kA ∧@k′B ` C k, k′ not in A, B, C or {`}
(Paste−−∗)@`¬(A −−∗ ¬B) ` C

Figure 1. Rules and axioms for nominals in KHyBBI. Note that θ in the the rule (Subst) is a substitution of nominals for nominals.

of (Bridge ∗) and (Paste−−∗) here, as the others are similar.

Case (Bridge ∗). Let ρ be a valuation for M and let w ∈ W .
Suppose M,w |=ρ @`(k ∗ k′) ∧ @kA ∧ @k′B. Then we have
M,ρ(`) |=ρ k ∗ k′ and M,ρ(k) |=ρ A and M,ρ(k′) |=ρ B. The
first of these means that ρ(`) ∈ w1 ◦ w2 and M,w1 |=ρ k and
M,w2 |=ρ k

′. That is, ρ(`) ∈ ρ(k) ◦ ρ(k′). Thus M,ρ(`) |=ρ

A ∗B, i.e. M,w |=ρ @`(A ∗B) as required.

Case (Paste−−∗). Let ρ be a valuation for M and let w ∈ W .
Supposing the premise of the rule is valid in M and M,w |=ρ

@`¬(A −−∗ ¬B), we have to show M,w |=ρ C. We have
M,ρ(`) |=ρ ¬(A −−∗ ¬B) which means that there exist w′, w′′ ∈
W such that w′′ ∈ ρ(`) ◦ w′ and M,w′ |=ρ A and M,w′′ |=ρ B.
Now define the valuation ρ′ = ρ[k 7→ w′, k′ 7→ w′′], where k and
k′ are the fresh nominals appearing in the premise of the rule. By
construction, and using the fact that ρ and ρ′ agree except possibly
on the fresh nominals k, k′, we have ρ′(k′) ∈ ρ′(`) ◦ ρ′(k) and
M,ρ′(k) |=ρ′ A and M,ρ′(k′) |=ρ′ B. The first of these gives us
M,ρ′(`) |=ρ′ ¬(k −−∗ ¬k′). Putting everything together, we obtain

M,w |=ρ′ @`¬(k −−∗ ¬k′) ∧@kA ∧@k′B

Since the premise of the rule is assumed valid, we obtainM,w |=ρ′

C. Again, since ρ and ρ′ agree except on k, k′, which do not appear
in C, we thus obtain M,w |=ρ C as required.

The following example illustrates how the hybrid axioms and
rules are used in practice.

Example 5.3. The HyBBI-formula> ∗ (I ∧ ¬(` −−∗ ¬A)) ` @`A
is provable in HyBBI.

Proof. Intuitively, the LHS of the formula says that one may find
an empty sub-state to the current state which one can compose with
ρ(`) to satisfy A. This should imply that ρ(`) itself satisfies A.

First, we show that the following formula is provable:

A ∗@`B ` @`B (1)

Let j, k, k′ be fresh nominals not occurring in A, B or {`}. We
have @k′@`B ` @`B an instance of (Agree). By weakening for
∧, we thus obtain

@j(k ∗ k′) ∧@kA ∧@k′@`B ` @`B

Using the fact that k, k′ are fresh, we can apply the rule (Paste ∗)
to derive @j(A ∗@`B) ` @`B. Since the formula

j ∧ (A ∗@`B) ` @j(A ∗@`B)

is an instance of (@-intro), we obtain j ∧ (A ∗@`B) ` @`B by
transitivity, and thus easily we have j ` (A ∗@`B)→ @`B. Since

j is fresh, we obtain A ∗@`B ` @`B as required by applying
(Name).

Next, we show that the following formula is provable:

I ∧ ¬(` −−∗ ¬A) ` @`A (2)

We have ` ∧A ` @`A an instance of (@-intro), whence by contra-
position and use of (Self-dual) we obtain ` ∧@`¬A ` ¬A. Now,
since ` ∗@`¬A ` @`¬A is provable as an instance of (1) above,
we obtain ` ∧ (` ∗@`¬A) ` ¬A. By straightforward manipula-
tions of plain BBI we can prove

(I ∧@`¬A) ∗ ` ` ` ∧ (@`¬A ∗ `)

Thus, by transitivity, we obtain (I ∧@`¬A) ∗ ` ` ¬A. This rear-
ranges to I ∧@`¬A ` ` −−∗ ¬A and then to I ∧ ¬(` −−∗ ¬A) `
¬@`¬A, which yields the required (2) by using (Self-dual).

Now we can supply the required derivation of the formula in
the proposition. We can derive > ∗ (I ∧ ¬(` −−∗ ¬A)) ` > ∗@`A
using (2) and the BBI proof rules for ∗. As > ∗@`A ` @`A
is an instance of (1), we have > ∗ (I ∧ ¬(` −−∗ ¬A)) ` @`A by
transitivity as required.

Interestingly, the converse of the formula in Example 5.3, that
is @`A ` > ∗ (I ∧ ¬(` −−∗ ¬A)), is not generally valid, but is valid
in all single-unit- models (and thus in such models @` is definable
already using plain nominals). Roughly speaking, the RHS of the
formula says that given any starting world w ∈ W we have
w = w ◦ e for some e ∈ E such that ρ(`) ◦ e is defined. This
is true in models with a single unit, but might fail in models with
multiple units. In general, the extra expressivity of the @` modality
beyond that yielded by pure nominals is that it enables us to talk
about worlds not accessible from the current world via the I, ∗ and
−−∗ modalities. (In single-unit models, there are no such worlds.)

6. Completeness for pure extensions of KHyBBI

In this section, we show a parametric completeness result: any
extension of KHyBBI with a set of pure axioms Ax is complete
with respect to the class of BBI-models satisfying Ax. In particular,
we can obtain complete proof systems for many separation theories
simply by adding the axioms defining the theory to KHyBBI.

We follow the basic structure of the corresponding complete-
ness proof for normal hybrid logic in [1], which shows that any
consistent set of formulas has a model based upon “named” maxi-
mal consistent sets. Compared to this proof, we encounter two addi-
tional difficulties. First, we have to work with the residuated binary
connectives ∗ and−−∗, as opposed to a single diamond modality and
its De Morgan dual. Second, we have to show that the model we
construct is a BBI-model, as opposed to an unrestricted frame.
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Definition 6.1 (Consistent set). Let K be any proof system. A set
Γ of formulas is said to be K-inconsistent if there are formulas
A1, . . . , An ∈ Γ such that A1 ∧ . . . ∧An ` ⊥ is provable in K.
Otherwise Γ is called K-consistent.

Definition 6.2 (Maximal consistent set). Let K be any proof sys-
tem. A set Γ of formulas is maximal K-consistent (and we call Γ a
K-MCS) if Γ is K-consistent and any ∆ ⊃ Γ is K-inconsistent.

In the rest of this section, whenever we talk about MCSs, con-
sistency and provability, we always mean with reference to an ar-
bitrary extension KHyBBI + Ax of KHyBBI with a finite set Ax of
axioms expressed as pure formulas.

We begin by recalling some basic facts about MCSs.

Lemma 6.3. For any MCS Γ and formulas A,B, we have

1. if A ` B is provable and A ∈ Γ then B ∈ Γ;
2. > ∈ Γ and ⊥ 6∈ Γ;
3. either A ∈ Γ or ¬A ∈ Γ;
4. A ∧B ∈ Γ iff A,B ∈ Γ;
5. A ∨B ∈ Γ iff A ∈ Γ or B ∈ Γ.

Proof. Standard in all cases.

In the following, we do not refer explicitly to uses of Lemma 6.3,
as we use it so frequently.

Definition 6.4 (Named / pasted MCS). An MCS Γ is said to be
named if there is at least one nominal ` ∈ Γ; any such ` is called a
name for Γ.
Γ is said to be pasted if

• @`(A ∗B) ∈ Γ implies @`(`1 ∗ `2) ∧@`1A ∧@`2B ∈ Γ for
some `1, `2, and
• @`¬(A −−∗ ¬B) ∈ Γ implies @`¬(`1 −−∗ ¬`2) ∧ @`1A ∧

@`2B ∈ Γ for some `1, `2.

Lemma 6.5 (Extended Lindenbaum Lemma). Let N ′ be a count-
ably infinite set of nominals disjoint fromN . If ∆ is a consistent set
of formulas then there is a named, pasted MCS ∆+ (of formulas in
the extended nominal language ofN ∪N ′) such that ∆ ⊆ ∆+.

Proof. Let k0, k1, k2 . . . be an enumeration ofN ′, and let B1, B2,
B3 . . . be an enumeration of all formulas in the extended language
given byN ∪N ′. Given a consistent set ∆ of formulas, we define
a sequence (∆i)i≥0 of sets of formulas as follows:

• ∆0
def
= ∆ ∪ {k0};

• if ∆i ∪ {Bi} is inconsistent then ∆i+1
def
= ∆i;

• if ∆i∪{Bi} is consistent and the formulaBi is not of the form
@`(A ∗B) or @`¬(A −−∗ ¬B), then ∆i+1

def
= ∆i ∪ {Bi};

• if ∆i ∪ {Bi} is consistent and Bi = @`(A ∗B) then

∆i+1
def
= ∆i ∪ {Bi} ∪ {@`(k ∗ k′) ∧@kA ∧@k′B}

where k, k′ are fresh nominals from our enumeration ofN ′;
• if ∆i ∪ {Bi} is consistent and Bi = @`¬(A −−∗ ¬B) then

∆i+1
def
= ∆i ∪ {Bi} ∪ {@`¬(k −−∗ k′) ∧@kA ∧@k′B}

where k, k′ in the last two clauses are fresh nominals from our
enumeration of N ′. We claim that ∆+ def

=
⋃
i≥0 ∆i is a named,

pasted MCS.
First, to see that ∆+ is consistent, it suffices to show that ∆i is

consistent for all i. We proceed by induction on i. In the case i = 0,
we must show that ∆∪{k0} is consistent. If not, then there are for-
mulas A1, . . . , An ∈ ∆ such that, writing A =

∧
1≤i≤nAi, we

have A ∧ k0 ` ⊥ provable. Thus k0 ` ¬A is provable, whence by
the rule (Name) we have ` ¬A provable and thus A ` ⊥ provable,

contradicting the consistency of ∆. Now, assuming that ∆i is con-
sistent, we must show that ∆i+1 is consistent. This is immediate
by induction hypothesis except in the case that Bi = @`(A ∗ B)
or Bi = @`¬(A −−∗ ¬B). We show the case Bi = @`(A ∗ B). In
this case, assume for contradiction that there areA1, . . . , An ∈ ∆i

such that, writing A =
∧

1≤i≤nAi, the following is provable:

A ∧@`(A ∗B) ∧@`(k ∗ k′) ∧@kA ∧@k′B ` ⊥
Thus we can also prove

@`(k ∗ k′) ∧@kA ∧@k′B ` ¬A ∨ ¬@`(A ∗B)

Since k, k′ are fresh nominals by construction, we obtain by apply-
ing (Paste ∗):

@`(A ∗B) ` ¬A ∨ ¬@`(A ∗B)

Thus we obtain A ∧@`(A ∗B) ` ⊥, contradicting the assumed
consistency of ∆i ∪ {Bi}. The case Bi = ¬(A −−∗ ¬B) is similar,
using the rule (Paste−−∗).

Next, we must show that ∆+ is maximal. Suppose that for some
formula A, we have ∆+ ∪ {A} consistent but A 6∈ ∆+. Note that
A appears in our enumeration as Bi say, so by construction it must
be that ∆i ∪ {A} is inconsistent (otherwise A ∈ ∆i+1 ⊆ ∆+).
But then ∆+ ∪ {A} is inconsistent, contradiction.

Next, to see that ∆+ is named, observe that k0 ∈ ∆0 ⊆ ∆+ by
construction.

Finally, we show ∆+ is pasted. First, suppose @`(A∗B) ∈ ∆+.
Note that @`(A ∗B) appears as some Bi in our enumeration. Now
every finite subset of an MCS is consistent, so ∆i ∪ {Bi} must be
consistent. Thus, by construction, we have

@`(k ∗ k′) ∧@kA ∧@k′B ∈ ∆i+1 ⊆ ∆+

as required. For similar reasons, whenever @`(¬(A −−∗ ¬B) ∈ ∆+

we have @`¬(k −−∗ ¬k′) ∧ @kA ∧ @k′B ∈ ∆+. This completes
the proof.

In the following, we define a named set yielded by Γ to be any
set of formulas {A | @`A ∈ Γ} for some nominal `.

Lemma 6.6. Let Γ be an MCS, and let ∆`
def
= {A | @`A ∈ Γ} be

a named set yielded by Γ for each nominal `. Then the following
hold for all nominals `, k:

1. ∆` is an MCS containing `;
2. if ` ∈ ∆k then ∆k = ∆`;
3. @`A ∈ ∆k iff @`A ∈ Γ;
4. if ` is a name for Γ then Γ = ∆`.

Proof. The proof of the analogous result for normal hybrid logic,
stated as Lemma 7.24 in [1], also suffices for our setting.

Definition 6.7. A BBI-frame 〈W, ◦, E〉 is said to be named by
the hybrid valuation ρ if for all w ∈ W there is an ` ∈ N with
ρ(`) = w.

Definition 6.8. Let Γ be a named, pasted MCS. Then the named
model yielded by Γ is defined as MΓ def

= 〈WΓ, ◦Γ, EΓ〉, where:

1. WΓ is the set of all named sets yielded by Γ;
2. ∆1 ◦Γ ∆2

def
= {∆ | A1 ∈ ∆1, A2 ∈ ∆2 implies A1 ∗A2 ∈ ∆};

3. EΓ def
= {∆ | I ∈ ∆}.

The canonical valuation ρΓ for MΓ is defined by

ρΓ(P )
def
= {∆ | P ∈ ∆} P a proposition

ρΓ(`)
def
= {A | @`A ∈ Γ} ` a nominal
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We observe that MΓ is indeed a BBI-frame named by ρΓ: for
any ∆ ∈ WΓ we have ∆ = {A | @`A ∈ Γ} for some `, whence
by definition ρΓ(`) = ∆. We will show that it is also a BBI-model
in Lemma 6.13, and one such that MΓ,∆ |=ρΓ A if and only if
A ∈ ∆ for all ∆,A in Lemma 6.12. In the meantime, let us present
a number of intermediary lemmas.

Lemma 6.9 (Existence Lemma for ∗). For any ∆ ∈ WΓ, if
A1 ∗ A2 ∈ ∆ then there exist ∆1,∆2 ∈ WΓ such that ∆ ∈
∆1 ◦Γ ∆2 and A1 ∈ ∆1, A2 ∈ ∆2.

Proof. Let A1 ∗A2 ∈ ∆. We have ∆ = {A | @`A ∈ Γ} for some
nominal `. Thus @`(A1 ∗ A2) ∈ Γ. As Γ is pasted, we have nom-
inals `1, `2 such that @`(`1 ∗ `2) ∧@`1A1 ∧@`2A2 ∈ Γ. Thus
A1 ∈ ∆1 and A2 ∈ ∆2, where ∆1 = {A | @`1A ∈ Γ} and
∆2 = {A | @`2A ∈ Γ} are named sets yielded by Γ.

It just remains to show that ∆ ∈ ∆1 ◦Γ ∆2. Let B1 ∈ ∆1,
B2 ∈ ∆2. By definition, @`1B1 ∈ Γ and @`2B2 ∈ Γ. As MCSs
are closed under provability and conjunction, we have @`(`1∗`2)∧
@`1B1 ∧ @`2B2 ∈ Γ. Thus, using the rule (Bridge ∗), we have
@`(B1 ∗B2) ∈ Γ. Thus B1 ∗B2 ∈ ∆ as required.

Lemma 6.10. ∆ ∈ ∆1 ◦Γ ∆2 if and only if for all formulas A and
B, A ∈ ∆2 and B ∈ ∆ implies ¬(A −−∗ ¬B) ∈ ∆1.

Proof. We show each direction of the biimplication separately,
making use of the fact that ∆,∆1,∆2 are MCSs by part 1 of
Lemma 6.6.

(⇐) Let A1 ∈ ∆1, A2 ∈ ∆2 and suppose for contradiction that
A1 ∗A2 6∈ ∆. As ∆ is an MCS, ¬(A1 ∗A2) ∈ ∆. By assumption,
¬(A2 −−∗ ¬¬(A1 ∗ A2)) ∈ ∆1. As ∆1 is an MCS, we have A1 ∧
¬(A2 −−∗ (A1 ∗ A2)) ∈ ∆1. But A1 ∧ ¬(A2 −−∗ (A1 ∗A2)) ` ⊥
is provable (since A1 ` A2 −−∗ (A1 ∗A2) is provable). This con-
tradicts the consistency of ∆1. Hence A1 ∗A2 ∈ ∆ as required.

(⇒) Let A ∈ ∆2, B ∈ ∆ and suppose for contradiction that
¬(A −−∗ ¬B) 6∈ ∆1. As ∆1 is an MCS, we have A −−∗ ¬B ∈ ∆1,
so by the main assumption (A −−∗ ¬B) ∗A ∈ ∆. As ∆ is an MCS
and (A −−∗ ¬B) ∗A ` ¬B is provable, ¬B ∈ ∆. This contradicts
the consistency of ∆, so ¬(A −−∗ ¬B) ∈ ∆1 as required.

Lemma 6.11 (Existence Lemma for −−∗). For any ∆ ∈ WΓ, if
¬(A1 −−∗ ¬A2) ∈ ∆ then there exist ∆′,∆′′ ∈ WΓ such that
∆′′ ∈ ∆ ◦Γ ∆′ and A1 ∈ ∆′, A2 ∈ ∆′′.

Proof. Assume ¬(A1 −−∗ ¬A2) ∈ ∆. We have ∆ = {A |
@`A ∈ Γ} for some nominal `. Thus @`¬(A1 −−∗ ¬A2) ∈
Γ. Since Γ is pasted, we have @`¬(`1 −−∗ ¬`2) ∧ @`1A1 ∧
@`2A2 ∈ Γ for some `1, `2. Thus A1 ∈ ∆′ and A2 ∈ ∆′′, where
∆′ = {A | @`1A ∈ Γ} and ∆′′ = {A | @`2A ∈ Γ} are named
sets yielded by Γ.

It just remains to show that ∆′′ ∈ ∆ ◦Γ ∆′. According
to Lemma 6.10, it suffices to show that A ∈ ∆′ and B ∈
∆′′ implies ¬(A −−∗ ¬B) ∈ ∆. Supposing A ∈ ∆′, B ∈
∆′′, we have @`1A ∈ Γ and @`2B ∈ Γ. Thus we obtain
@`¬(`1 −−∗ ¬`2) ∧@`1A ∧@`2B ∈ Γ. Since Γ is an MCS it is
closed under the rule (Bridge−−∗), whence @`¬(A −−∗ ¬B) ∈ Γ.
Thus ¬(A −−∗ ¬B) ∈ ∆ as required.

Lemma 6.12 (Truth Lemma). For any HyBBI-formula A and
∆ ∈WΓ, we have MΓ,∆ |=ρΓ A if and only if A ∈ ∆.

Proof. By structural induction on A. Throughout, we make use of
the fact that any named set yielded by Γ is also an MCS, which is
guaranteed by part 1 of Lemma 6.6.

Case A = P . Using the definition of ρΓ, we have as required:

MΓ,∆ |=ρΓ P ⇔ ∆ ∈ ρΓ(P ) ⇔ P ∈ ∆

Case A = `. Using the definition of ρΓ, we have

MΓ,∆ |=ρΓ ` ⇔ ∆ = ρΓ(`) ⇔ ∆ = {A | @`A ∈ Γ}
Now, going from left to right, we have ∆ = {A | @`A ∈ Γ} and
thus ` ∈ ∆ by part 1 of Lemma 6.6. Conversely, assuming ` ∈ ∆,
we have that ∆ = {A | @kA ∈ Γ} for some k, and by part 2 of
Lemma 6.6 we obtain ∆ = {A | @`A ∈ Γ} as required.

Case A = >. As> is in any MCS, we have> ∈ ∆, so as required

MΓ,∆ |=ρΓ > ⇔ always ⇔ > ∈ ∆

Case A = ⊥. As ⊥ cannot be in any MCS, we have ⊥ 6∈ ∆, so as
required

MΓ,∆ |=ρΓ ⊥ ⇔ never ⇔ ⊥ ∈ ∆

Case A = ¬A′. Using the induction hypothesis for A′, we have

MΓ,∆ |=ρΓ ¬A′ ⇔ MΓ,∆ 6|=ρΓ A
′ ⇔ A′ 6∈ ∆

Since ∆ is an MCS, we have A′ 6∈ ∆ if and only if ¬A′ ∈ ∆,
which completes the case.

CaseA = A1∧A2. Using the induction hypothesis forA1 andA2,
we have:

MΓ,∆ |=ρΓ A1 ∧A2

⇔ MΓ,∆ |=ρΓ A1 and MΓ,∆ |=ρΓ A2

⇔ A1 ∈ ∆ and A2 ∈ ∆

To complete the case, we observe that as ∆ is an MCS it is the case
that A1, A2 ∈ ∆ if and only if A1 ∧A2 ∈ ∆.

Cases A = A1 ∨A2, A = A1 → A2. Similar to the previous case.

CaseA = I. Using the definition ofEΓ, we easily have as required:

MΓ,∆ |=ρΓ I ⇔ ∆ ∈ Ec ⇔ I ∈ ∆

CaseA = A1 ∗A2. Using the induction hypothesis forA1 andA2,
we have:

MΓ,∆ |=ρΓ A1 ∗A2

⇔ ∆ ∈ ∆1 ◦Γ ∆2 and MΓ,∆1 |=ρΓ A1 and MΓ,∆2 |=ρΓ A2

⇔ ∆ ∈ ∆1 ◦Γ ∆2 and A1 ∈ ∆1 and A2 ∈ ∆2

Thus, going from left to right, we immediately get A1 ∗A2 ∈ ∆ as
required from the definition of ◦Γ.

Going from right to left, we have A1 ∗ A2 ∈ ∆ and must
construct the required named sets ∆1,∆2 yielded by Γ satisfying
the statement above. This is precisely guaranteed by our Existence
Lemma for ∗ (Lemma 6.9).

Case A = A1 −−∗ A2. Using the induction hypothesis for A1 and
A2, we have:

MΓ,∆ |=ρΓ A1 −−∗ A2

⇔ ∀∆′,∆′′. ∆′′ ∈ ∆ ◦Γ ∆′ and MΓ,∆′ |=ρΓ A1 implies
MΓ,∆′′ |=ρΓ A2

⇔ ∀∆′,∆′′. ∆′′ ∈ ∆ ◦Γ ∆′ and A1 ∈ ∆′ implies A2 ∈ ∆′′

Thus, going from right to left, assume that A1 −−∗ A2 ∈ ∆,
A1 ∈ ∆′ and ∆′′ ∈ ∆ ◦Γ ∆′. By the definition of ◦Γ, we have
(A1 −−∗ A2) ∗ A1 ∈ ∆′′, whence we obtain A2 ∈ ∆′′ as required
by modus ponens.

Going from left to right, however, we must show that A1 −−∗
A2 ∈ ∆ given the above implication. We show the contrapositive.
Assume that A1 −−∗ A2 6∈ ∆, which since ∆ is an MCS means
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that ¬(A1 −−∗ A2) ∈ ∆. We must construct named sets ∆′,∆′′

yielded by Γ, with ∆′′ ∈ ∆ ◦Γ ∆′ and A1 ∈ ∆′ but A2 6∈ ∆′′,
i.e. ¬A2 ∈ ∆. This is provided by our Existence Lemma for −−∗
(Lemma 6.11).

Case A = @`B. Using the induction hypothesis for B, we have:

MΓ,∆ |=ρΓ @`B ⇔ MΓ, ρΓ(`) |=ρΓ B
⇔ B ∈ ρΓ(`)
⇔ B ∈ {A | @`A ∈ Γ}
⇔ @`B ∈ Γ

Now, using part 3 of Lemma 6.6, we have that @`B ∈ Γ if and only
if @`B ∈ ∆ (since ∆ is a named set yielded by Γ). This completes
the case, and the proof.

Lemma 6.13. Let MΓ = 〈WΓ, ◦Γ, EΓ〉 be the named model
yielded by the named, pasted MCS Γ. Then MΓ is a BBI-model.

Proof. To show that MΓ is a BBI-model, we have to show that it
satisfies the axioms given in Definition 2.2.

Commutativity. It suffices to show that ∆1 ◦Γ ∆2 ⊆ ∆2 ◦Γ ∆1.
Let ∆ ∈ ∆1 ◦Γ ∆2, and suppose A1 ∈ ∆1, A2 ∈ ∆2. To show
∆ ∈ ∆2 ◦Γ ∆1, we have to showA2 ∗A1 ∈ ∆. As ∆ ∈ ∆1 ◦Γ ∆2,
we have A1 ∗ A2 ∈ ∆. As MCSs are closed under modus ponens
and A1 ∗A2 ` A2 ∗A1 is provable, we have A2 ∗ A1 ∈ ∆ as
required.

Associativity. It suffices by commutativity to show ∆1 ◦Γ (∆2 ◦Γ
∆3) ⊆ (∆1 ◦Γ ∆2) ◦Γ ∆3. Assume that ∆ ∈ ∆1 ◦Γ (∆2 ◦Γ ∆3),
which means that for some ∆′ ∈ ∆2◦Γ∆3 we have ∆ ∈ ∆1◦Γ∆′.
Using part 1 of Lemma 6.6, we have `1, `2, `3 such that `i ∈ ∆i

for each i ∈ {1, 2, 3}. As ∆′ ∈ ∆2 ◦Γ ∆3, we have `2 ∗ `3 ∈ ∆′.
Thus, as ∆ ∈ ∆1 ◦Γ ∆′, we have `1 ∗ (`2 ∗ `3) ∈ ∆. By ap-
plying associativity, `1 ∗ (`2 ∗ `3) ` (`1 ∗ `2) ∗ `3 is provable, so
(`1 ∗ `2) ∗ `3 ∈ ∆. By two applications of the Existence Lemma
for ∗ (Lemma 6.9) we obtain named sets Σ1,Σ2,Σ3,∆

′′ ∈ WΓ

such that `i ∈ Σi for each i ∈ {1, 2, 3}, and ∆ ∈ ∆′′ ◦Γ Σ3

and ∆′′ ∈ Σ1 ◦Γ Σ2. By part 2 of Lemma 6.6, Σi = ∆i for each
i ∈ {1, 2, 3}. Hence ∆ ∈ (∆1 ◦Γ ∆2) ◦Γ ∆3 as required.

Unit law. We must show that EΓ ◦Γ ∆ = {∆} for any ∆ ∈WΓ.
First we show that EΓ ◦Γ ∆ ⊆ {∆}. Suppose ∆′ ∈ EΓ ◦Γ ∆,
i.e. there is a ∆E ∈ EΓ such that ∆′ ∈ ∆E ◦Γ ∆. We need to
show ∆′ = ∆. First suppose A ∈ ∆, and note that I ∈ ∆E

by definition. By definition of ◦Γ we have I ∗ A ∈ ∆′, and as
I ∗A ` A is provable we must have A ∈ ∆′. Thus ∆′ ⊇ ∆. To
see that ∆′ = ∆ as required, we just observe that if ∆′ ⊃ ∆ then,
as ∆′ is consistent, ∆ is not maximal, contradiction.

We still need to show that ∆ ∈ EΓ◦Γ ∆, i.e. that ∆ ∈ ∆E ◦Γ ∆
for some ∆E ∈ EΓ. Using part 1 of Lemma 6.6, we have some
` ∈ ∆. Since ` ` I ∗ ` is provable, we have I ∗ ` ∈ ∆. Using
the Existence Lemma for ∗ (Lemma 6.9) we obtain named sets
∆E ,∆

′ ∈WΓ such that ∆ ∈ ∆E ◦Γ ∆′ and I ∈ ∆E and ` ∈ ∆′.
Thus ∆E ∈ EΓ and, by part 2 of Lemma 6.6, ∆′ = ∆. This
completes the proof.

Lemma 6.14. Let M = 〈W, ◦, E〉 be a BBI-model named by ρ
and let A be a pure formula. Suppose that M,w |=ρ A[θ] for all
w ∈ W and substitutions θ of nominals for nominals. Then A is
valid in M .

Proof. Letting ρ′ be a hybrid valuation and w ∈ W , we must
show that M,w |=ρ′ A. Since M is named by ρ, we have that
for any ` ∈ N there is a k ∈ N such that ρ(k) = ρ′(`). Thus we

can define the substitution θ of nominals for nominals by: θ(`) is
the first k ∈ N with ρ(k) = ρ′(`). By hypothesis, we have that
M,w |=ρ A[θ] for all w ∈W .

We can now prove by structural induction on A that M,w |=ρ′

A. In the case that A is a nominal `, we must show that ρ′(`) = w,
and are done since by assumption w = ρ(`[θ]) = ρ′(`). Note that
A cannot be a propositional variable since it is assumed pure. The
other cases follow by induction hypothesis.

Theorem 6.15 (Completeness). Let Ax be a set of pure HyBBI-
formulas. Then if a HyBBI-formula is valid in the class of BBI-
models satisfying Ax, then it is provable in KHyBBI + Ax.

Proof. Suppose A is valid in all BBI-models M ∈ C, but not
provable in KHyBBI + Ax. Then {¬A} is consistent. Using the
Extended Lindenbaum Lemma (6.5), we can construct a named,
pasted MCS Γ ⊇ {¬A}. Now let MΓ = 〈WΓ, ◦Γ, EΓ〉 be the
named model yielded by Γ, and ρΓ the corresponding canonical
valuation. By Lemma 6.13, MΓ is a BBI-model.

Furthermore, for any pure formula B ∈ Ax and any nominal
substitution θ, we have that ` B[θ] is provable (using the rule
(Subst)), which means that B[θ] ∈ ∆ for all ∆ ∈WΓ since MCSs
are closed under provability. By the Truth Lemma, we obtain

MΓ,∆ |=ρΓ B[θ] for all B ∈ Ax, ∆ ∈WΓ, and substitutions θ

Thus, by Lemma 6.14, all formulas in Ax are valid in MΓ, i.e.
MΓ ∈ C. Thus, by the main assumption, A is valid in MΓ.

Now, since Γ is named by construction, we have Γ ∈ WΓ by
part 4 of Lemma 6.6. Since ¬A ∈ Γ, we have MΓ,Γ |=ρΓ ¬A by
the Truth Lemma. That is, MΓ,Γ 6|=ρΓ A. Thus A is not valid in
MΓ, contradiction. We concludeA is provable in KHyBBI + Ax as
required.

Corollary 6.16. Let S be any separation theory from Definition 3.1
not including the cross-split property, and let Ax be the set of pure
HyBBI formulas defining S, as given by Theorem 4.3.

Then a HyBBI-formula is provable in KHyBBI +Ax if and only
if it is valid in the class of BBI-models satisfying the separation
theory S.

Proof. Follows from Proposition 5.2, Theorem 6.15 and the fact
that the pure formulas Ax collectively define the class of BBI-
models satisfying S, guaranteed by Theorem 4.3.

7. HyBBI with the ↓ binder
In this section, we study the extension of HyBBI with the ↓ binder
from hybrid logic [1–3]. Specifically, we show that the elusive
cross-split property from Definition 3.1 is definable in this exten-
sion, called HyBBI(↓), and we show how to extend our soundness
and parametric completeness results for HyBBI in the previous
sections to the setting of HyBBI(↓).

7.1 Formulas and expressivity
Definition 7.1 (HyBBI(↓)-formula). A HyBBI(↓)-formula is
defined as a HyBBI-formula (Defn. 4.1), except that if A is a
HyBBI(↓)-formula and ` a nominal then ↓`. A is also a HyBBI(↓)-
formula.

Definition 7.2 (HyBBI(↓)-validity). Given any hybrid valuation
ρ for a BBI-model M = 〈W, ◦, E〉, and any w ∈ W , we extend
the definition of the forcing relation for HyBBI in Defn. 4.2 by the
following clause for the ↓ binder:

M,w |=ρ ↓`. A ⇔ M,w |=ρ[`:=w] A
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where ρ[` := w] is notation for the hybrid valuation defined as ρ
except that ρ[` := w](`)

def
= w.

The definition of validity for HyBBI then extends to HyBBI(↓)
in the obvious way.

Proposition 7.3. The cross-split property (see Definition 3.1) is
definable in HyBBI(↓) via the following pure formula:

(a ∗ b) ∧ (c ∗ d) (cs)
` @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad)

∧@b(> ∗ ↓bc.@b(> ∗ ↓bd .@b(bc ∗ bd)

∧@c(ac ∗ bc) ∧@d(ad ∗ bd)))))

Proof. We use the following formula abbreviations:

A
def
= @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad) ∧B))

B
def
= @b(> ∗ ↓bc.@b(> ∗ ↓bd .@b(bc ∗ bd) ∧ C))

C
def
= @c(ac ∗ bc) ∧@d(ad ∗ bd)

Using the fact that ac, ad and a are distinct nominals, we have for
any BBI-model M = 〈W, ◦, E〉, valuation ρ and w ∈W ,

M,w |=ρ @a(> ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad) ∧B))
⇔ M,ρ(a) |=ρ > ∗ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad) ∧B)
⇔ ρ(a) ∈ w′ ◦ w1 and

M,w1 |=ρ ↓ac.@a(> ∗ ↓ad .@a(ac ∗ ad) ∧B)
⇔M,w1 |=ρ[ac:=w1] @a(> ∗ ↓ad .@a(ac ∗ ad) ∧B)
⇔M,ρ(a) |=ρ[ac:=w1] > ∗ ↓ad .@a(ac ∗ ad) ∧B
⇔ ρ(a) ∈ w′′ ◦ w2 and

M,w2 |=ρ[ac:=w1] ↓ad .@a(ac ∗ ad) ∧B
⇔M,w2 |=ρ[ac:=w1,ad:=w2] @a(ac ∗ ad) ∧B
⇔M,ρ(a) |=ρ[ac:=w1,ad:=w2] (ac ∗ ad) ∧B

⇔ ρ(a) ∈ w1 ◦ w2 and M,ρ(a) |=ρ[ac:=w1,ad:=w2] B

By a similar chain of reasoning, we have

M,ρ(a) |=ρ[ac:=w1,ad:=w2] B
⇔ ρ(b) ∈ w3 ◦ w4 and

M,ρ(b) |=ρ[ac:=w1,ad;=w2,bc:=w3,bd:=w4] C

Finally, we have

M,ρ(b) |=ρ[ac:=w1,ad;=w2,bc:=w3,bd:=w4] C
⇔ ρ(c) ∈ w1 ◦ w3 and ρ(d) ∈ w2 ◦ w4

Putting everything together, we have

M,w |=ρ A
⇔ ∃w1, w2, w3, w4. ρ(a) ∈ w1 ◦ w2, ρ(b) ∈ w3 ◦ w4,

ρ(c) ∈ w1 ◦ w3, ρ(d) ∈ w2 ◦ w4

With the above equivalence for A in place, we can now show that
(cs) defines the cross-split property of Definition 3.1.

(⇒) Suppose M has the cross-split property. We require to show
that the formula (cs) is valid in M , i.e. that if M,w |=ρ (a ∗ b) ∧
(c∗d) thenM,w |=ρ A. SupposingM,w |=ρ (a∗ b)∧ (c∗d), we
have w ∈ (ρ(a)◦ρ(b))∩ (ρ(c)◦ρ(d)). By the cross-split property,
there then exist ac, ad , bc, bd ∈ W such that ρ(a) ∈ ac ◦ ad ,
ρ(b) ∈ bc ◦ bd , ρ(c) ∈ ac ◦ bc and ρ(d) ∈ ad ◦ bd . Thus, by the
equivalence above, M,w |=ρ A as required.

(⇐) Suppose the formula (cs) is valid in M . We require to show
that M has the cross-split property. Suppose w ∈ (t ◦u)∩ (v ◦w).
Define a hybrid valuation ρ for M by

ρ(a) = t ρ(b) = u ρ(c) = u ρ(d) = v

where a, b, c, d are distinct nominals. We have that M,w |=ρ

(a ∗ b)∧ (c ∗ d). Thus, as (cs) is valid in M , we have M,w |=ρ A.
Using the equivalence above, there then exist tv , tw , uv , uw ∈ W

such that t ∈ tv ◦ tw , u ∈ uv ◦ uw , v ∈ tv ◦ uv and w ∈ tw ◦ uw
as required.

The ↓ binder of HyBBI(↓) also allows us to encode the defi-
nition of the overlapping conjunction ∪∗ of separation logic, which
has been used in specifying and verifying programs manipulating
data structures with intrinsic sharing [15, 25]. In these works, ∪∗ is
introduced as an new primitive connective, defined by extending
the standard forcing relation for BBI (Definition 2.3) as follows:

M,w |=ρ A1 ∪∗ A2

⇔ ∃w1, w2, w3, w
′, w′′ ∈W.

w′ ∈ w1 ◦ w2 and w′′ ∈ w2 ◦ w3 and w ∈ w′ ◦ w3

and M,w′ |=ρ A1 and M,w′′ |=ρ A2

We give below an equivalent formulation of A1 ∪∗ A2 solely
in terms of HyBBI(↓) connectives. We conjecture that this is not
possible in BBI (for arbitrary A1 and A2).

Proposition 7.4. For any HyBBI(↓) formulas A1 and A2, the
overlapping conjunction A1 ∪∗ A2 is definable via the following
HyBBI(↓) formula, where ` and `s do not appear free in A1 or
A2:

↓`.> ∗ ↓`s.@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s

Proof. Let M = 〈W, ◦, E〉 be a BBI-model, ρ a valuation for M ,
and w ∈W .
M,w |=ρ ↓`.> ∗ ↓`s.@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s

⇔M,w |=ρ[`:=w] > ∗ ↓`s.@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s
⇔ w ∈ w′ ◦ ws and

M,ws |=ρ[`:=w] ↓`s.@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s
⇔M,w |=ρ[`:=w,`s:=ws] ¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s

⇔ ∃w1, w2, w3, w
′′. w′′ ∈ w1 ◦ w2 and w ∈ w′′ ◦ w3

and M,w1 |=ρ′ ¬(`s −−∗ ¬A1) and M,w2 |=ρ′ ¬(`s −−∗ ¬A2)
and M,w3 |=ρ′ `s (letting ρ′ = ρ[` := w, `s := ws])

Notice now that
M,w1 |=ρ[`:=w,`s:=ws] ¬(`s −−∗ ¬A1)

⇔ ∃w′1, w′′1 . w′1 ∈ w1 ◦ w′′1 and M,w′′1 |=ρ[`:=w,`s:=ws] `s
and M,w′1 |=ρ[`:=w,`s:=ws] A1

⇔ ∃w′1. w′1 ∈ w1 ◦ ws and M,w′1 |=ρ[`:=w,`s:=ws] A1

Consequently,

M,w |=ρ ↓`.> ∗ ↓`s.@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s
⇔ ∃w1, w2, ws, w

′
1, w

′
2, w

′′. w′′ ∈ w1 ◦ w2 and w ∈ w′′ ◦ ws
and w′1 ∈ w1 ◦ ws and w′2 ∈ w2 ◦ ws
and M,w′1 |=ρ′ A1 and M,w′2 |=ρ′ A2

Since ◦ is commutative and associative, and ` and `s are suffi-
ciently fresh, this is equivalent to M,w |=ρ A1 ∪∗ A2.

Another variant of the overlapping conjunction was introduced
by Cherini and Blanco [10] to deal with some forms of spec-
ified sharing. They define an alternative, three-place connective
A1〈∪∗ : B〉A2 which tags the shared core of A1 and A2 with a for-
mulaB that it satisfies. The satisfaction of such a formula is defined
as follows:

M,w |=ρ A1〈∪∗ : B〉A2

⇔ ∃w1, w2, w3, w
′, w′′ ∈W.

w′ ∈ w1 ◦ w2 and w′′ ∈ w2 ◦ w3 and w ∈ w′ ◦ w3

and M,w′ |=ρ A1 and M,w′′ |=ρ A2 and M,w2 |=ρ B

It is easy to modify the formula of Proposition 7.4 so as to ac-
commodate this variant. The three-place connective A1〈∪∗ : B〉A2

of [10] is definable using the following HyBBI(↓) formula, para-
metric in A1, A2 and B:

↓`.> ∗ ↓`s. B ∧@`¬(`s −−∗ ¬A1) ∗ ¬(`s −−∗ ¬A2) ∗ `s
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7.2 Proof theory, soundness and completeness
Definition 7.5. We define KHyBBI(↓) to be the proof system ob-
tained by adding the following axiom schema to KHyBBI:

(Bind ↓. ) ` @j(↓`. B ↔ B[j/`])

Lemma 7.6 (Nominal Substitution Lemma). We have for any
model M = 〈W, ◦, E〉, hybrid valuation ρ, HyBBI(↓)-formula
A and nominals j, `,

M,ρ(j) |=ρ A[j/`] ⇔ M,ρ(j) |=ρ[`:=ρ(j)] A

where [j/`] is a (capture-avoiding) nominal substitution.

Proof. By structural induction on A. The cases not involving nom-
inals are straightforward. We examine the nominal cases, making
use of the identity ρ[` := ρ(j)](k) = ρ(k[j/`]):

Case A = k ∈ N . The required equivalence becomes:

M,ρ(j) |=ρ k[j/`]⇔M,ρ(j) |=ρ[`:=ρ(j)] k

i.e. ρ(j) = ρ(k[j/`])⇔ ρ(j) = ρ[` := ρ(j)](k)

which follows from the identity above.

Case A = @kB. We have (@kB)[j/`] = @k[j/`]B[j/`] (noting
that @ is not a binder, so the nominal substitution applies to the
argument k), and proceed as follows:

M,ρ(j) |=ρ @k[j/`]B[j/`]

⇔M,ρ(k[j/`]) |=ρ B[j/`]

⇔M,ρ[` := ρ(j)](k) |=ρ B[j/`] (by above identity)
⇔M,ρ[` := ρ(j)](k) |=ρ[`:=ρ(j)] B (by ind. hyp.)
⇔M,ρ(j) |=ρ[`:=ρ(j)] @kB

Case A = ↓k.B. First we look at the subcase where k 6= `. In
this case, we have (↓k.B)[j/`] = ↓k.B[j/`], and can proceed as
follows:

M,ρ(j) |=ρ ↓k.B[j/`]

⇔M,ρ(j) |=ρ[k:=ρ(j)] B[j/`]

⇔M,ρ(j) |=ρ[k:=ρ(j)][`:=ρ(j)] B (by ind. hyp.)
⇔M,ρ(j) |=ρ[`:=ρ(j)][k:=ρ(j)] B (since k 6= `)
⇔M,ρ(j) |=ρ[`:=ρ(j)] ↓k.B

In the subcase k = `, we have (↓k.B)[j/`] = ↓`. B (since ` is
bound in ↓k.B), and instead proceed as follows:

M,ρ(j) |=ρ ↓`. B ⇔M,ρ(j) |=ρ[`:=ρ(j)] B

⇔M,ρ(j) |=ρ[`:=ρ(j)][`:=ρ(j)] B

⇔M,ρ(j) |=ρ[`:=ρ(j)] ↓`. B
This completes all cases.

Proposition 7.7 (Soundness). Any KHyBBI(↓)-provable formula is
valid.

Proof. Given the soundness of KHyBBI (Proposition 5.2), we just
need to show that the new axiom (Bind ↓. ) is valid in all BBI-
models. Let M = 〈W, ◦, E〉 be a BBI-model, let ρ be a valuation
for M and let w ∈W . We need to show that

M,w |=ρ @j((↓`. B)↔ B[j/`])

i.e. M,ρ(j) |=ρ ↓`. B ⇔M,ρ(j) |=ρ B[j/`]

i.e. M,ρ(j) |=ρ[`:=ρ(j)] B ⇔M,ρ(j) |=ρ B[j/`]

which is precisely guaranteed by our Nominal Substitution Lemma
(that is, Lemma 7.6).

We can obtain a parametric completeness result for KHyBBI(↓)
by repeating the Lindenbaum model construction for KHyBBI in
section 6. The only point of difference is that the crucial Truth
Lemma needs to be extended to account for the ↓ binder case
(cf. [3]).

Lemma 7.8 (Extended Truth Lemma). For any HyBBI(↓)-formula
A and ∆ ∈WΓ, we have MΓ,∆ |=ρΓ A if and only if A ∈ ∆.

Proof. By structural induction on A, with all cases except A =
↓`. B covered by Lemma 6.12. In this case, using the fact that
∆ = {A | @jA ∈ Γ} for some nominal j, we proceed as follows:

MΓ,∆ |=ρΓ ↓`. B ⇔MΓ,∆ |=ρΓ[`:=∆] B

⇔MΓ,∆ |=ρΓ[`:=ρΓ(j)] B

⇔MΓ,∆ |=ρΓ B[j/`] (by Lemma 7.6)

⇔ B[j/`] ∈ ∆ (by ind. hyp.)
⇔ @jB[j/`] ∈ Γ

Now since Γ is an MCS and thus closed under (K@) and the new
axiom (Bind ↓. ), we have @jB[j/`] ∈ Γ if and only if @j ↓`. B ∈
Γ if and only if ↓`. B ∈ ∆, which completes the case.

Theorem 7.9 (Completeness). Let Ax be any set of pure HyBBI(↓)-
formulas. Then if a HyBBI(↓)-formula is valid in the class of
BBI-models satisfying Ax, then it is provable in KHyBBI(↓) + Ax.

Proof. Exactly as Theorem 6.15, using the Extended Truth Lemma
(Lemma 7.8) for HyBBI(↓) in place of Lemma 6.12.

Corollary 7.10. Let S be any separation theory from Defini-
tion 3.1, and let Ax be the set of pure HyBBI(↓) formulas defining
the properties S, as given by Theorem 4.3 and Proposition 7.3.

Then a HyBBI(↓)-formula is provable in KHyBBI(↓) + Ax if
and only if it is valid in the class of BBI-models satisfying the
separation theory S.

Proof. Follows from Proposition 7.7, Theorem 7.9 and the defin-
ability results in Theorem 4.3 and Proposition 7.3.

8. Conclusions and future work
In this paper, we show that many separation theories that arise nat-
urally in applications of separation logic are not definable in the
standard propositional basis for separation logic, namely BBI. To
overcome these limitations in expressivity, we introduce new hy-
brid versions of BBI, obtained by marrying BBI with the machin-
ery of hybrid logics. In addition, we show how to obtain axiomatic
proof systems for these hybrid logics that are sound and complete
for any separation theory obtained by combining properties from a
list of those we found in the separation logic literature.

In future work, we plan to explore possible applications of our
hybrid logics to program analysis, e.g. by adding support for nomi-
nals to separation logic. This would allow for more expressive pro-
gram specifications, and for instance, as a conjecture, would cap-
ture the immutable specs introduced by David and Chin [11]. In
these specifications, some parts of the heap are tagged as immutable
using the syntax A@I , as in the following specification of a func-
tion that computes the length of a linked list given as argument:

{list(x, n)@I} length(x) {ret = n}

where list(x, n) is an (inductive) predicate describing a linked list
of length n starting at address x, and ret is the return value of the
function. Notice that immutable parts of the heap are not repeated

12 2013/6/7



in the post-condition; their presence is implicit. We could represent
such a triple using nominals as

{list(x, n) ∧ `} length(x) {` ∧ ret = n}

which stipulates that the heap ` of the precondition is found intact
in the post.

More broadly, we hope that our introduction of more expressive
intermediaries between BBI and full first-order logic will help
facilitate the expression and verification of more complex program
properties, particularly those involving overlapping data structures.
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