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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

A simple model of distributed Genetic Improvement running in parallel across a local area
network in which start/stop commands are sent to measuring devices calculates a minimum
usable software mutation effect based on the analogue to digital convert (ADC)’s resolution.
With modern low cost power monitors, the high speed Ethernet LAN’s jitter and delays appear
to have little effect. Where the software to be improved permits it, optimal test duration is
inversely proportionate to minimum mutation effect size, typically well under a second.
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1 Introduction

The widespread adoption of fully functional mobile computers in the form of smartphones, has thrust soft-
ware energy usage and its effect on battery life into the limelight. Evolutionary computing [Goldberg,
1989] can be incorporated into product development. Usually this is done by representing many candi-
date product designs as “chromosomes” within the EC’s population. There are artificial rules for making
changes to designs (mutations) and for combining designs (crossover). New designs are created from the
better members of the population and the worse are discarded and the Darwinian [Darwin, 1859] process
of selection and breeding from the fitter continues through a sequence of generations. EC has been highly
successful at inventing new designs [Koza et al., 2003]. Of fundamental importance is deciding if a design
is fit or not.

In many cases the quality of designs is calculated directly from each mutated design by using simulators
before the design is manufactured. In the case of EC, it is primarily necessary that the simulation be
detailed enough so that it can tell automatically a better design from an already good design. In the case of
simple electronics such high quality simulator may exist. However even in the case of single chip devices,
such simulators run several orders of magnitude slower that the software running on the chip and good
simulators for the whole of a portable device may not be feasible. So for feasibility, cost, credibility and
speed there is increasing interest in optimising portable electronic devices by using real devices and power
monitors to measure their true energy consumption and use it as part of the EC fitness function [Bruce,
2015]. For this to be viable, it must be possible to speedily mutate the design, load it into the device and
test it. Previously this has meant using reconfigurable hardware (i.e. “Evolvable hardware”) often based on
Xilinx FPGAs [Thompson, 1996]. However with the advent of Genetic Improvement (GI) [Langdon, 2015]
it is increasingly common to view software as mutable and apply EC directly to it. In the case of reducing
energy consumption this has been via simulation [White et al., 2008; Bruce, 2015] or using linear models
of energy consumption [Schulte et al., 2014]. However there is great interest in using real measurements.
Although our immediate use case is GI and the evolution of better software, here we are concerned with
the practical limits of using real world measuring devices in EC.

The next section presents a mathematical model of the accuracy of a single measuring device directly con-
nected to single test device. Since fitness testing is usually the bottleneck in EC, it is common to consider
running fitness tests in parallel [Stender, 1993]. Section 3 expands the model of discretised measurement to
a high speed Ethernet local area network based distributed system of dozens of computer hardware under
test. Since Ethernet is a stochastic protocol, network delays are necessarily variable. Section 4 calculates
that the best tests will be surprisingly short, under one second. This is in keeping with our view that often
too much care is taken to get an accurate fitness value, where it is only necessary to be able to tell a good
mutant from a less good one and even this can be subject to a fair degree of noise as long as the noise is
unbiased [Langdon, 2011]. Section 5 discusses the results in Section 4 and ways to avoid EC degenerat-
ing into random search. Section 6 considers three alternatives to using LAN messages to synchronise the
software being tested with the distributed measuring device. Section 7 concludes.

2 Directly Connected Monitor

Figure 1 shows a schematic of a general computerised measuring system that might be used to automatically
measure physical components of an EC fitness function. In EC the “Physical system” will be subject
to mutations taken from the current population and the system in Figure 1 will attempt to quantify the
mutation’s effect. Our model applies generally to EC using physical measurement.

In the case of Genetic Improvement, the mutation is applied to the software running on the physical devices
(e.g. a smart phone) and the ADC will measure its power consumption. Since phones operate at about
5 volts little signal conditioning other than a fixed resistor is needed to convert the analogue signal (the
phone’s power draw) into a voltage suitable for the ADC.
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Figure 1: Typical modern measuring and monitoring systems interface to the real world (Physical system)
via an analogue signal conditioning unit, a measuring device and an Analogue to Digital Converter (ADC).
Signal conditioning might amplify the analogue input and/or filter the signal. E.g. in a central heating ther-
mostat, it might insulate a thermistor from the air in the room to prevent the heater responding immediately
to short term fluctuations, e.g. caused by someone opening a door to exit the building and then closing it
behind themselves. The conditioned signal is converted into an analogue electrical system by a physical
measuring device (e.g. a thermocouple) which is then converted into a digital signal by the ADC which is
then read periodically at a fixed rate by the computer.

The simple model we present is potentially suitable for the very high frequency response that modern os-
cilloscopes are capable of. It is possible that oscilloscopes operating above 100 MHz might measure the
power consumption of individual software method calls. Whilst such fine temporal resolution seems pos-
sible, given the complexity of smart-phones one would need to be very careful to ensure power consumed
while the method was executing is directly and only due to the method itself and not due to incidental
effects or the cross coupling between different software running on the phone e.g. via shared caches. Simi-
larly the power consumed by the CPU might be confounded by other activities particularly the screen, radio
links and GPS. Since such oscilloscopes cost many thousands of pounds we will concentrate on automated
power monitors costing a few tens of pounds each. Notice that although they cannot measure very high
frequency (short duration) effects, they can still accurately measure average power consumption. Even
if there is significant amounts of power at high frequency, it does not disappear when measured at lower
frequencies and (assuming there are no serious aliasing effects) it simply contributes to the low frequency
average.

The simple model presented in Figure 2 assumes running the test causes the power consumption to rise
but that the energy monitoring is quantised both into discrete time samples and measurements of power
consumption are also discrete. It assumes the power monitor is not synchronised to the start of the test
software but that the start and end of the test are known. The actual energy used by the test is proportional
to the area of the yellow rectangle in Figure 2 but the reported (discretised) energy is proportional to the
number of unit rectangles inside the rectangle bounded by the thick black lines and the x axis. Next we
will mathematically model the difference between the two.
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Figure 2: Energy used is given by area of yellow rectangle times supply voltage (5 volts) E = 5I1t
= 5 203.567mA 8.6mS = 8.75337mJ. Current resolution a = 0.1mA (12 bit ADC full scale
0.4095Amp). Sampling frequency f = 1KHz. Quantised energy = 5 203.5mA 8mS = 8.14mJ. Noise =
8.75337− 8.14 = 0.613367. Relative noise = 0.613367/8.75337 ≈ 7%.
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Supply voltage (assumed known and constant) V Volts.

Sampling frequency = f , e.g. 1000 Hz.

Current resolution = a, e.g. 0.1mA, thus a 12 bit Analogue to Digital Converter (ADC) will have a maxi-
mum reading of 0.4095 Amperes.

Unloaded current draw I0 Amps.

Actual load I1 Amps.

The actual energy used is V I1t Joules.

δ is time in seconds between the load being applied and first sample being taken.

The measured energy is V a
f
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Since the start of running the software is unrelated to the exact point in time measurements are taken, δ will
be uniformly scattered in the range [0-1/f ] and so the expected value of δ is 0.5/f (Figure 2). Since I1
is much bigger than a, it is reasonable to assume the fractional part of I1/a, i.e. frac (I1/a), is uniformly
distributed across the interval [0-1]. (With a uniform distribution in [0-1], the expected value of frac (·) is
0.5 and the standard deviation is

√
1/12 = 0.288675). So the expected noise (Eq. 1) becomes:
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Fractional noise
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=
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a
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= 0.5
a

I1
+

1

ft
− 0.5

a
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We can express the fractional noise in terms of the current measurement resolution and number of samples
N = ft. Each ADC raw value is I1/a = k. (For a twelve bit resolution analogue to digital converter and
I1 near the middle of the range k ≈ 2000.)

= 1/2k + 1/N − 1/2kN

≈ 1/2k + 1/N

= 1/4096 + 1/N

That is, with a coarse sampling the noise is dominated by the number of samples N but if we can either
increase the sampling rate or run the experiment for longer, the 1/N term becomes less important and
the noise tends to a limit given by the resolution of the ADC. Further, once the number of samples, N ,
exceeds the resolution of the ADC there is only marginal reduction in noise from increasing the number of
samples. Using our 12 bit 1KHz example ADC, there is only marginal gain in increasing the number of
measurements above 4096. That is, greatly increasing the measurement time, t, above 4096/f ≈ 4 seconds,
gives little further improvement. See also page 11.

3 Distributed Power Measurement

In the previous section we assume that the onset of the load and when its finished are known exactly. In
the case of distributed power monitoring, two commands are sent via a local area network (LAN). The
first is to start the recording of energy consumption and the second to stop the recording. Initially we shall
concentrate upon the variation introduced by the LAN and then include the energy measurement noise
given by Equation 1.

Measuring energy is initiated when the start message packet (p1) reaches the monitoring computer at
time s1. (The LAN packets are shown by dotted arrows in Figure 3.) When the acknowledgement
packet (p2) reaches the test computer (s2), it starts the experiment, raising the current from rest (I0) to I1.
t seconds later (e1) the experiment finishes: the load drops back to I0 and the test computer sends a message
packet (p3) stopping the measurement (e2). In Figure 3 the experiment is done twice but different results
are obtained since although the test computer starts at the same time and the experiment takes t seconds in
both cases, the network delays are different.

The measured energy is V
(
I0(s2 − s1) + (I1 − I0)t

)
Where (s2 − s1) is the observed duration. This is longer than t because of the transit times of the two
network packets p2 and p3. (Figure 4 gives transit times for two LAN packets, there and back.)

(s2 − s1) = p2 + t+ p3
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Figure 3: Measuring energy is initiated when the start message (left arrow) reaches the monitoring com-
puter s1. When the acknowledgement reaches the test computer s2, it starts the experiment, raising the cur-
rent from rest (I0) to I1. t seconds later the experiment finishes: the load drops back to I0 and the test com-
puter sends a message e1 ending the measurement e2. The experiment is done twice but different results are
obtained since the network delays are different. As in Figure 2, energy used is given by area of under current
curves times supply voltage (5 volts). Left (blue) 5 202.533mA 12.4mS+5 (203.567−202.533)mA 8.6mS
= 12.6015mJ. Right (red) 5 202.533mA 12.2mS + 5 (203.567− 202.533)mA 8.6mS = 12.399mJ. Dif-
ference = 12.6015− 12.399 = 0.2025mJ, relative difference = 0.2025/12.6015 ≈ 1.6%.
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Figure 4: Distribution of network delays over 1 hour. Notice approximate match of Normal distribution
and also long tail of much longer delays.

Measured energy is

= V
(
I0(p2 + t+ p3) + (I1 − I0)t

)
= V

(
I0p2 + I0t+ I0p3 + I1t− I0t

)
= V

(
I0p2 + I0p3 + I1t

)
= V

(
I0(p2 + p3) + I1t

)
We will assume that the transit times for the LAN packets are on average the same and that variations are
independent. Thus the variance in the energy measurement due to network work variations (i.e. V , I1 and t
are assumed fixed) is:

= V 2I20

(
var (p2) + var (p3)

)
= 2V 2I20 var (p) (2)

Since we assume that p2 are p3 are equally distributed and independent we drop their subscripts are refer
to them both as p. So var (p) is the variance of LAN packet transit times ( SD (p) =

√
var (p) ). The

fractional variation in the energy measurement is

=

√
2 V I0SD (p)

V (2I0p+ I1t)
=

√
2 SD (p)

(2p+ tI1/I0)

Figure 4 suggests the mean of the two packet transit time (2p) is typically 0.258mS and
√

2 SD(p) is
24 microseconds.

The variation in the discretization noise (given by Equation 1 page 4) is due to variation in the dura-
tion t and size I1 of the load. Treating these as independent gives the variance in the discretization noise.
(Remember the variance of the product of two independent variables x and y (of means X and Y ) is
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var (xy) = X2var (y) + Y 2var (x) + var (x)var (y) [Goodman, 1960, Eq. 2].)
Remember (Eq. 1) discretization noise/V

= at frac

(
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a

)
+ I1

(
δ +

1

f
frac ((t− δ)f)

)
− aδ frac

(
I1
a

)
− a

f
frac

(
I1
a

)
frac ((t− δ)f)

We now calculate the variance of discretization noise/V one term at a time. Note the variance of the uniform
distribution of the range [0-1] is 1/12. Starting with the first (depends on t) and last terms

var

(
at frac

(
I1
a

))
= a2var (t)/4 + a2t2/12 + a2var (t)/12

= a2var (t)/3 + a2t2/12 (3)
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(4)

Now the middle terms (which depend on both I1 and δ).
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Taking the variance of the first part (and assuming that δ and I1 are independent)
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(
δ
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I1 − a frac
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a
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= var (δ) (I1 − a/2)2 + δ2
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)
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(5)

and of the second part
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=
var (I1)

f2
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Combining formulae 3–6 gives var (discretization noise/V ) as:

= a2var (t)/3 + a2t2/12

+ var (δ) (I1 − a/2)2 + δ2
(
var (I1) + a2/12

)
+ var (δ)

(
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)
+
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f2
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(
var (I1) + a2/12

)
+

var (I1)

f2
/3
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= a2var (t)/3

+ var (δ)
(
(I1 − a/2)2 + a2/12

)
+ δ2var (I1) + var (δ)var (I1)

+
var (I1)

f2
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I21
f2
/12 + 7/144

a2
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(7)

Referring back to page 5, we have t = N/f and I1 = ka. Since the load and measurement computers are
not synchronised δ = 1/2f and var (δ) = 1/12f2 (Figure 2).

So Equation 7 becomes var (discretization noise/V )

= a2var (t)/3

+
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)
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Assuming a 12 bit ADC and I1 approximately half full scale.

var (discretization noise) =
V 2a2

3
var (t) +

2V 2

3f2
var (I1) +

V 2a2t2

12
+
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144f2
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≈ V 2a2

3
var (t) +

2V 2

3f2
var (I1) +

V 2a2t2

12
+

698880 V 2a2

f2

We will assume t is long compared to both the sampling frequency f and the network variation. This
allows us to assume that the variance in the energy reported is give by the sum of the variance due to
network variation (Equation 2) and that due noise in the measuring system (Equation 8).

= 2V 2I20var (p) +
V 2a2

3
var (t) +

2V 2

3f2
var (I1) +

V 2a2t2

12
+
V 2a2

144f2
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)

Assuming both t and I1 are fixed

var (energy measurement) = 2V 2I20var (p) +
V 2a2t2

12
+
V 2a2

144f2

(
24k2 − 12k + 14

)
(9)
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4 Maximising Beneficial Mutation Detection Rate

Suppose we run the original version of the software to be improved and record its use of energy. We then
mutate the software. Suppose the mutation is beneficial, in that it reduces the energy consumed by ∆.
(Here we assume the power consumption is spread uniformly across the time the software runs. Notice
we are assuming the mutation changes the power consumption but the runtime t is not changed.) If ∆2 is
large compared to the measurement variance (Equation 9) then we can reasonably expect to measure that
the mutation has been beneficial. If the difference is small, we may want to repeat the measurement to
increase ∆. However, this would proportionately reduce the rate that we can test mutations. Equation 9
means we can ask:

Is ∆2 much bigger than 2V 2I20var (p) +
V 2a2t2

12
+
V 2a2

144f2

(
24k2 − 12k + 14

)
(10)

Let ∆I = ∆/V t be the beneficial effect of the mutation expressed in terms of energy divided by the
length of the testing period. Notice that increasing the mutation testing time also increases the variance in
the energy measurement. We divide by the supply voltage V so that ∆I can be expressed as the average
reduction in current. Using ∆2 = (∆I)2V 2t2 in Question 10 and then dividing through by V 2 means
Question 10 is the same comparison as:

Is t2(∆I)2 (effectively the signal) much bigger than
a2t2

12
+ 2I20var (p) +

a2

144f2

(
24k2 − 12k + 14

)

Notice the last two terms do not depend on t and so for ∆I > a
√

1/12 we can make the energy signal
bigger than its variability by increasing t. However, we cannot effectively detect beneficial mutations with
a proportionate effect less than ∆I = a

√
1/12 ≈ 0.3 a. If we require the signal to be at least twice the

variability (4 times the variance) we can calculate the minimum time required.

t2(∆I)2 =
a2t2

3
+ 8I20var (p) +

a2

36f2

(
24k2 − 12k + 14

)
t2
(

(∆I)2 − a2

3

)
= 8I20var (p) +

a2

36f2

(
24k2 − 12k + 14

)

t =

√√√√8I20var (p) + a2

36f2 (24k2 − 12k + 14)

(∆I)2 − a2/3

Let ∆k = ∆I/a, assume I0 ≈ I1 = ka

t ≈

√√√√8a2k2var (p) + a2

36f2 (24k2 − 12k + 14)

a2(∆k)2 − a2/3

=

√√√√24k2var (p) + 1
12f2 (24k2 − 12k + 14)

3(∆k)2 − 1
(11)
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Alternatively we can express this minimum time (Eq. 11) as a minimum number of number of samples
using N = ft (page 5).

t = N/f ≈

√√√√24k2var (p) + 1
12f2 (24k2 − 12k + 14)

3(∆k)2 − 1

N ≈
√

24f2k2var (p) + 2k2 − k + 14/12

3(∆k)2 − 1

=

√
k2 (24f2var (p) + 2)− k + 14/12

3(∆k)2 − 1

Again assuming a 1KHz 12 bit ADC and noting that Figure 4 suggests
√

2 SD(p) is 24 microseconds.
i.e. var (p) = 2.86 10−10Second2. So f2var (p) = 2.86 10−4. Therefore

N ≈ k

√
2

3(∆k)2 − 1
(12)

∆k is the mutation’s impact on energy consumption, assumed constant over time, expressed as a current
in units of the analogue to digital converter’s resolution. (See definition of ∆k on previous page.) If the
average impact of the mutation is large compared to the resolution of the ADC, then ∆k � 0.58. Therefore
for our 1KHz 12 bit ADC and mutations with a reasonably large impact the measurement need only last
1.7/∆k seconds.

5 Discussion

Experimental work suggests that the impact of software mutations is very non-uniform, with many muta-
tions having no effect or being detrimental and only a small number being beneficial [Langdon and Petke,
2015]. It also appears that the impact of beneficial software mutations is very non-uniform. Hence setting
the experimental parameters to allow rapid detection of large impact mutations risks not detecting many
small impact mutations. Where large mutations are rare this risks the EC degenerating into random search.
Indeed if the impact of mutations is too small to be reliably detected (i.e. ∆I < 0.58a) then we cannot ex-
pect miracles from EC. However it remains open to further research as to whether EC can find worthwhile
energy improvements when only guided by mutations which individually have only a small impact.

We have modelled the energy consumption of software mutations by assuming their impact is spread uni-
formly throughout each test run. This is unlikely to be true and more sophisticated models might look at
how the impact of mutations is distributed. However, for a mutation to be detected its effect will still need
to be large compared to the ADC sensitivity. This suggests our present lower bound (∆I = 0.58a) might
be improved at the expense of making more assumptions about software mutants, however, it appears that
a critical lower bound will still exist.

If the test program is run repeatedly in order to integrate the mutation’s effect, we would expect repeated
patterns in the power monitor’s signal. There are very sensitive algorithms which can reliably measure
periodic differences even in the presence of sizeable noise. However it appears these are not used by the
existing power monitor.

6 Alternatives to Network Synchronisation Messages

Although network variability does not appear to be critical, here we record some ideas for avoiding it. The
computers to be measured are linked to the computers hosting the power monitors via approx 4 meters of
UTP cable and a high performance network switch. The network switch is needed to allow simultaneous
measurement of multiple load computers by each measuring computer. The network is essentially idle
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except for management probe packets and the start-stop commands and so should not strain the network
switch at all. Instead network delays are assumed to be primarily due to the complexities of passing packets
through the complex time sharing operating system (Linux) and the application software at both ends.

6.1 Synchronisation via the Power Signal

It might be possible to use signal processing on the power load signal itself to recognise the onset and
termination of the measurement period. Thus avoiding using the network for energy measurement at all. If
the pure signal was not always sufficiently clear, one could imagine adding known disturbances before and
after the signal. For example, three increases of a set amount in the load a known time before onset and
three decreases a known time after the load to be measured has stopped.

6.2 Synchronisation via Additional Trigger Hardware

In the case of oscilloscopes, it is common to use an external trigger. Several low end test beds (e.g. the
raspberry pie) have easily accessible output pins which could provide a trigger synchronised to a software
event relevant to measuring each mutants fitness.

6.3 Synchronisation via Absolute Clocks

Both the computer under test and the computer running the energy monitors have sophisticated clocks.
[Ridoux and Veitch, 2010, Fig. 5] suggest even Unix’s ntpd clock utility can on average keep computer
time globally synchronised to within 40µ. (Figure 4 suggests the typical variation between two Ethernet
messages is 24µ.) Since 40µ refers to synchronisation across the World, it would seem reasonable that it
should be possible to do at least as well across a LAN where each computer is within 4 meters and thus
maintain much better local consistency during the course of an experiment. ([Ridoux and Veitch, 2010,
Fig. 5] suggests clock variation does not follow a Gaussian distribution. However, they do not mention a
problem with long tails of large variations.) Hence it may be possible avoid noise introduced by variation in
network delays by accurately recording the start and end of each energy loading experiment and ensuring
the computer clocks are locally synchronised.

7 Conclusions

The results at the bottom of page 11 suggest:

• It will be difficult to detect mutations which have on average an effect less than
√

(1/3)a on the
current consumed. For our example 12 bit ADC this sets a lower limit of 57µA.
• On the other hand if the effect is much bigger than 57µA, there is little to be gained by running

measurement for longer than a second. Equation 12 suggests the ideal duration falls in proportion to
the smallest effect size we wish our GA to detect.
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