
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/15/01

A Survey of the Use of Crowdsourcing in
Software Engineering

May 10, 2015

Ke Mao, Licia Capra, Mark Harman and Yue Jia

University College London
{k.mao, l.capra, m.harman, y.jia}@cs.ucl.ac.uk

Abstract

Crowdsourcing can be used to support software engineering activities and research into these activities. In
this paper we provide a comprehensive survey of the use of crowdsourcing to support software engineering
activities (Crowdsourced Software Engineering), seeking to cover all literature on this topic. We describe the
software engineering domains, tasks and applications for crowdsourcing and the platforms and stakehold-
ers involved in realising Crowdsourced Software Engineering solutions. We also expose trends, issues and
opportunities for Crowdsourced Software Engineering.

Please cite as: Ke Mao, Licia Capra, Mark Harman and Yue Jia. A Survey of the Use of Crowdsourcing in Software
Engineering. Technical Report RN/15/01, Department of Computer Science, University College London, 2015.

2 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

1 INTRODUCTION

Crowdsourcing is an emerging distributed problem-solving model based on the combination of human and
machine computation. The term ‘crowdsourcing’ was jointly1 coined by Howe and Robinson in 2006 [2].
According to the widely accepted definition presented in this article, crowdsourcing is the act of an organisation
outsourcing their work to an undefined, networked labour using an open call for participation.

Crowdsourced Software Engineering derives from crowdsourcing more generally. It utilises an open call
format to recruit global online software engineers, to work on various types of software engineering tasks,
such as requirements extraction, design, coding and testing. This emerging development model has been
claimed to reduce time-to-market by increasing parallelism [3]–[5], and to lower costs and defect rates with
flexible development capability [3]. Crowdsourced Software Engineering is implemented by many successful
crowdsourcing platforms, such as TopCoder, AppStori, uTest, Mob4Hire and TestFlight.

Crowdsourcing model has been applied to a wide range of creative and design-based activities [6]–[10].
Crowdsourced Software Engineering has also rapidly gained increasing interest in both industrial and aca-
demic communities. Our survey reveals a dramatic rise in recent work on Crowdsourced Software Engineering,
yet many authors write that there is ‘little work’ on crowdsourcing for/in software engineering [5], [11]–[15].
These authors can easily be forgiven for this misconception, since the field is growing rapidly and touches
many disparate aspects of software engineering, resulting in a literature that is spread over many different
software engineering application areas and domains. This motivates the need for a comprehensive survey
such as the one we present here.

The purpose of our survey was two-fold: First, to provide a comprehensive survey of current research
progress in the field of Crowdsourced Software Engineering. Second, to summarise the challenges for Crowd-
sourced Software Engineering and to reveal to what extent these challenges were addressed by existing work.

The aim of conducting a comprehensive survey on all publications related to Crowdsourced Software
Engineering necessitates a careful and thorough paper selection process. The process we adopted was borrowed
from the conventions used for systematic literature reviews [16], [17]. Specifically, we followed the three steps
described below:

To start with, we defined the inclusion criteria of the surveyed papers: the main criterion for including a
paper in our survey is that the paper describes research on crowdsourcing that can serve for any activities
involved in software engineering process. Also, the papers included in this survey must be presented in
English as either conference papers, journal papers, theses, technical reports or books.

We performed three types of searches on related papers published before April 2015:
• Online library search using seven major search engines: ACM Digital Library, IEEE Xplore Digital Library,

Springer Link Online Library, Wiley Online Library, Elsevier ScienceDirect, ProQuest Research Library and Google
Scholar. A list of search queries we used are presented in Appendix A. We searched these queries in the
fields of title, abstract and index terms of the papers.

• Issue-by-issue search of main conference proceedings and journals in software engineering from January
2006 to March 2015. This process was conducted manually to find those relevant papers that cannot be
retrieved by the previous step. The specific conference proceedings and journals searched are listed in
Table 1.

• Reference search for identifying missed papers by going through citations from included papers (snow-
balling).

Lastly, we conducted a screening process2 to filter the collected papers by removing any that were not in
the scope of Crowdsourced Software Engineering. We read the papers carefully and thoroughly, applying the
inclusion criteria again and filtering out unrelated papers manually. After the screening process, 203 papers
remained, and were selected for inclusion in this survey. The growth trend in publications is presented in Fig.
1. The distribution of these papers’ publication types and a specific list of Master/PhD theses can be found
in Fig. 2 and Table 2, respectively. As can be seen, there is a noticeable rise in publications on Crowdsourced
Software Engineering, resulting in a significant body of literature which we study in depth in this survey.

We have built a repository which contains the meta-data of our collected papers. The meta-data includes
the author, title, publication year and type as well as the conference proceeding/journal information of the
paper. It was based on this repository that we conducted our analysis of the reviewed papers. This repository
is publicly available online3.

We also have employed the crowdsourcing model to perform a ‘crowdsourced checking’ process for this
survey itself. We made an open call to the authors via email, for checking if there are any errors or missing

1. Jeff Howe attributes the creation of the term to Mark Robinson and himself [1].
2. The screening process is iterative, e.g., we also screened the papers suggested by authors in a later ‘crowdsourced checking’ process.
3. http://www.cs.ucl.ac.uk/staff/k.mao/cserep

RN/15/01 3

TABLE 1
Selected Conference Proceedings and Journals for Manual Search

Abbr. Source

ICSE International Conference on Software Engineering
ESEC/FSE European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering
OOPSLA Conference on Object-Oriented Programming Systems, Languages, and Applications
ASE International Conference on Automated Software Engineering
ISSTA International Symposium on Software Testing and Analysis
ICST International Conference on Software Testing, Verification and Validation
RE International Requirements Engineering Conference
CSCW Conference on Computer-Supported Cooperative Work and Social Computing
ISSC International Symposium on Software Crowdsourcing
CSI-SE International Workshop on Crowdsourcing in Software Engineering
TSE Transactions on Software Engineering
TOSEM Transactions on Software Engineering Methodology
IEEE SW IEEE Software
IET IET Software
IST Information and Software Technology
JSS Journal of Systems and Software
SQJ Software Quality Journal
SPE Software: Practice and Experience

1 6
23

45

85

129

184
203

0

25

50

75

100

125

150

175

200

225

2008 2009 2010 2011 2012 2013 2014 2015

Fig. 1. Cumulative growth of Crowdsourced Software Engineering studies published before April 2015.

Conference
Proceeding

67%

Journal
17%

Thesis
10%

Technical
Report

4%

Book
2%

Fig. 2. Publication type of surveyed papers.

4 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

TABLE 2
A List of Master and PhD Theses on Crowdsourced Software Engineering

Year Author Degree University Title

2010 Lim [18] PhD University of New South
Wales

Social Networks and Collaborative Filtering for Large-
Scale Requirements Elicitation

2011 Manzoor [19] Master KTH - Royal Institute of
Technology

A Crowdsourcing Framework for Software Localization

2011 Kallenbach
[20]

Master RWTH Aachen Univer-
sity

HelpMeOut - Crowdsourcing Suggestions to Program-
ming Problems for Dynamic, Interpreted Languages

2011 Leone [21] PhD ETH Zurich - Swiss Fed-
eral Institute of Tech-
nology

Information Components as a Basis for Crowdsourced
Information System Development

2012 Nag [22] Master Massachusetts Institute
of Technology

Collabourative Competition for Crowdsourcing Space-
flight Software and STEM Education Using SPHERES
Zero Robotics

2012 Saengkhattiya
et al. [23]

Master Lund University Quality in Crowdsourcing - How Software Quality is
Ensured in Software Crowdsourcing

2012 Gritti [24] Master Universitat Politécnica
de Catalunya

Crowd Outsourcing for Software Localization

2012 Ponzanelli
[25]

Master University of Lugano Exploiting Crowd Knowledge in the IDE

2012 Phair [26] PhD Colorado Technical Uni-
versity

Open Crowdsourcing: Leveraging Community Software
Developers for IT Projects

2012 Bruch [27] PhD Technische Universität
Darmstadt

IDE 2.0: Leveraging the Wisdom of the Software Engi-
neering Crowds

2012 Goldman [28] PhD Massachusetts Institute
of Technology

Software Development with Real-time Collabourative
Editing

2013 Mijnhardt
[29]

Master Utrecht University Crowdsourcing for Enterprise Software Localization

2013 Teinum [30] Master University of Agder User Testing Tool: Towards a Tool for Crowdsource-
Enabled Accessibility Evaluation of Websites

2013 Starov [31] Master East Carolina University Cloud Platform for Research Crowdsourcing in Mobile
Testing

2013 Chilana [32] PhD University of Washing-
ton

Supporting Users After Software Deployment through
Selection-Based Crowdsourced Contextual Help

2013 Wightman
[33]

PhD Queen’s University Search Interfaces for Integrating Crowdsourced Code
Snippets within Development Environments

2013 Xue [34] PhD University of Illinois at
Urbana-Champaign

Using Redundancy to Improve Security and Testing

2013 Lin [35] PhD Carnegie Mellon Univer-
sity

Understanding and Capturing Peoples Mobile App Pri-
vacy Preferences

2014 Schiller [12] PhD University of Washing-
ton

Reducing the Usability Barrier to Specification and Ver-
ification

2015 Snijders [36] Master Utrecht University Crowd-Centric Requirements Engineering: A Method
based on Crowdsourcing and Gamification

information regarding our description of their work. For each cited paper, we distributed the copy of this
survey to at least one author. In total we have contacted 303 authors and have received 83 replies. We then
further revised this survey according to the authors’ reviews.

The remaining parts of this paper are organised as follows. Section 2 presents background information
on Crowdsourced Software Engineering. Section 3 describes practical platforms for Crowdsourced Software
Engineering, together with their typical processes and relevant case studies. Section 4 provides a finer-grained
view of Crowdsourced Software Engineering based on their application domains in software development life-
cycle. Sections 5 and 6 describe current issues, open problems and opportunities. Finally Section 7 concludes.

2 BACKGROUND

We first review definitions of crowdsourcing (in general), before moving on to refine our focus to Crowd-
sourced Software Engineering.

2.1 Crowdsourcing
The term ‘Crowdsourcing’ was first published in the June 2006 Wired magazine article ‘The Rise of Crowd-
sourcing’, written by Jeff Howe [2]. In a companion blog post [1] to this article, the term was defined explicitly:

RN/15/01 5

“Crowdsourcing represents the act of a company or institution taking a function once performed by employees
and outsourcing it to an undefined (and generally large) network of people in the form of an open call.”

According to this definition, the undefined, large networked workforce and the open call format are the
two prerequisites for crowdsourcing. Howe argues that crowdsourced work can be done by cooperation or
by sole individuals [2].

This idea echoes the earlier book ‘The Wisdom of the Crowds’ [37] and also finds some resonance in the
principles of Open Source Software (OSS) development [38]. Indeed, although the term ’crowdsourcing’ has
attracted significant recent attention, the underlying concepts can be found in many earlier attempts to recruit
a large suitably-skilled yet undefined workforce in an open call for a specific task in hand. For example,
we might trace the origins of crowdsourcing back to the Longitude competition in 1714, when the British
government announced an open call (with monetary prizes), for developing a method to measure a ship’s
longitude precisely [39].

Turning to online crowdsourcing, early Internet-based crowdsourcing activities can be found in 2001, when
‘InnoCentive’ [40] was funded by Eli Lilly to attract a crowd-based workforce from outside the company to
assist with drug development. In the same year, the TopCoder [41] platform was launched by Jack Hughes,
as a marketplace using crowdsourcing for software development. To facilitate the online distributed software
development activities, the TopCoder development method and system was proposed [42]. At the time of
writing, TopCoder is the world’s largest platform for Crowdsourced Software Engineering. By March 2015,
its community of software engineers had numbered 750,000 and it had already awarded over $67,000,000 in
monetary rewards for the Crowdsourced Software Engineering tasks it facilitated.

There are many other definitions of crowdsourcing with subtle differences and nuances, which we review
here. In Brabham’s 2008 article [43], crowdsourcing was viewed as an online model for distributed production
and problem-solving. The Wikipedia page on crowdsourcing [44] cites the definition which appeared in the
Merriam-Webster dictionary in 2011 [45]. It stresses the large group of workers and an online community,
but drops any mention of ‘undefined labour’ and ‘open call’ format [46]. Estellés-Arolas et al. [47] collected
40 definitions from 32 articles published during 2006 to 2011, and proposed an integrated definition. This
definition is compatible with the ones we have introduced and specifies the mutual benefits between the
workers and the requesters. Based on these previous definitions we can identify four common features
that pertain to crowdsourcing: the open access in production, the flexibility in workforce, the free will in
participation and the mutual benefits among stakeholders.

The claimed benefits of crowdsourcing include easy access to a wide range of workers, diverse solutions,
lower labour rates and reduced time-to-market. The granularity of crowdsourced tasks can be as fine grained
as photo tagging or as coarse grained as software development [48], [49]. A list of more than 160 crowdsourcing
projects has been compiled [50] (using crowdsourcing to compile the list).

Crowdsourcing has been used extensively in various disciplines, such as protein structure prediction [6], [51],
drug discovery [7], [52], transportation planning [8], [53], weather forecasting [9], [54], information retrieval
[10], [55], and software engineering [5], [11], [56]–[59], to which we now turn.

2.2 Crowdsourced Software Engineering
We use the term ‘Crowdsourced Software Engineering’ to denote the applications of crowdsourcing tech-
niques to support software development (in its broadest sense). Some authors refer to this as ‘Crowdsourced

Fig. 3. Crowdsourcing and software engineering.

6 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

TABLE 3
Cited Crowdsourcing Definitions

Def. None Howe Wiki Own Other

Count 138 (68%) 37 (18%) 4 (2%) 7 (3%) 22 (11%)

Software Development’, ‘Crowdsourcing Software Development’ and ‘Software Crowdsourcing’ in previous
studies [5], [60]–[66], but we prefer the term ‘Crowdsourced Software Engineering’ since it emphasises any
software engineering activity included, thereby encompassing activities that do not necessarily yield software
in themselves, such as requirements elicitation, test case refinement and project planning.

However, although our definition is inclusive of all software engineering activities, we wish to distinguish
Crowdsourced Software Engineering from research activities on software engineering that happen to be sup-
ported by Crowdsourcing (see Fig. 3). Any research involving human subjects could potentially be supported
by crowdsourcing, in the sense that the identification and recruitment of suitable human subjects for an
experiment could be implemented using crowdsourcing techniques. In this application of crowdsourcing (to
research studies), it is the identification of human subjects for experimentation that is important, rather than
the particular research topic investigated.

If the research topic happens to be software engineering, then this work will be interesting to software
engineers, but the principles and issues that arise will be more similar (and relevant) to those arising in other
research involving human subjects. We call this application of crowdsourcing, ‘crowdsourcing for software
engineering research’, to distinguish it from Crowdsourced Software Engineering. In this paper we compre-
hensively survey Crowdsourced Software Engineering. We do not claim to cover crowdsourcing for software
engineering research as comprehensively, although we do also survey this topic for completeness. In addition,
as shown in Fig. 3, software engineering techniques can also be used to support generic crowdsourcing [67],
such kind of studies are out of scope for this survey.

Despite the wide usage of crowdsourcing in various software engineering tasks, the concept of Crowd-
sourced Software Engineering is seldom explicitly defined. According to our analysis (as shown in Table 34),
68% of our surveyed papers use (or echo) the concept of crowdsourcing without citing any definition. Among
the 34% that cite a definition, the most widely used definition is Howe’s definition (18%), which we described
earlier. Out of all the 203 publications we reviewed, only two give an explicit definition of what it means for
crowdsourcing to be applied specifically to software engineering activities [5], [68].

Stol and Fitzgerald’s definition [5] refines Howe’s crowdsourcing definition to the software development
domain, requiring the undefined labour force to have requisite specialist knowledge. The Dagstuhl seminar
report’s definition [68] was formalised as a Wikipedia page on software crowdsourcing [69]. It also specifies the
tasks for software development, according to which the labour force can include anyone, but the characteristic
of a large potential workforce is not mentioned.

Since the Howe’s definition is the most widely accepted crowdsourcing definition in the papers we surveyed,
we choose to define Crowdsourced Software Engineering simply as an instantiation of Howe’s definition, as
follows:

Crowdsourced Software Engineering is the act of undertaking any external software engineering tasks by an
undefined, potentially large group of online workers in an open call format.

Crowdsourced Software Engineering generally involves three types of actors (or stakeholders): Employers
(aka requesters), who have software development work that needs to be done; Workers, who participate
in developing software and Platforms, which provide an online marketplace within which requesters and
workers can meet. Fig. 4 briefly depicts these three types of actors and the general process for Crowdsourced
Software Engineering.

2.2.1 Claimed Advantages and Growth Trends in Crowdsourced Software Engineering
Crowdsourced Software Engineering has several potential opportunities compared to traditional software
development methods. Crowdsourcing may help software development organisations integrate elastic, external
human resources to reduce cost from internal employment, and exploit the distributed production model to
speed up the development process.

For example, compared to conventional software development, the practice of TopCoder’s crowdsourced
software development has been claimed to exhibit the ability to deliver customer requested software assets with

4. One single paper may cite multiple definitions.

RN/15/01 7

Fig. 4. Actors in Crowdsourced Software Engineering.

lower defect rate at lower cost in less time [3]. TopCoder claimed [70] that their crowdsourced development
was capable of reducing costs by 30%-80% compared to in-house development or outsourcing. Furthermore, in
the TopCoder American Online case study [3], the defect rate was reported to be 5 to 8 times lower compared
with traditional software development practices.

In another study published in Nature Biotechnology [71], Harvard Medical School adopted Crowdsourced
Software Engineering to improve DNA sequence gapped alignment search algorithms. With a development
period of two weeks, the best crowd solution was able to achieve higher accuracy and 3 order of magnitude
performance improvement in speed, compared to the US National Institutes of Health’s MegaBLAST.

The increasing popularity of Crowdsourced Software Engineering revolves around its appeal to three
different related stakeholders:

1) Requesters: Crowdsourced Software Engineering is becoming widely accepted by companies and organi-
sations, from the military domain, academic institutions to large IT companies. DARPA created Crowdsourced
Formal Verification (CSFV) program [72] for software formal verification and launched the Verigames website
to facilitate the practice [73]. NASA and Harvard business school established the NASA Tournament Labora-
tory for crowdsourcing software solutions for NASA systems [74]. Microsoft crowdsourced partial software
development activities in Office 2010 [75], Windows 8.1 [76] and Windows 10 [77].

2) Workers: Based on an industrial report from Masssolution [78], the number of workers engaged in software
crowdsourcing increased by 151% in the year 2011.

3) Platforms: There is a growing number of crowdsourcing platforms built for software development domain,
such as AppStori [79] and Mob4Hire [80]. These commercial platforms will be described in more detail in
Section 3.

The flourishing Crowdsourced Software Engineering landscape is also revealed by the increasing number
of relevant publications published in recent years, as shown in Fig. 1. Crowdsourced Software Engineering
is also proving to provide an attractive topic for student dissertations. Specifically, 20 out of the total 203
publications are Master/PhD theses. A detailed list of these theses can be found in Table 2.

2.3 Research Topics
To classify the papers, we first carefully analysed the 203 papers we collected, revealing four top-level cate-
gories based on their study type: Study of Practice, Theories and Models, Applications to Software Engineering
and Evaluations of Software Engineering Research. We referred to the ACM Computing Classification System
[81], the IEEE Taxonomy of Software Engineering Standards [82] and the 2014 IEEE Keywords Taxonomy [83],
to formulate sub-categories for each of these four top-level categories. Specifically, for applications to software
engineering, we created sub-categories based on different stages of software development life-cycle addressed
by the applications. The detailed classification scheme of the research topics is given in Fig. 5.

We manually classified the collected papers and assigned them to each of the categories. The classification
results were cross-checked by three authors, reaching an agreement of 91.2% in classification accuracy. The
distribution of the literature over the research topics is shown in Fig. 6. The most prominent class is Applica-
tions to Software Engineering (62%), followed by theoretical study (20%) and practical study (15%) categories.
A few studies (3% in our collection of papers) employed crowdsourcing to evaluate software engineering
research. This type of publications may not use crowdsourcing-related keywords in their meta information.
We performed extra manual retrievals for related research. Nevertheless, there may be more papers which fall
into this category yet which remain uncovered in our survey; this category is not the focus of our survey.

3 CROWDSOURCING PRACTICE IN SOFTWARE ENGINEERING

In this section we describe the most prevalent crowdsourcing platforms together with typical crowdsourced
development processes for software engineering. Since most case studies in the papers we collected were based

8 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

Fig. 5. Classification scheme of research on using crowdsourcing for software engineering (SE).

Pratical
15%

Theoritical
20%

Evaluations
3%

Coding
16%

Design
3%

Testing
16%

Verification
3%

Other
4%

Maintenance
10%

Requirements
10%

Applications
62%

Fig. 6. Topic distribution.

on one (or several) of these commercial platforms, in the second part of this section, we present relevant case
studies on the practice of Crowdsourced Software Engineering.

3.1 Commercial Platforms
Existing commercial crowdsourcing platforms that support software engineering are shown in Table 4. A
timeline showing the year of their foundation is illustrated in Fig. 7. These platforms employ various types
of open call formats, such as the most widely used online competition, on-demand matching, in which the
workers are selected from the registrants, and online bidding, where the developers bid for tasks before
starting their work. The platforms also focus on a broad range of task domains within software engineering.
Platforms such as TopCoder and GetACoder support multiple types of software development tasks. Others
are more specific. For example, uTest and BugCrowd are designed for software testing and security analysis

RN/15/01 9

TABLE 4
A List of Commercial Platforms for Crowdsourced Software Engineering

Platform URL Task Domain Open Call Form

TopCoder www.topcoder.com Software Development Online Competition
GetACoder www.getacoder.com Software Development Online Bidding
AppStori www.appstori.com Mobile App Development Crowd Funding, Online Recruiting
Bountify www.bountify.co Small Coding Tasks Online Competition
uTest www.utest.com Software Testing On-demand Matching,

Online Competition
Passbrains www.passbrains.com Software Testing On-demand Matching
99Tests www.99tests.com Software Testing On-demand Matching
TestBirds www.testbirds.com Software Testing On-demand Matching
Testbats www.testbats.com Software Testing On-demand Matching
Pay4Bugs www.pay4bugs.com Software Testing On-demand Matching
CrowdTesters www.crowdtesters.com.au Software Testing On-demand Matching
TestFlight www.testflightapp.com Mobile App Testing On-demand Matching
Mob4hire www.mob4hire.com Mobile App Testing Online Bidding
Testin www.itestin.com Mobile App Testing On-demand Matching
Ce.WooYun ce.wooyun.org Software Security Testing On-demand Matching
Bugcrowd www.bugcrowd.com Software Security Testing Online Competition

respectively. There are also general crowdsourcing marketplaces such as Amazon Mechanical Turk, oDesk
and Freelancer, which are not designed for software engineering specifically, but can nevertheless be used to
support various software development tasks.

Different platforms may also use various process models. In the remainder of this subsection we introduce
typical commercial platforms and their processes for Crowdsourced Software Engineering:

1) TopCoder: As a pioneer for practising Crowdsourced Software Engineering, TopCoder has its unique
process and development model. It is known as the TopCoder Competition Methodology [84]. The platform
can support independent graphic design, development, data science challenges, as well as the development of
complex software (by decomposing into multiple sub-tasks). Viewed from the top level, the systematic process
may resemble the waterfall model. However, each development phase is realised through a series of online
competitions in which the crowd developers compete (with each other). Only qualified winning solutions are
accepted. Qualified outputs are used as the inputs for the subsequent development phases. In this context,
‘qualified’ means passing a minimum acceptance score, rated through a review process.

The systematic development process starts from a requirements phase, in which the project goals, task
plan and budget estimation are identified. This is achieved via communication between the project manager
(who may come from the crowd or the platform) and the requester (who pays for the solutions offered
by the crowd). This phase consists of several types of competitions such as Conceptualisation, Wireframe,
Storyboards, UI Prototype and Specification. The outcome of this phase is a set of requirements specifications.
These requirements are used as the inputs to the subsequent architecture phase, in which the application is
decomposed into multiple components.

Each component further yields design and development tasks. The design challenges produce a set of docu-
ments such as UML diagrams and component specifications. Subsequent development challenges implement
the corresponding design. The developed components are integrated in an assembly phase, certified by system
level testing. In a subsequent deployment phase, the integrated solution is deployed into the requester’s quality
assurance environment. Finally, after passing a period of user acceptance testing, the solution is delivered to
the requester. For further maintenance, new development challenges can be created to upgrade the current
solution, while bug related challenges can be generated to identify and/or fix bugs.

2) AppStori: AppStori is a more recent platform for crowdsourcing mobile app development. Its development
process is different from the TopCoder methodology. It uses a crowdfunding model to fund development and
attracts app developers and consumers to work closely together. The crowd developers can post their projects
to raise funds from the crowd or to recruit other developers for app implementation. Consumers can propose
ideas for new app development, contribute money, act as beta testers and offer feedback on existing projects.
The whole development process, from conception to release, is achieved through collaboration among crowd
developers and consumers.

3) uTest: uTest is one of the several platforms for crowdsourced software testing. It currently claims to
support the world’s largest open community for software testing [85]. These crowd testers provide a wide

10 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

Fig. 7. The timeline depicting the foundation of major Crowdsourced Software Engineering platforms.

range of virtual on-demand testing services, such as functional testing, usability testing, localisation testing and
load testing. The crowdsourced testing process commerces with a phase in which the clients can specify their
testing needs. Flexible choices concerning testing device, operating system, geographic location and budget
are provided by the platform. Appropriate testers are selected from the community: each project has an open
call for testers and the crowd can apply to work on their desired testing tasks. However, only suitable testers
(who are assessed based on their previous performance, skills, languages, testing devices, locations, etc.) will
likely be favoured for selection. The selected testers report their testing work in real-time and submit their
test report for approval. It is usually the clients’ responsibility to review the submission and decide which
workers are qualified to be paid for their work. The crowd testers are paid via the platform, based on such a
per-project basis.

Other more general-purpose crowdsourcing platforms also have been widely used in software engineering
research:

Amazon Mechanical Turk is a popular crowdsourcing marketplace for micro-tasks. By employing crowd
workers on the platform to exploit human computation, small teams can avoid the challenges in developing
complex software systems [86]. This platform has been employed to support program synthesis [57], graphical
user interface (GUI) testing [87], oracle problem mitigation [88], and program verification [11] in software
engineering.

StackOverflow [89] is a question and answer website which provides crowdsourced programming knowledge
for software developers. Although such crowd knowledge does not contribute to the development of a software
project directly, it has an impact on open source software development [90], [91] as well as conventional
software development process. It has been used to improve integrated software development environments
[25], [92]–[96] and software API documentation [97], [98].

Bountify is a platform similar to StackOverflow. However, it has more ‘self-contained’, micro programming
tasks. Each will yield a payment of a certain amount of money, ranging from 1 to 100 US dollars. A study on
program synthesis [57] used this platform to obtain initial seeds for their genetic programming algorithm.

Several studies provided further information on existing commercial platforms for software engineering.
An introduction to software crowdsourcing platforms [99] briefly summarised several platforms for collabo-
rative software development and compared crowdsourced software development with proprietary software
development, outsourced software development and open source software development. Fried et al. [100]
summarised three types of crowdsourcing platforms for the software industry: platforms such as Amazon
Mechanical Turk [101] that support the use of human knowledge in an inexpensive way; platforms such as
TopCoder that support contest-based software development; and platforms like MathWorks [102] that support

RN/15/01 11

programming competitions with an unique ‘competitive collaboration’ feature. Wu et al. [61] proposed an
evaluation framework for assessing software crowdsourcing processes from multiple objectives such as cost,
quality, diversity of solutions and crowd competitions. The competition relationship was evaluated by a ‘min-
max’ (defence-offence) mechanism adapted from game theory. Based on the proposed evaluation framework,
the contrast between TopCoder and AppStori software crowdsourcing processes was illustrated.

3.2 Case Studies
Many Crowdsourced Software Engineering case studies have been reported in recent years. Most are based
on one or several commercial platforms described above. Among them, the TopCoder platform has the most
case studies reported upon in the literature [3], [5], [22], [62], [65], [103]–[105].

Stol et al. [5] presented an in-depth case study with a client company which has crowdsourced software
development experience using TopCoder. A series of issues pertaining to the TopCoder development process
were identified through interviews with the client company. For instance, the platform generally followed a
waterfall model, which brought coordination issues to the client company as it adopted an agile development
model. Also, quality issues were pushed to later stages in the TopCoder development process, which was not
regarded as best practice. The research protocol [14] contains details of the design of this case study which
can be used for replicating the study. Based on the lessons learned from this case study, the authors further
enunciated their own advice for crowdsourced software development [106].

Tajedin and Nevo [65] also conducted an in-depth case study in the form of interviews, but from the
perspective of TopCoder’s management team, rather than the client. The case study revealed two types of
value-adding actions that exist in the crowdsourcing platform, i.e., the macro, market level and the micro,
transaction level actions.

Wu et al. [62] highlighted the lessons learned from their collected software crowdsourcing data. Two crowd-
sourced software development processes employed by TopCoder and AppStori were examined. The paper
argues that the ‘min-max’ competition behaviour contributes to the quality and creativity of crowdsourced
software development.

Nag et al. [104] reported their collaboration with TopCoder to crowdsource spaceflight software development
for the SPHERES Zero Robotics Program [107], supported by NASA, DARPA and Aurora Flight Sciences.
The program was also used as a platform to crowdsource navigation software for satellite control [108].
The winners’ solutions from the crowd were verified and validated on the SPHERES satellites within the
International Space Station. More detailed description on this case can be found in Nag’s master thesis [22].

Lakhani et al. [3] described the development of TopCoder from the year 2001 to 2009, including the
evolution of the platform and the community, the benefits and concerns from the client’s perspective, and
the management roles and challenges of the TopCoder development process.

Archak [103] conducted an empirical analysis of developers’ strategic behaviour on TopCoder. The cheap
talk [109] phenomenon during the registration phase of the contest was identified, i.e., in order to soften
competition, highly rated developers tend to register for the competition early thereby seeking to deter their
opponents from seeking to participate in the market place. Archak argued that the cheap talk phenomenon
and the reputation mechanisms used by TopCoder contribute to the efficiency of simultaneous online contests.
In addition, a regression analysis was performed to study the factors that affect the quality of the contest
outputs. The payment and the number of requirements factors were identified as significant predictors for
final submission quality. Li et al. [105] also conducted a case study on TopCoder to identify important quality
factors.

Regarding the case studies that are based on the platforms other than TopCoder: Zogaj et al. [15], [110]
conducted a case study on a German start-up crowd testing platform called testCloud. Three types of challenges
were highlighted in the case study: managing the crowd, managing the process and managing the techniques.
Bergvall-Kareborn and Howcroft [111] reviewed Apple’s business model for crowdsourcing mobile applica-
tions. By reporting fieldwork among Apple mobile app developers in three countries, they showed how the
company benefited from crowdsourcing.

Some case studies have focused on region-specific practices in crowdsourced software development. For
example, one case study [66], [112] presented the preliminary results of a multi-year study on crowdsourcing
in the Brazilian IT industry. This study reported interviews that highlighted the generally low awareness
of software crowdsourcing and concerns about the crowdsourced software quality. Phair’s doctoral thesis
[26] reported a qualitative case study on using crowdsourced software development to implement a web
application for a non-profit organisation. Benefits such as measurable cost savings and an increased ability
to work on multiple projects were identified. A few other case studies have reported the practice of soft-
ware crowdsourcing in specific domains, such as crowdsourced proteomics software development [113] and
crowdsourced e-government software development [114], [115].

12 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

Fig. 8. Scheme of crowdsourced software engineering platforms. (The italic text indicates an experimental/non-
commercial platform.)

4 CROWDSOURCING APPLICATIONS TO SOFTWARE ENGINEERING

Crowdsourcing applications to software engineering are presented as multiple subsections, according to the
software development life-cycle activities that pertain to them. The following major stages are addressed:
software requirements, software design, software coding, software testing and verification, software evolution
and maintenance. An overview of the research on Crowdsourced Software Engineering is shown in Table 5.
The commercial and experimental crowdsourcing platforms in these studies follow the classification scheme
in Fig. 8.

A timeline of the introduction of vary ideas and concepts is illustrated in Fig. 9. For example, starting
from 2009, crowdsourcing was employed to help evolve software and its localisation. Most recently, the
crowdsourcing model was used for program synthesis. Other important events and theoretical/practical
studies that can reflect the development of Crowdsourced Software Engineering are also illustrated in the
timeline.

For the Crowdsourced Software Engineering studies with empirical evaluations, we summarised the con-
ducted experiments in Table 6, to reveal the detailed experimental settings and results. With the summary,
we calculated the distributions of the crowd size, cost and the platforms used in Crowdsourced Software
Engineering experiments, as shown in Fig. 10, and Fig. 11 respectively.

RN/15/01 13

TABLE 5
An Overview of the Research on Applying Crowdsourcing to Software Engineering (SE)

SE Phase SE Task Why Bespoke Tool
Stakeholder

Ref.
Requester Platform Worker

Requirements
Requirements
Acquisition

Cost, User
needs, Domain
knowledge,
Automation,
Quality

StakeSource,
StakeSource2.0,
StakeNet, StakeR-
are,iRequire

Requirements
engineers,
Designers,
Software teams,
Researchers

Email,
StakeSource,
StakeSource2.0,
StakeNet,
StakeRare,
CrowdREquire,
UDesignIt,
Bespoke, AOI,
AMT

All stakeholders,
Users, Undefined
crowd

[56], [116]–
[131]

Requirements
Categorisa-
tion

User needs None Requirements en-
gineers, Designers

Unspecified Users [123], [124]

Design
User
Interface
Design

User needs, Qual-
ity, Diversity

None Designers, Non-
technical end
users

Bespoke, AMT,
CrowdDesign,
Email

Users [132]–[135]

Architecture
Design

Quality, Diversity None Researchers Email Designers [134]

Design Revi-
sion

Quality, Diversity None Researchers Email Designers [134]

Coding
IDE Ehance-
ment

Debugging, API
aid

BlueFix, Calcite,
Example Over-
flow, Seahawk,
Prompter,
SnipMatch

Developers HelpMeOut,
Stack Overflow,
oDesk

Developers [20], [25],
[27], [33],
[92]–[96],
[136]–[143]

Program Op-
timisation

Human solutions None Developers,
Researchers

Bountify, AMT Developers,
Undefined crowd

[57]

Crowd Pro-
gramming
Support

Automation, Hu-
man solutions

Jabberwocky,
AutoMan, TurKit,
CrowdLang,
CIDRE, Collabode

Developers,
Teachers

Bespoke, AMT,
Code Hunt,
CrowdCode

Users, Developers [28], [144]–
[153]

Testing

Usability
Testing

Cost, Time CrowdStudy Testers CrowdStudy,
Bespoke, AMT,
CrowdFlower

Users [30], [154]–
[159]

Performance
Testing

Real-world mea-
sure

None Client companies Lync Users [160]

GUI Testing Cost, Scalebility None Testers AMT Undefined crowd [87], [161]
QoE Testing Cost, Diversity Quadrant of Eu-

phoria
Researchers Quadrant of

Euphoria,
Bespoke, AMT,
Microworkers

Undefined crowd [162]–[165]

Test Genera-
tion

Human inputs PAT Testers,
Researchers

Twitter Undefined crowd [166], [167]

Oracle
Problem
Mitigation

Human solutions,
Automation

None Testers,
Researchers

AMT Qualified / Un-
qualified crowd

[88]

Crowd Test-
ing Support

Human inputs CrowdBlaze Testers,
Researchers

Bespoke, AMT,
Mobileworks,
Email

Undefined crowd [34], [168],
[169]

General Eval-
uation

User needs, Di-
versity

None Researchers Bespoke, AMT Users [170]–[172]

Verification Non-expert
Verification

Cost, Speed Verification
Games, VeriWeb

Developers,
Researchers

Bespoke, AMT,
vWorker

Undefined crowd [11], [12],
[173], [174]

Evolution Software
Adaptation

User needs, Cost,
Diversity, Speed

MoWA,
CrowdAdapt

Developers,
Designers, Users,
Researcher

Bespoke,
Facebook, Online
community

Users [120],
[175]–[185]

Maintenance
Software
Documenta-
tion

Domain
knowledge

COFAQ Developers,
Researchers

Q&A, Stack Over-
flow, SciPy Com-
munity

Developers,
Researchers

[97], [98],
[140],
[186], [187]

Software Lo-
calisation

Domain
knowledge, Cost,
Speed

None Developers,
Researchers

AMT Undefined crowd [19], [24],
[29], [188]

Other
Security and
Privacy Aug-
mentation

Diversity, Domain
knowledge, User
needs

Crowdroid,
Modding-
Interface

Developers,
Researchers

Android User
Community

Users [35], [189],
[190]

End User
Support

Domain
knowledge

LemonAid Developers,
Researchers

AMT Users [32], [191],
[192]

Software
Ideation

User needs,
Open innovation,
Recruitment

SAPiens, IdeaMax Client Companies Repurposed,
Bespoke

Users [193]–[196]

14 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

Fig. 9. Timeline on the development of Crowdsourced Software Engineering (’*’ indicates the establishment of
a platform. ’∼’ shows the first practical/theoretical study and ’-’ stands for the first application work).

4.1 Crowdsourcing for Software Requirements Analysis

Requirements analysis is a widely accepted critical step that impacts the success of software projects [197]. A
series of studies [56], [116]–[131] have investigated crowdsourcing to support this process.

Traditional stakeholder analysis tools require experts’ manual effort to extract stakeholders’ information. Lim
et al. [116] proposed StakeSource to identify crowdsourced stakeholders involved in a stakeholder analysis
process. This tool was designed to reduce the cost of reliance on experts to approach stakeholders. It was
complementary to their previously proposed StakeNet [117], which recommends stakeholders via social net-
working. The authors further improved this tool and proposed StakeSource2.0 [119]. The new version integrates
support for identifying stakeholders and prioritising their requirements. StakeSource2.0 was used to automate
the stakeholder identification and prioritisation step of the StakeRare [121] method, an approach for large-
scale requirements elicitation based on social network analysis and collaborative filtering techniques. Lim and
Ncube [127] subsequently showed the application of the tool in system of systems projects. The tool is publicly
available online5.

Hosseini et al. [126] focused on employing crowdsourcing for requirements elicitation. They summarised
the main features of the crowd and crowdsourcer in crowdsourced requirements engineering by reviewing
existing literature. A preliminary result of a survey conducted on two focus groups was reported to reveal
the relationship between these features and the quality of the elicited requirements. Wang et al. [129] also
used crowdsourcing to acquire requirements, but with a focus on overcoming the problem of recruiting
stakeholders with specific domain knowledge. They proposed a participant recruitment framework, based on
spatio-temporal availability. Their theoretical analysis and simulation experiments demonstrated the feasibility
of the proposed framework.

The crowd stakeholders are not only a source of requirements, but also can help with requirements priori-
tisation and release planning. Nascimento et al. [123] investigated the use of crowdsourcing for requirements
categorisation based on Kano’s model. The model uses questionnaire to help classify requirements into five
categories. The value of each requirement for a given user is identified in their approach. A framework was
proposed for finding stakeholders involved in the process. Nayebi and Ruhe [130] presented the Analytical
Open Innovation (AOI) approach to help developers make release decisions. The crowdsourcing model enables
the AOI approach to systematically gather information from customers and other stakeholders. An illustrative
case study was presented as a proof-of-concept to demonstrate the key ideas of the AOI approach.

Non-professional crowd workers have been used to process requirements documents. It is a laborious task
to manually extract requirements from large natural language text source. However such data are frequently

5. http://www.cs.ucl.ac.uk/research/StakeSource

~

RN/15/01 15

needed as the ground truth for evaluation. This limits the generalisation of evaluations to automatic require-
ments extraction methods. Breaux and Schaub [56] conducted three experiments concerned with employing
untrained crowd workers to manually extract requirements from privacy policy documents. Experimental
results indicated a 16% increase in coverage and a 60% decrease in cost of manual requirements extraction,
with the help of their task decomposition workflow.

To support crowdsourced requirements engineering activities, Adepetu et al. [122] proposed a conceptualised
crowdsourcing platform named CrowdREquire. The platform employs a contest model to let the crowd compete
with each other to submit requirements specification solutions to the client defined tasks. The business model,
market strategy and potential challenges such as quality assurance and intellectual property issues of the
platform were also discussed.

4.2 Crowdsourcing for Software Design

Among existing commercial crowdsourcing marketplaces, there are many platforms supporting software
interface design, such as 99designs, DesignCrowd and crowdSPING. However, few research studies have
been reported on the performance of using crowdsourcing for software design.

In order to provide software designers inspiring examples during the wireframing stage, Huang et al. [198]
leveraged the crowd to map between mobile app wireframes and design examples over the Internet. Lasecki et
al. [135] proposed a crowdsourcing system named Apparition to help designers prototype interactive systems
in real-time based on sketching and function description. Experimental results showed that Apparition was
able to achieve an accuracy higher than 90% regarding user’s intent, and to respond in only a few seconds.

Fewer crowdsourcing platforms support software architecture design. TopCoder is one of the widely used
platforms. However, industrial crowdsourcing platforms such as TopCoder have limitations in evolving de-
signs from multiple designers’ solutions [134]. LaToza et al. [134] let designers produce initial designs and
evolve their solutions based on others’ solutions. Their study demonstrated the usefulness of recombination
in crowdsourced software designs. A few suggestions on improving software design competitions were also
highlighted based on their findings.

Nebeling et al. [133] also proposed to evolve software designs based data and functionality contributed by
the crowd. However, the designs are specifically website components within the web engineering domain. Two
preliminary experiments were conducted to show the capability of the proposed approach. Crowd motivation,
quality assurance, security and intellectual property issues were also briefly discussed.

4.3 Crowdsourcing for Software Coding

Using crowdsourcing for software coding has focused on three sub-areas: integrated development environment
(IDE) enhancement, crowd programming environment, and program optimisation:

1) IDE enhancement: Using crowd knowledge to support coding activities in integrated development envi-
ronments has been extensively studied since 2010. Several tools and methods have been proposed to help the
developers with coding and debugging [20], [25], [27], [33], [92]–[96], [136]–[143], each of which we describe
below:

HelpMeOut [136] is a social recommender system that assists debugging with crowdsourced suggestions.
The system has a database that stores fixes for coding errors constructed by crowd developers. For collecting
the fixes, the system automatically tracks code changes over time and records actions that make the error code
become error-free. The evaluation was performed with novice developers through two three-hour workshops.
The results showed the proposed approach was able to recommend useful fixes for 47% of the errors. However,
HelpMeOut only supports static, compiled programming languages such as Java. To further support dynamic,
interpreted web programming languages, another tool named Crowd::Debug [199] was proposed.

The idea that a crowd of developers may be able to provide recommendations of patches for software
systems finds a strong resonance in recent work on genetic improvement [200]–[203], and in particular work
on automated bug fixing (aka ‘patching’ or ‘automated program repair’) [204]. Genetic improvement seeks
to automatically improve software systems by suggesting modifications that improve functional and non-
functional properties. Genetic improvement regards program code as genetic material to be manipulated in the
automated search for improvements. Recent results have demonstrated the potential for this technique improve
real work program’s speed [200]–[203], [205], energy [206]–[208] and dynamic memory [209] consumption and
functionality, both by fixing bugs [210] and by adding new features [211]. Work on automated repair has also
harvested human developed patches in order to improve the automated reparation process [212]. It therefore
seems reasonable to conclude that hybridised versions of automated repair and social recommender systems
(like HelpMeOut) could be extremely successful, a topic to which we return in Section 6.3.

16 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

TA
B

LE
6

A
n

O
verview

ofthe
C

row
dsourcing

E
xperim

ents
C

onducted
in

the
A

pplication
P

apers

Phase
SE

Task
Platform

C
row

d
Size

A
pplication

Effort
R

ew
ard

R
esult

R
ef.

R
equire-

m
ents

R
equirem

ents
Elicitation

StakeN
et

Stakeholders
68

R
A

LIC
-

-
StakeN

et
can

identify
stakeholders

and
their

roles
w

ith
high

recall,and
can

prioritise
them

accurately.
[117]

R
equirem

ents
Elicitation

StakeR
are

Stakeholders
87

R
A

LIC
-

-
StakeR

are
can

predict
and

prioritise
stakeholder

needs
accu-

rately.
[121]

R
equirem

ents
Extraction

A
M

T
U

nskilled

76
-

448
classifications

$0.15
per

task
The

approach
can

reduce
60%

cost
and

increase
16%

coverage
in

m
anual

extraction.
[56]

38
-

135
classifications

$0.15
per

task

-
-

-
$0.08-$0.10

per
task

D
esign

A
rchitecture

D
esign

Em
ail

Students
20

A
n

educational
traffic

flow
sim

ulation
program

avg.12.9
h

$100
each

person
+

4*$1000
prizes

A
ll

participants
borrow

ed
others’

design
ideas

and
m

ost
im

proved
the

design
quality.

[134]
U

ser
Experience

D
e-

sign
20

avg.21.3
h

C
oding

ID
E

Enhancem
ent

StackO
verflow

SO
com

-
m

unity
-

35
developm

ent
tasks:

12
Sw

ing,12
Boost,11

LIN
Q

-
-

For
77.14%

of
the

assessed
tasks

at
least

one
useful

Q
&

A
pair

can
be

recom
m

ended.
[96]

ID
E

Enhancem
ent

-
C

ode
A

nnotation
oD

esk
D

evelopers
-

C
odex

annotated
500

code
snip-

pets
-

A
m

ong
the

annotated
snippets,

86%
correspond

to
a

useful
program

m
ing

task;
96%

can
be

em
bedded

into
a

standalone
function,and

91%
do

not
have

another
m

ore
com

m
on

form
.

[143]

Program
Synthesis

Bountify
D

evelopers
5

R
egular

expressions

w
rote

14
regular

expres-
sion

$10
C

onsistent
prgoram

boosts
in

accuracy
can

be
achieved

w
ith

m
odest

m
onetary

cost
[57]

A
M

T
U

nskilled
5

classified
strings

as
valid

or
invalid

$0.05-$0.25
per

task

Testing

System
evaluation

A
M

T
U

nskilled
65

Sem
antic

search
system

s
579

H
ITs

$0.20
per

H
IT,$347.16

in
total

C
row

dsourced
evaluation

tasks
can

be
repeated

over
tim

e
and

still
m

aintain
reliable

results.
[170]

69
421

H
ITs

-

U
sability

Testing
A

M
T

U
nskilled

11
A

graduate
school’s

w
ebsite

11
H

ITs
$0.15

per
H

IT,$2.92
in

total
R

educed
cost

and
tim

e.H
ow

ever
quality

w
as

w
orse

com
pared

to
the

testing
in

a
lab.setting.

[155]
A

M
T

+
C

row
d-

Flow
er

44
44

H
ITs

$0.20
per

H
IT,$347.16

in
total

U
sability

Testing
A

M
T

U
nskilled

28
A

subpage
of

a
university

w
eb-

site
avg.4-5m

to
answ

er
all

8
questions

-
The

crow
dsourced

usability
testing

shared
sim

ilar
results

w
ith

a
laboratory

setting.
[157]

U
sability

Testing
C

row
dStudy

+
A

M
T

U
nskilled

93
A

new
s

article
page

28
custom

layouts,
143

ratings
and

32
answ

ers
-

The
usefulness

and
the

ability
to

be
configured

for
different

scenarios
w

ere
dem

onstrated.
[158]

84
W

ikipedia
w

ebsite
33

different
type

tasks
-

Perform
ance

Testing
Lync

End
users

48,000
Lync

U
sage

behaviours
0

The
approach

had
been

successfully
deployed

and
had

im
-

proved
developm

ent
decisions

at
M

icrosoft.
[160]

G
U

I
Testing

A
M

T
U

nskilled
100

Tribler
100

assignm
ents,28h58m

$25
in

total
The

approach
w

as
able

to
evaluate

an
experim

ental
user

interface
feature

w
ithin

a
few

days
at

low
costs.

[161]
100

100
assignm

ents,28h38m
$25

in
total

G
U

I
Testing

A
M

T
U

nskilled
398

Tribler,K
D

E
login,K

D
E

m
ount,

X
fce

700
assignm

ents
$0.10-$0.15

per
H

IT
The

approach
is

feasible
and

reliable,
although

there
w

as
a

quality
issue

in
continuous

testing.
[87]

Q
oE

Testing
Q

uadrant
of

Euphoria
+

A
M

T

U
nskilled

-
M

P3
bit

rate,
VoIP

quality,
V

ideo
codec,Loss

concealm
ent

2130
runs

of
experim

ents
$21.3

in
total

W
ith

consistency
assurance

crow
dsourcing

can
yield

results
as

w
ell

as
laboratory

experim
ents.

[162]

Q
oE

Testing
M

icrow
orkers

U
nskilled

10,737
V

ideos
10,737

ratings
$0.2625

per
rating

The
proposed

m
ethods

represented
a

step
in

m
aking

crow
d-testing

sufficiently
m

ature
for

w
ide

adoption.
[163]

1,593
1593

ratings
$0.0834

per
rating

Test
G

eneration
Tw

itter
U

nskilled
120

PA
T

avg.1m
per

puzzle
0

84
of

the
top

100
constraint

solving
puzzles

and
24

of
the

top
100

object
m

utation
puzzles

w
ere

successfully
solved.

[166]

O
racle

Problem
M

itigation
A

M
T

U
nqualified

-
java.util.Stack

200
assignm

ents
$0.15-$0.20

per
assignm

ent

C
row

dO
racles

is
a

prom
ising

solution
to

m
itigate

the
oracle

problem
,how

ever
geting

useful
results

from
an

untrained
crow

d
is

difficult.
[88]

A
M

T
Q

ualified
-

java.util.Stack,Trove4J,ISO
8583

500
assignm

ents

C
row

d
Testing

Sup-
port

M
obilew

orks
+

Em
ail

End
users

75
V

ideo
H

otM
ix,C

raigslist,C
net,

A
m

azon,
W

eather,
Tw

itter,
Ev-

ernote,Yelp

-
-

Statically
A

ided
Interactive

D
ynam

ic
A

nalysis
consistently

ob-
tained

greater
coverage

than
other

techniques.
[34]

Verification
N

on-expert
Verification

vW
orker

D
evelopers

14
StackA

r
avg.3

h
$6-$22

per
hour

VeriW
eb

can
save

tim
e

and
m

oney
w

ith
contracted

w
orkers.

[11]
A

M
T

U
nskilled

<
10

-
>

$0.25
per

H
IT

C
urrent

ad-hoc
labours

are
not

w
ell-suited

for
verification.

RN/15/01 17

C r o w d S i z e
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0
Ran

ge

(a)

C o s t P e r T a s k
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

US
Dol

lar

(b)

Fig. 10. Crowd size (a) and cost per task (b) in the experiments.

BlueFix [139] is an online tool concerned with the problem of compiler error message interpretation and
understanding for novice programmers. An evaluation was performed based on an audience of 11 novice
student programmers. The results indicated that the tool was able to help the students fix compile-time errors
faster, and when compared with HelpMeOut, BlueFix’s suggestions were 19.52% higher in precision.

Calcite [137] is an Eclipse plugin that specifically focuses on constructor API comprehension and correct
usage. The plugin uses a database that contains common object construction examples by collecting code from
the web. According to a reported user study, this plugin can help developers to increase their completion rate
by 40%.

Example Overflow [92], [140] is a code search system which utilises crowd knowledge from question and
answer (Q&A) websites for suggesting embeddable code with high quality. The code snippets were collected
from Stack Overflow via its public API. The search function is based on Apache Lucene. A preliminary
evaluation on a subset of coding tasks indicated that the system suggested results were better than other
existing tools studied in the experiments.

Seahawk [25], [93]–[95] is an Eclipse plugin, the aim of which has some resonance with Example Overflow. It
seeks to utilise crowd knowledge in Q&A websites such as StackOverflow for documentation and programming
support. Compared to Example Overflow, Seahawk integrated Q&A services into IDEs and provided more
friendly user interface features. For example, it was found to be better at formulating queries automatically,
based on code entities and providing interactive search results. It also addresses the limitation of Q&A websites
that they do not offer support for exploiting their data in a team-working context [93]. By enabling developers
to link imported code snippets to their documents via language-independent annotations, Seahawk can help
developers share documents with their teammates [95]. The evaluation experiments were performed on 35
exercises from Java training courses [94]. The results were generally promising. Although the tool might not
always suggest useful documents, it sometimes aided developers with surprising insights.

Souza et al. [96] also aimed to use crowd knowledge from StackOverflow, but focused on proposing a
ranking approach for potential solutions. The ranking strategy is based on two factors, including the quality
of question-answer pairs and the textual similarity of the pairs regarding the developer’s query. Experiments
were performed on three programming topics. The results demonstrated that at least one suggested question-
answer pair is helpful for 77.14% of the evaluated activities.

WordMatch and SnipMatch [33] are two search tools for helping developers integrate crowdsourced code snip-
pets. WordMatch provides an end-user programming environment that enables users (without programming
experience) to generate direct answers to search queries. SnipMatch is an Eclipse plugin built on WordMatch
that retrieves customised, ranked source code snippets, based on current code context and the developer’s
search query. A similar plugin for Microsoft Visual Studio that has been used in practice is the Bing Code
Search Addin [213], which can retrieve code snippets from the Internet.

Amann et al. [214] investigated on using crowd knowledge for method-call recommendations. Crowd
knowledge was collected from multiple developers’ implicit feedback on their context-sensitive usage of
the APIs. Collaborative filtering techniques were employed for recommending method calls based on such
feedback knowledge.

Bruch [27] proposed the idea of IDE 2.0 (based on the concept of Web 2.0). Bruch showed how crowd
knowledge can help improve multiple functions such as API documentation, code completion, bug detection
and code search. Evaluations were performed on each of the proposed tools, revealing that the concept of

18 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

StakeNet, 1
StakeRare, 1

Amazon Mechanical
Turk, 13

Email, 2

StackOverflow, 1

oDesk, 1

Bountify, 1

CrowdStudy, 1

Lync, 1

Mobileworks, 1

Quadrant of Euphoria, 1

CrowdFlower, 1

Twitter, 1

vWorker, 1
Microworkers, 1

Fig. 11. Platforms used in the experiments.

Web 2.0 can be leveraged to improve the developer’s IDE.
Fast et al. [143] conducted a study that echoes the idea of IDE 2.0. However, it focused on codifying emergent

programming behaviour. By building a knowledge-based named Codex, which contained more than three
million lines of popular Ruby code, novel data driven interfaces were constructed. For example, Codex was
used for detecting unusual code that may contain a bug, annotating popular programming idioms identified
by the system and generating utility libraries that capture emerging programming practice. According to Fast
et al. [143], limitations of the current version of the proposed tool may include the adoption of GitHub, the
only source of training data, which may introduce open sourced code with low quality.

Using the crowd knowledge to find common examples from the web, shares similarities with work on
automatic harvesting of realistic test cases from the web-based systems [215], [216]. As with the potential for
combination of genetic improvement and social recommenders, this similarity also points to the possibility of
hybridise versions that harvest such information from a combination of crowd and web for testing purposes.

2) Crowd programming environment: Instead of adopting crowd knowledge over the Internet to help conven-
tional coding activities, some other studies have focused on providing systems to support crowd-based coding
work [28], [144]–[148], [152], [153], [217].

Goldman [145] proposed role-specific interfaces for coordinating collaborative crowd coding work. By
building Collabode, a real-time web-based IDE, the author aimed to enable emerging highly-collaborative
programming models such as crowd programming. Ball et al. [148] demonstrated the design of the Cloud-
based Integrated Development and Runtime Environment (CIDRE), and its implementation TouchDevelop
[218]. CIDRE consists of three components: a crowd developer community, an online IDE and an app store.
These components link the IDE designers, application developers and users together and promote the mutual
feedback among them during the development process.

Xie et al. [153] proposed to use Code Hunt [219] from Microsoft Research as a platform for crowd program-
ming. The platform provides coding duel games with various difficulty levels to attract online developers’
participation. By carefully designing the coding duels, the platform can serve for software construction purpose
by leveraging the best solutions from the crowd. Also, by recording the crowd developers’ duel solving process,
the multiple attempts with evolving code versions can serve for education purpose.

In crowdsourcing both human and machine can be viewed as programmable units. There has been work
on integrating the crowd as a part of the program code itself [146], [147], [149]–[151], [220]. We also discuss
these support and integration studies:

Jabberwocky [149] is a programming framework for crowd computation. It consists of three components: Dog,
ManReduce and Domouse. Bernstein et al. [220] proposed the view of programming the ‘global brain’. The study
pointed out some emerging research directions for better utilising the emerging human-computer network.
AutoMan [150] was designed to help programmers focus on their programming logic while utilising human
computation to solve tasks that are difficult for computers. It employs crowd workers for computation tasks
and makes them callable as ordinary functions in a standard programming language. It is the first crowd
programming system to be fully automated in managing budget, schedule and quality. Although the idea
of adopting human intelligence as computational power dates back to the pre-electronic-computing era, in
which the noun ‘computer’ typically referred to a human who preformed computation; the AutoMan frame-
work, supported by modern electronic-computation-based networking and infrastructure, which dynamically

RN/15/01 19

manages anonymous ‘crowds’ as a computational device via an API is novel.
3) Program optimisation: More recently, crowdsourcing has been used to support compilation optimisation

[221] and program synthesis [57].
Auler et al. [221] presented a crowdsourced adaptive complier for JavaScript code optimisation. A compiler

flag recommendation system was built in the cloud, based on the application performance data gathered
from web clients. The system was used to guide the compiler to perform optimisation for a certain platform.
Experiments were conducted on three optimisation implementations by JavaScript code emission for eight
platforms. One of the best optimisation performance showed an average of five fold increase in execution
speed.

Cochran et al. [57] proposed an approach called Program Boosting, which uses crowd knowledge and genetic
programming techniques to help tackle hard programming tasks such as writing robust regular expressions for
URLs. Program Boosting relies on two different types of crowds for ‘boosting’ a program: one ‘expert’ crowd for
generating initial candidate programs and the other ‘user’ crowd for evaluating the outputs (e.g., the validity
of URLs) generated from the candidate programs being evolved. The solutions obtained from the expert are
used as the first population, which is subsequently evolved (by genetic programming) to yield improved
solutions. Evaluation from the user crowd contributes to the evolution process. Experimental evaluation was
performed on four regular expression writing tasks (to represent URLs, emails, phone numbers and dates).
Experimental results showed that an average improvement of 16.25% in accuracy could be achieved on the
initial human solutions.

4.4 Crowdsourcing for Software Testing and Verification
Software testing and verification have received considerable attention in the software engineering research
community. It is therefore unsurprising that we found the number of related crowdsourcing studies dominate
those of other categories.

4.4.1 Crowdsourcing for Software Testing
Crowdsourcing for software testing is often termed ‘Crowdsourced Testing’ or ‘Crowd Testing’. Compared
with traditional software testing, crowdsourced software testing has the advantage of recruiting, not only
professional testers, but also end users to support the testing tasks.

Different from conventional beta testing which focused user acceptance, crowdsourced testing can be used
to support various types of testing activities with different testing levels, in both black-box and white-box
ways. It has been applied to usability testing [30], [154]–[159], performance testing [160], GUI testing [87],
[161], test case generation [166], [167], and the oracle problem [88]. We discuss each of these below:

1) Usability Testing: Traditional usability testing is labour-intensive and can be expensive and time consuming
[155]. Recruiting online ad-hoc crowd labour may be a way to ameliorate these issues, by exploiting a large
potential user pool and providing lower labour rates with extended incentives to the end users. Crowdsourced
usability testing has demonstrated its capability for detecting usability problems as good as the testing done by
‘experts’ [154]. However, Liu et al. [155] showed that the quality of crowdsourced usability testing was worse
than that of the face-to-face usability testing in a laboratory setting. Nebeling et al. [158] further discussed
this issue and suggested that the advantages outweigh disadvantages according to their results. Nevertheless
these existing studies agree on the benefits of cost saving, fast delivery as well as easy access of crowdsourced
usability testing.

Schneider and Cheung [154] first demonstrated the viability of employing on-demand crowd users for
usability testing. They also proposed methods to help observe the testers during the process. Liu et al.
[155] conducted a comparative study on crowdsourced and traditional laboratory usability testing. Their
experimental results highlighted quality issues and the challenge of detecting ‘cheating behaviour’. Nebeling
et al. [156], [158] proposed a framework with a toolkit implementation named CrowdStudy for crowdsourced
web site usability testing. For identifying outliers in the crowdsourced usability testing results, Gomide et al.
[159] proposed an approach that employs a deterministic automata for automatic hesitation detection. The
idea is to capture users’ biofeedback from mouse movements and a skin sensor, for revealing their hesitation
behaviours. This can be useful in filtering non-confirming usability testing results.

2) Performance Testing: Software performance in a real-world setting can be hard to test due to the various
user behaviours and execution environments. Musson et al. [160] proposed an approach, in which the crowd
was used to measure real-world performance of software products. The work was presented with a case study
of the Lync [222] communication tool at Microsoft. The study indicated the usefulness of the approach for
identifying performance issues and assisting development team with decision making. In this case the Lync
software itself is repurposed as the crowdsourcing platform, and there is an implicit open call (i.e., permission

20 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

grant request) for providing performance data from the crowd users. Other similar cases for such crowdsourced
performance testing include the Chrome’s and Firefox’s built-in telemetries (performance testing frameworks)
[223]–[225] .

3) GUI Testing: Automated GUI test case generation is difficult, while manual GUI testing is too slow for
many applications [226]. It is a challenging task to test a GUI continuously. Crowdsourcing is considered as
a promising approach for continuous GUI testing [87].

Vliegendhart et al. [161] first proposed GUI testing for multimedia applications. Crowd testers were recruited
from Amazon Mechanical Turk. They were asked to carry out A/B tests of user interfaces via remote virtual
machines. Their experimental results indicated that it took less than three days and 50 US dollars to complete
two featured GUI testing tasks with 100 assignments each. Based on this crowd performance, it was concluded
that user connection speed was not an issue in their study. However the quality of the testing results was not
reported in this study.

Dolstra et al. [87] also demonstrated the possibility of crowdsourcing GUI tests by offering remote virtual
machines to testers, recruited from Amazon Mechanical Turk. The experimental results showed feasibility and
reliability of the proposed approach.

4) Test Case Generation: Test cases are essential to ensure software quality. Although a number of automatic
test case generation methods have been proposed, their test coverage is not ideal [227], due to several non-
trivial tasks that are difficult for programs but may not be so hard for humans [166]. Chen and Kim [166]
investigated object mutation and constraint solving issues, underlying existing test generation tools such
as jCUTE [228], Randoop [229] and Pex [230]. A Puzzle-based Automatic Testing (PAT) environment was
presented for decomposing and translating the object mutation and constraint solving problems into human-
solvable games (gamification). Experimental results from two open source projects showed 7.0% and 5.8%
coverage improvement, compared to the the coverage of two state-of-art test case generation methods.

Pham et al. [231] conducted a study on the testing culture of the social coding site — GitHub, and found
that capable developers sometimes solve issues in others’ repositories in a fast and easy manner, which is
called the drive-by commit phenomenon. This phenomenon has the potential to be leveraged for generating
test cases in social coding sites [167]. However it is still a conceptual idea which remains to be realised in
future work.

5) Oracle Problem: An oracle is typically needed to determine the required output of a program for a
given input [232], [233]. Such oracles may need to rely on human input [234], which makes it hard to fully
automate software testing. Pastore et al. [88] investigated crowdsourcing to mitigate the oracle problem. They
crowdsourced automatically generated test assertions to a qualified group of workers (with programming
skills) and an unqualified group of workers on Amazon Mechanical Turk. Workers were asked to judge
the correctness of the assertions and further fix false assertions. The experimental results suggested that
crowdsourcing can be a viable way to mitigate the oracle problem, although the approach requires skilled
workers provided with well-designed and documented tasks.

To support the application of crowdsourcing for software testing, especially for mobile application testing,
several frameworks have been proposed [34], [168], [169]:

CrowdBlaze [34] is a crowd mobile application testing system which combines automatic testing and human-
directed interactive testing. This study aimed to use redundant resources to help improve software systems.
CrowdBlaze initially explores the app with static analysis and automatic testing, and then recruits crowd users
to provide input for complex cases which enable automatic testing to further explore the app. By switching
between automatic testing and crowdsourced testing, it aims at a higher testing coverage. Compared to
employing automatic testing alone, the proposed system was demonstrated to cover 66.6% more user interfaces
according to the evaluation results.

iTest [168] is a framework for mobile applications with more automation features than existing industrial
mobile application testing service platforms such as uTest and Mob4Hire: the crowd testers are selected via a
greedy algorithm, and the generated test results and logs in the framework are submitted automatically.

Caiipa [169] is a cloud service for scalable mobile application testing. The service framework is equipped
with a unique contextual fuzzing approach to extend the mobile app running context space. It uses both
crowdsourced human inputs and crowdsourced measurements, such as various network conditions, with
multiple operator networks and different geographic locations. Experimental results suggested that Caiipa has
the capability to uncover more bugs compared to existing tools with none or partial mobile contexts.

Xie [235] summarised three types of cooperative testing and analysis: human-tool, tool-tool and human-
human cooperation. Crowd supported software testing and analysis falls into the human-human type of
cooperation according to this study.

Besides, crowdsourcing has also been applied to general software evaluation [170]–[172] and more specific
evaluation of Quality of Experience (QoE) [162]–[165].

RN/15/01 21

4.4.2 Crowdsourcing for Software Verification

Current software verification techniques generally require skilled workers, thereby raising cost issues. Crowd-
sourcing may reduce the skill barriers and costs for software verification [11], [12], [173], [174], [180].

DARPA published a solicitation for game-based large scale software verification in 2011, which is named
the Crowd Sourced Formal Verification (CSFV) program [72]. A series of research and practice [73], [173],
[236], [237] were conducted under this program. Dietl et al. [173] proposed to use gamification to attract a
general crowd as a verification workforce. The ‘verification games’ approach transforms a verification task
into a visual game that can be solved by people without software engineering knowledge.

Li et al. [174] presented a system called CrowdMine for recruiting non-expert humans to assist with the
verification process. The system represents simulation or execution traces as images and asks the crowd of
humans to find patterns that fail to match any pre-defined templates.

Schiller and Ernst [11] developed a web-based IDE called VeriWeb for reducing the barriers to verified
specification writing. The IDE was designed to break down a verified specification writing task into manage-
able sub-problems. The experimental results suggested time and cost benefits. However, the workforce needs
to be contracted workers rather than ad-hoc labours provided by crowdsourcing markets such as Amazon
Mechanical Turk. A more detailed version of this study can be found in Schiller’s doctoral thesis [12].

4.5 Crowdsourcing for Software Evolution and Maintenance

Software evolution and maintenance are among the earliest areas that have benefited from the application of
crowdsourcing. A series of studies have investigated the potential of crowdsourced software evolution and
maintenance [19], [24], [29], [97], [98], [175], [178], [179], [183]–[188].

4.5.1 Crowdsourced Software Evolution

Formal or automated verification methods may fail to scale to large software systems [175]. To help scalability,
a market-based software evolution mechanism was proposed by Bacon et al. [175]. The goal of the mechanism
is not to guarantee the absolute ‘correctness’ of software, but rather to economically fix bugs that users care
about most. The proposed mechanism lets users bid for bug fixes (or new features) and rewards the bug
reporters, testers and developers who respond. It was designed to apply to both crowdsourced settings and
closed source systems.

Software adaptation aims to satisfy users’ dynamic requirements. However, context is difficult to capture
during the software design phase, and it is a challenging task to monitor context changes at runtime. Ali
et al. [120] proposed Social Sensing to leverage the wisdom of the end users and used them as monitors
for software runtime adaptation. This technique may help software designers (and their systems) to capture
adaptation drivers and define new requirement and contextual attributes through users’ feedback. A follow-
up work of Social Sensing is Social Adaptation [179], in which several techniques (such as the goal model) for
realising social sensing were further discussed. Also, evaluation of the proposed framework was performed
on a socially adaptive messenger system. He et al. [183] proposed a ‘suggestion model’ to encourage crowd
users to become more closely involved in commercial software runtime adaptation. A prototype and several
adaptation strategies were introduced in this study. Challiol et al. [181] proposed a crowdsourcing approach
for adapting mobile web applications based on client-side adaptation.

Nebeling and Norrie [176], [177] presented an architecture and visual supporting tools for facilitating
crowdsourced web interface adaptation. Design and technical challenges when applying the crowdsourcing
model, especially for quality control, were discussed. A tool named CrowdAdapt [182] was further implemented
and evaluated. Experimental results showed the tool’s capability in leveraging crowd users for generating
flexible web interfaces.

In order to tackle the ‘bloat’ issue in enterprise applications, Akiki et al. [180] focused on utilising crowd-
sourcing for user interface adaptations. Their proposed approach is based on model-driven user interface
construction which enables the crowd to adapt the interfaces via an online editing tool. A preliminary online
user study pointed to promising findings for usability, efficiency and effectiveness.

Users may become overwhelmed by the number of choices offered by software systems. In order to provide
customised configuration dialogs to users, Hamidi et al. [185] proposed to extract configuration preferences
from a crowd dataset. The optimised configuration dialogs were formed using a Markov Decision Process.
When constructing customised dialogs, configuration decisions can be automatically inferred from knowledge
elicited in previous dialogs. The evaluation of the method was performed on a Facebook dataset collected
from 45 student users. Experimental results indicated that the proposed method could help users to reduce
configuration steps by 27.7%, with a configuration prediction precision of 75%.

22 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

4.5.2 Crowdsourcing for Software Documentation
Software documentation plays a crucial role in program understanding. Previous studies have pointed out that
inaccurate or insufficient documentation is a major cause of defects in software development and maintenance
[238]–[240]. Several researchers have investigated crowdsourcing models to enhance software documentation
[97], [98], [140], [186], [187].

Jiau and Yang [97] conducted an empirical study based on StackOverflow to reveal the severe uneven
distribution of crowdsourced API documentation. To deal with the inequality, a reuse method based on object
inheritance was proposed. An empirical evaluation was performed on three Java APIs: GWT, SWT and Swing.
The results confirmed the feasibility of the documentation reuse methods with improved documentation
quality and coverage.

Parnin et al. [98] conducted a similar empirical study, but with a focus on investigating the coverage and
dynamics of API documentation supported by StackOverflow. Three APIs including the Java programming
language, GWT and Android, were studied. The results showed that the crowd was able to generate rich
content with API usage examples and suggestions. For example, for Android, 87% of its classes were covered
by 35,000 developer contributed questions and answers. However, since the study is based on a single Q&A
platform, there may exist issues in generalising the findings. Chen and Zhang [186] also studied crowd
knowledge for API documentation. Documentation reading and searching behaviours were recorded for ex-
tracting question and answer pairs. Frequently asked questions were maintained for generating expanded API
documentation automatically. In addition, Seahawk [94] described in Section 4.3 can also retrieving additional
software documentation from Q&A services to help developers with program comprehension.

Pawlik et al. [187] conducted a case study on crowdsourced software documentation for NumPy (a Python
library for scientific computing). The case study highlighted aspects that need to be considered when applying
crowdsourcing for software documentation, e.g., technical infrastructure, stylistic instruction and incentive
mechanism.

4.5.3 Crowdsourcing for Software Localisation
Software localisation is also relevant to ‘software internationalisation’ or ‘globalisation’ [19], such as tailoring
the natural language output from systems for each country in which they are deployed. Localisation may
be an important factor for the adoption and success of international products [241]. Research on utilising
crowdsourcing for software localisation [19], [24], [29], [188] aim to reduce the cost and time-to-market periods
of the traditional developer-based localisation process.

Exton et al. [188] first proposed the idea to use crowdsourcing for software localisation. Manzoor [19]
developed a prototype for crowdsourced software localisation. An Action-Verification Unit method, together
with a quality-oriented rewarding system, was proposed for quality control. The preliminary evaluation results
showed that outcomes with acceptable quality can be delivered by the crowd. Gritti [24] also worked on a
similar project and established a prototype system for crowdsourced translation and software localisation.

4.6 Crowdsourcing for Other Software Engineering Activities
Crowdsourcing has also been applied to software security and privacy analysis [35], [189], [190], software end
user support [32], [191], [192] and software ideation [193]–[196].

The increasing number of mobile apps make malware analysis an urgent problem. Burguera et al. [190]
amied to suggest an environment for submitting and analysing apps. Specifically, they presented a novel
crowdsourced framework named Crowdroid for detecting malware in Android platforms. App behaviour traces
were collected from real users in the crowd, and were subsequently used for differentiating malicious or
benign apps. The experimental results showed a 100% detection rate in identifying malware executions in 3
self-written apps. In another real-world app experiment, the detection accuracies were 85% and 100% for two
real malware specimens. Arellano [189] proposed crowdsourced web augmentation, based on the idea that
end users are not only beneficiaries of web augmentation scripts, but can also contribute to them.

Users frequently struggle with reviewing permissions requested by mobile apps. Lin [35] collected the the
permissions granted to mobile apps from a crowd consisting of over 700 mobile phone users. The collected
privacy preferences were analysed using clustering algorithms, and the privacy profiles identified to be
important were used for providing default permission settings for mitigating user burden. Evaluation, based
on three fake apps and the crowd recruited from Amazon Mechanical Turk, indicated the resulting preference
models were able to relieve users’ burden in choosing privacy settings.

Regarding crowdsourced end user support, Chilana et al. [32], [191], [192] proposed LemonAid, a tool for
providing contextual help for web applications, enhanced by crowd knowledge. The tool retrieves users’
previously asked questions and answers in response to their user interface selections on screen. The evaluation

RN/15/01 23

TABLE 7
Crowd Evaluation for Software Engineering Research

Ref. SE Task Size Crowd Platform Effort Application Cost

[242] Fault
localisation

65 Developers AMT 1,830 judgements 45 Java files collected
from 5 textbooks

-

[59] Evaluate the
impact of code
smells

50 End users
program-
mers

AMT 160 HIT responses Yahoo!Pipes $0.2 per task

[136] IDE enhancement 13 Students Workshop 39 person-hours HelpMeOut -
[243] Patch maintain-

ability
157 Developers Campus,

AMT
2,100 judgements
(filtered)

32 defects and 40
patches for 6 real word
applications

$4 per task
for AMT
participants

[215] Evaluate the
readability
of string test
inputs

- Developers CrowdFlower 8 questions per
task, 250 responses

Java methods from 17
open source projects

-

[247] Evaluate the
impact of code
smells

61 End users
program-
mers

AMT 366 task responses Yahoo!Pipes $0.25 per task

[248] Survey on code
search habits

99 Developers Campus,
AMT

10 questions per
survey

- -

[143] Code annotation - Developers oDesk 500 code snippets’
evaluation

Codex -

performed on Amazon Mechanical Turk showed that LemonAid was able retrieve at least one user support
answer for 90% of the selection behaviours studied, and a relevant answer was likely to be in the top two
results. Results from a field deployments across multiple sites suggested that over 70% of the end users were
likely to find a helpful answer from LemonAid and might reuse the support system.

Software engineering research can also benefit from crowdsourcing. It can be used to conduct human studies
[59], [136], [215], [242], [243]. We summarised a few studies on using crowd evaluation for software engineering
research in Table 7. Note that we do not claim to have surveyed such crowdsourced human studies in software
engineering research comprehensively, as this is not the focus of this study but it can be a direction for future
work. The model can also be employed in organising broadly accessible software engineering contests [244]
such as Predictive Models in Software Engineering (PROMISE), Mining of Software Repositories (MSR) and
Search Based Software Engineering [245] (SBSE) challenges.

Several authors have anticipated that crowdsourcing will be applied to address more challenges in software
engineering research [126], [166], [246].

5 ISSUES AND OPEN PROBLEMS

Despite the extensive applications for Crowdsourced Software Engineering, the emerging model itself faces a
series of issues that raise open problems for future work. These issues and open problems have been identified
by previous studies. But only a few research have discussed the solutions.

According to an in-depth industrial case study on TopCoder [5], key concerns including task decomposition,
planning and scheduling, coordination and communication, intellectual property, motivation and quality
challenges were highlighted as interesting and important challenges.

Several studies are concerned with suggesting potential research topics. Stol and Fitzgerald [13] presented
a research framework inspired by the issues identified in the TopCoder case study [5]. It took the perspective
of three key stakeholders, i.e., the requester, the platform and the worker. Research questions were proposed
for issues identified from the view of each of the three stakeholders. LaToza et al. [4] briefly outlined a series
of research questions concerning the division of crowd labour, task assignment, quality assurance and the
motivation of the crowd’s participation. A follow-up research agenda can be found in the recent paper [249].

In the remainders of this section, we discuss Crowdsourced Software Engineering issues together with
relevant work in more detail:

5.1 Theory and Model Foundations
The use of undefined external workforce differentiates Crowdsourced Software Engineering from conven-
tional software engineering. Existing software development theories and models may no longer apply to this
emerging model [250]–[252].

24 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

In order to better facilitate Crowdsourced Software Engineering, a series of theories and models have been
proposed. The first published theoretical model for Crowdsourced Software Engineering is the Metropolis
Model proposed by Kazman and Chen [250], [251], who argued that classical software development models
such as the waterfall model, the spiral model and the more recent agile models are not suitable for Crowd-
sourced Software Engineering.

The Metropolis Model distinguishes three types of roles, i.e., the platform (referred to as kernel), applications
built on the kernel (referred to as periphery), and the end users (referred to as masses). Seven principles of the
model were introduced for managing crowdsourced development.

Saxton et al. [253] subsequently analysed 103 crowdsourcing websites and provided a taxonomy of nine
crowdsourcing models. Among them, the Intermediary Model and the Collaborative Software Development
Model support Crowdsourced Software Engineering.

Tsai et al. [254] summarised the commonalities in different Crowdsourced Software Engineering processes
and proposed an architecture for cloud-based software crowdsourcing. The architecture specifies a manage-
ment web interface for the requesters, a series of development tools for online workers, worker ranking and
recommendation tools provided by the platform, collaboration tools for multiple stakeholders, a repository
for software assets and a cloud-based payment system.

A few studies have also considered game theoretic crowd formulations to understand competition among
crowd developers [62], [255], [256]. Wu et al. identified the ‘min-max’ (defence-offence) nature of crowdsourced
software development competitions and argued that the nature contributes to the quality and creativity of
the produced software [62]. Hu and Wu [255] proposed a game theoretic model for analysing the competition
behaviours among TopCoder developers. The conclusions of this paper were drawn based on theoretical
analysis, e.g., Nash equilibria computation, without empirical evaluation, so the applicability of the model
remains to be analysed in future work.

5.2 Task Decomposition

Crowdsourced complex tasks lead to heavy workloads and require dedicated resources. With the high skill
barrier, it limits the number of potential workers. In order to increase parallelism and to expand the qualified
labour pool, it is essential to decompose software engineering tasks into smaller pieces. However, software
engineering tasks are often concerned with specific contexts, for which decomposition may be non-trivial.
Several studies have focused on this decomposition problem.

LaToza et al. [217] developed an approach for decomposing programming work into microtasks. The method
breaks down a single higher level task into multiple lower level tasks iteratively, and coordinates work by
tracking changes linked to artifacts. A platform called CrowdCode [152] was implemented to support their
proposed method. The evaluation was performed on a crowd of 12 developers and the results indicated that
the approach had an ‘overhead issue’ which led to a potentially lower productivity compared to the traditional
development methods. LaToza et al. [257] also proposed to decontextualise software development work as
part of decomposition. Three types of development work including programming, debugging and design were
discussed regarding their decontextualisation.

As discussed in the crowdsourcing applications for software testing and verification (Section 4), two previous
studies also offered decomposition approaches: Chen and Kim [166] decomposed the test generators’ complex
constraint solving and object mutation problems into small puzzles, which can be solved by crowd labours.
Schiller and Ernst [11] proposed an online IDE for verification named VeriWeb, which can decompose the
verifiable specifications task into manageable sub-problems.

5.3 Planning and Scheduling

The highly heterogeneous nature of crowd labour necessitates careful planning and scheduling.
Tran-Thanh et al. [258] proposed a bounded multi-armed bandit model for expert crowdsourcing. Specifi-

cally, the proposed ε-first algorithm works in two stages: First, it explores the estimation of workers’ quality
by using part of the total budget; Second, it exploits the estimates of workers’ quality to maximise the overall
utility with the remaining budget. The evaluation of the proposed algorithm was based on empirical data
collected from oDesk. The results indicated that the algorithm was able to outperform related state-of-the-art
crowdsourcing algorithms by up to 300%.

Tung and Tseng [246] focused on using crowd resources effectively to support collaborative testing and
treated the problem as an (NP-Complete) job assignment problem. They proposed a greedy approach with
four heuristic strategies. To evaluate the proposed model, a Collaborative Testing System (COTS) was imple-
mented. Experimental results showed the system was able to generate the average objective solution within

RN/15/01 25

approximately 90% of the optimal solutions. When applied to a real-time crowd testing environment, the
system was able to save 53% of the test effort.

In some open call formats such as online competition, the tasks are given to unknown developers rather than
assigned to specific crowd participants. In such cases the developers cannot be directly scheduled but may be
optimised using recommendation techniques to guide them to work on their most suitable tasks. Mao et al.
[259] employed content-based technique to recommend developers for crowdsourced software development
tasks. The approach learns from historical task registration and winner records to automatically match tasks
and developers. Experimental results on TopCoder datasets indicated the recommendation performance was
promising in both accuracy (50%-71%) and diversity (40%-52%).

Estimating the appropriate number of crowd developers and delivery time for Crowdsourced Software
Engineering tasks is an important yet challenging problem. To date, very limited work has been done in
this research area. Mäntylä and Itkonen [260] studied how the crowd size and allocated time can affect
the performance of software testing. Their results, conduced on 130 students, indicated that multiple crowd
workers under time pressure had 71% higher effectiveness (measured by number of detected bugs) than single
worker without time pressure. The authors suggested that the number of crowd workers for manual testing
tasks should be adjusted according to the effectiveness of the mechanisms and tools for detecting invalid and
duplicate bug reports.

To guarantee the participation level in Crowdsourced Software Engineering tasks, Wang et al. [129] proposed
a framework to support crowdsourcing systems in their recruitment of participants with domain knowledge
for requirements acquisition. The framework was established based on the observation that crowd workers
with similar domain knowledge tend to cluster in particular spatio-temporal regions. The feasibility of this
framework was demonstrated by a theoretical study and a simulation experiment.

5.4 Motivation and Remuneration
Motivation is viewed as a critical factor for the success of a software project [261]–[263]. For crowdsourced
software projects, developers without proper motivation may not be able to make consistent contributions,
while inappropriate remuneration may lead to low capital efficiency or task starvation. Varshney [264] demon-
strated that player motivation is essential for driving participation and ensuring a reliable delivery platform.
Based on a study from IBM’s internal crowdsourced software development system — Liquid, several intrinsic,
extrinsic, and social motivation factors were identified. Developer participation was found to follow a power-
law distribution. A momentum-based generative model and a thermodynamic interpretation were used to
describe the observed participation phenomena.

Mao et al. [252] proposed 16 cost drivers for training empirical pricing models to meet crowd developers’
monetary remuneration. Specifically, the development type (upgrade or new development) of the task, the
number of component specifications, the number of sequence diagrams of the design and the estimated size
of the task were considered as significant factors that impact the remuneration. Based on the identified cost
drivers, nine predictive pricing models were trained using popular machine learning algorithms. Evaluation
on 490 TopCoder projects indicated that high prediction quality was achievable.

Leimeister et al. [194] investigated the motivation of participants for IT-based idea competitions. Incen-
tives such as organiser’s appreciation, prizes and expert knowledge were highlighted in this study. Olson
and Rosacker [265] discussed the motivation for participating in crowdsourcing and open source software
(OSS) development. The element of altruism was considered to be important in motivating participation in
both OSS and crowdsourced software development. Ramakrishnan and Srinivasaraghavan [266] presented
intrinsic and extrinsic motivational factors among students in a crowdsourced programming task context.
A controlled experiment was performed to show the viability of employing a captive university crowd for
software development.

5.5 Quality Assurance
Crowd labour is transient and workers vary in expertise and background. The use of such an undefined work
force inherently raises quality questions for crowdsourcing in general [267]–[269] as well as Crowdsourced
Software Engineering [4], [5], [23], [105].

Li et al. [105] identified 23 quality factors for crowdsourced software development from the perspective of
platform and project, based on an empirical study of TopCoder. Four important aspects were identified in
order to improve crowdsourced software quality, including the prosperity level of the platform, the scale of
the task, the participants’ skill levels and the design quality of the task.

Saengkhattiya et al. [23] investigated how crowdsourcing companies deal with the quality assurance chal-
lenge by conducting interviews with four companies: Microworkers, Clickchores, Microtask and TopCoder.

26 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

Ten diverse methods for managing quality were identified, such as ranking/rating, reporting spam, reporting
unfair treatment, task pre-approval, and skill filtering.

Tajedin and Nevo [63] built a ‘success model’ of crowdsourced software development, which contains
three high-level determinants, namely the project characteristics, the crowd composition and the stakeholder
relationship. The model was proposed based on the analysis of related studies on the success of information
systems, OSS development and general software development.

Much of the work on quality assurance remains to be fully evaluated, leaving rigorous evaluation of
Crowdsourced Software Engineering quality assurance as a pressing topic for future work.

5.6 Unexplored Issues

Unexplored issues in Crowdsourced Software Engineering include coordination and communication, intellec-
tual property and data security problems. These issues also exist in general crowdsourcing and have relevant
studies [253], [270], [271]. However, according to our analysis of the papers we were able to find for this study,
they have not been explored under the specific Crowdsourced Software Engineering context.

Regarding the coordination and communication issue, both the resources and development process need
to be coordinated. For example, geographically distributed and transient crowd workers need to reach a
consistent understanding of the tasks required of them. Without coordination, it may be quite problematic,
for example, when the crowdsourced developers and the requester use different development methods.

Intellectual property and data security is another important issue. Since crowdsourcing uses an open call
format, the general public can access task information. Task requesters may find it difficult to describe the task
as they can only provide limited information (for security reasons), while the crowdsourcing task needs to be
as clear as possible. Intellectual property issues may arise when transferring the task deliverables. For example,
it is possible that the crowd developers include pre-existing or third-party code intended for non-commercial
use, but the client company actually requests the task for commercial purposes.

6 OPPORTUNITIES

This section outlines five ways in which the authors believe Crowdsourced Software Engineering may develop
as it matures, widens and deepens its penetration into software engineering methods, concepts and practices.

6.1 Who is the Crowd?

Except few studies [180], [196], [264], [272], almost all previous work on Crowdsourced Software Engineering
has assumed that the crowd will be external to the requester’s organisation, recruited by an open call. Indeed,
this external, open call format is part of the current definition of crowdsourcing. However, requesters could
also identify specific crowds from their own organisation’s employees, thereby extending the definition of
what it means to be a crowd.

Crowdsourcing technology has provided platforms that support allocation of ‘micro tasks’. Hitherto, the
micro tasks have been a necessary part of the decomposition for distribution to a large external crowd. These
micro-task allocation and collaboration platforms could be repurposed to support various forms of crowd-like
software engineering within organisations, in which the crowd is formed, partly or wholly, of employees (or
other stakeholders).

For example, an organisation could use crowdsourcing platforms to throw open acceptance testing of a newly
procured system to a wider group of internal stakeholders than traditionally possible. Organisations already
undertake such ‘crowd like’ acceptance testing activities, informally (and without infrastructural support), by
inviting internal stakeholders to try out new products and provide comments. Crowdsourcing platforms could
provide a technology and infrastructure to systematise, support and extend this existing informal activity.

Crowdsourcing technology could also be used to support internal training and dissemination of best prac-
tice. It could be used to harvest workarounds (currently used by employees to overcome software system
limitations), or to elicit new requirements from the organisation. In this way, crowdsourcing infrastructure
can be repurposed to help an organisation achieve greater involvement of its workforce in software system
procurement and deployment.

More radically, perhaps all software systems that involve multiple users should, in future, be regarded
as crowd-based software systems. This is not merely a philosophical perspective, but could have practical
ramifications for enhanced adaptivity; by overlaying crowdsourcing technology a system could harvest and
respond to it users. As the technologies develop, we may (hope to) witness a merging of crowdsourcing with
adaptive software engineering [273]–[275].

RN/15/01 27

6.2 Speculative Crowdsourced Software Engineering

Currently, Crowdsourced Software Engineering is envisaged as a way to replace existing software engineering
activities with alternative versions implemented using the crowd. We anticipate that Crowdsourced Software
Engineering will increasingly also open up new possibilities for software engineering activities that are not
currently possible.

Specifically, the low-cost, flexibility and rapid response available through Crowdsourced Software Engi-
neering may create possibilities for speculative software engineering, in which the software development
process can become much more experimental. Crowdsourcing technology may provide a mechanism through
which organisations can achieve even more rapid prototyping, with the crowd being used to simulate the
functionality of a putative software system.

6.3 Hybrid Crowdsourced Software Engineering

The Crowdsourced Software Engineering solutions surveyed in this paper typically concern the substitution
of a crowdsourced activity for an existing (non-crowdsourced) activity. In this regard, the solution is either
crowdsourced or not crowdsourced, with a sharp ‘binary divide’ between the two kinds of activity. We envisage
this binary divide becoming blurred as Crowdsourced Software Engineering achieves greater penetration into
the research and practitioner communities.

This blurring of the distinction between traditional and crowd sourced activities will lead to the further
development of Hybrid Crowdsourced Software Engineering. Tools such as CrowdBlaze (Section 4.4) already
offer a form of hybridisation between crowdsourcing and automated software testing, while bug fix recommen-
dation tools such as HelpMeOut could be augmented with genetic improvement (as mentioned in Section 4.3)
.

Hybrid Crowdsourced Software Engineering will require new processes and methodologies that feedback
crowdsourced knowledge into software development process (as it proceeds) and that feed software develop-
ment information back to the crowd. The growth in the use of app stores as a platform for software deployment
and review [276]–[279], is already providing a kind of Hybrid Crowdsourced Software Engineering. The review
mechanisms implemented by app stores already resemble a channel of communication between the users
(a crowd) and an app’s developers. We envisage greater deployment, extension and development of such
crowdsourced software deployment, review and feedback infrastructures.

6.4 Multi-Crowdsourced Software Engineering

Current work on crowdsourcing typically involves a single crowd, which is given a well-defined, single
task. We propose that this model can be generalised to Multi-Crowdsourced Software Engineering, in which
multiple distinct (but communicating) crowds work on distinct (but related) problems. In Multi-Crowdsourced
Software Engineering, the crowds communicate with each other, such that the behaviour of each is dependent
upon the behaviour of the others. This interaction between distinct crowds distinguishes Multi-Crowdsourced
Software Engineering from existing (single) Crowdsourced Software Engineering.

For example, the problem of testing and debugging could be formulated as a Multi-Crowdsourced problem,
in which one crowd works on generating test cases to find bugs, while the other crowd works on finding
patches to fix the bugs. This would lead to a crowd-based implementations of co-evolutionary mutation testing
[280] and co-evolutionary patching [281].

Many other software engineering problems offer natural formulations for Multi-Crowdsourced Software
Engineering. For example, requirements elicitation and rapid prototyping could proceed in tandem, with
one crowd gathering requirements while the other develops prototypes for these requirements. Architectural
evolution and software testing could also proceed in tandem using two crowds, one targeting performance
test case generation and the other targeting architectural improvements to avoid performance bottlenecks. In
a previous study on using crowdsourcing for program synthesis [57], one professional crowd was employed
for generating regular expression candidates and another non-professional crowd was recruited for evaluating
the instances generated from these expressions, for further evolving better programs.

Multi-Crowdsourced Software Engineering is not limited to two crowds. We could envisage a three-crowd
software engineering problem involving requirements elicitation, rapid prototyping and software test case
generation, each with their own dedicated crowd. Each of the three crowds will depend on the activities
of the other, and use the outputs of the tasks undertaken by the other. The prototyping crowd implements
some of the requirements emerging from the requirements elicitation crowd. The test case generation crowd
generates tests, some of which will uncover issues in the prototypes. These issues, in turn, may suggest new
features to the requirements elicitation crowd.

28 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

6.5 Iterative Crowdsourced Software Engineering

Most existing approaches to Crowdsourced Software Engineering consist of a single, batch mode, application
of crowdsourcing to solve a well-defined single task. It is quite striking to see the waterfall-like model, making
such a strong resurgence as a practical methodology underpinning much crowdsourced development work
(see Section 3.1). This phenomenon maybe transitory; as it matures, Crowdsourced Software Engineering will
likely become adaptive and iterative to better model the underlying software engineering processes it supports
(e.g., a recent study shows the iterative recombination can help improve crowdsourced software design [134]).
Indeed, our proposed Multi-Crowdsourced Software Engineering is a naturally iterative process, in which
each crowd responds to and affects the results of tasks performed by other crowds.

7 CONCLUSIONS

This study has surveyed the use of crowdsourcing in software engineering activities and research into these
activities. It has revealed an increasing trend in the publication numbers in recent years and has presented a
snapshot of the research progress of this area from the perspectives of theories, practice and applications.

The paper has also highlighted potential issues in Crowdsourced Software Engineering, together with related
analysis and solutions conducted in existing studies. The issues/opportunities that were insufficiently studied
or explored have been pointed out in this survey, which may provide directions for future research.

APPENDIX A
SEARCH TERMS

TABLE 8
Terms for Online Library Search

Category Terms

General

software crowdsourcing
crowd software engineering
crowdsourcing software engineering
crowdsourced software engineering
crowd software development
crowdsourcing software development
crowdsourced software development
crowd development
crowdsourcing development
crowdsourced development

Domain

crowd requirements
crowdsourcing requirements
crowdsourced requirements
crowd design
crowdsourcing design
crowdsourced design
crowd coding
crowdsourcing coding
crowdsourced coding
crowd testing
crowdsourcing testing
crowdsourced testing
crowd verification
crowdsourcing verification
crowdsourced verification
crowd software evolution
crowdsourcing software evolution
crowdsourced software evolution
crowd software maintenance
crowdsourcing software maintenance
crowdsourced software maintenance

RN/15/01 29

ACKNOWLEDGMENTS

The authors would like to thank many authors who contributed their valuable feedback in the ‘crowdsourced
checking’ process of this survey.

Ke Mao is funded by the UCL Graduate Research Scholarship (GRS), and the UCL Overseas Research
Scholarship (ORS). This work is also supported by the Dynamic Adaptive Automated Software Engineering
(DAASE) programme grant (EP/J017515), which fully supports Yue Jia, partly supports Mark Harman.

REFERENCES

[1] J. Howe, “Crowdsourcing: A definition,” http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing a.html, June 2006.
[2] ——, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp. 1–4, 2006.
[3] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “TopCoder(A): Developing software through crowdsourcing,” Harvard Business School

Case, 610-032, January 2010.
[4] T. D. LaToza, W. Ben Towne, A. van der Hoek, and J. D. Herbsleb, “Crowd development,” in Proceedings of the 6th International

Workshop on Cooperative and Human Aspects of Software Engineering, May 2013, pp. 85–88.
[5] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: A case study of crowdsourcing software development,” in Proceedings

of the 36th International Conference on Software Engineering, 2014, pp. 187–198.
[6] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, et al., “Predicting protein

structures with a multiplayer online game,” Nature, vol. 466, no. 7307, pp. 756–760, 2010.
[7] T. C. Norman, C. Bountra, A. M. Edwards, K. R. Yamamoto, and S. H. Friend, “Leveraging crowdsourcing to facilitate the discovery

of new medicines,” Science Translational Medicine, vol. 3, no. 88mr1, 2011.
[8] D. C. Brabham, T. W. Sanchez, and K. Bartholomew, “Crowdsourcing public participation in transit planning: preliminary results

from the next stop design case,” Transportation Research Board, 2009.
[9] A. T. Chatfield and U. Brajawidagda, “Crowdsourcing hazardous weather reports from citizens via twittersphere under the short

warning lead times of EF5 intensity tornado conditions,” in Proceedings of the 47th Hawaii International Conference on System Sciences.
IEEE, 2014, pp. 2231–2241.

[10] O. Alonso, D. E. Rose, and B. Stewart, “Crowdsourcing for relevance evaluation,” in ACM SigIR Forum, vol. 42, no. 2. ACM, 2008,
pp. 9–15.

[11] T. W. Schiller and M. D. Ernst, “Reducing the barriers to writing verified specifications,” in Proceedings of the 27th ACM International
Conference on Object-Oriented Programming Systems, Languages, and Applications, 2012, pp. 95–112.

[12] T. W. Schiller, “Reducing the usability barrier to specification and verification,” Ph.D. dissertation, University of Washington, 2014.
[13] K.-J. Stol and B. Fitzgerald, “Researching crowdsourcing software development: Perspectives and concerns,” in Proceedings of the

1st International Workshop on CrowdSourcing in Software Engineering, 2014, pp. 7–10.
[14] K.-j. Stol and B. Fitzgerald, “Research protocol for a case study of crowdsourcing software development,” Available from:

http://staff.lero.ie/stol/publications, University of Limerick, 2014.
[15] S. Zogaj, U. Bretschneider, and J. M. Leimeister, “Managing crowdsourced software testing: A case study based insight on the

challenges of a crowdsourcing intermediary,” Journal of Business Economics, vol. 84, no. 3, pp. 375–405, 2014.
[16] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software engineering,” School of

Computer Science and Mathematics, Keele University, Technical Report EBSE-2007-01, 2007.
[17] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering

- a systematic literature review,” Information and Software Technology, vol. 51, no. 1, pp. 7 – 15, 2009.
[18] S. L. Lim, “Social networks and collaborative filtering for large-scale requirements elicitation,” Ph.D. dissertation, University of

New South Wales, 2010.
[19] J. Manzoor, “A crowdsourcing framework for software localization,” Master’s thesis, KTH Royal Institute of Technology, 2011.
[20] M. Kallenbach, “HelpMeOut-Crowdsourcing suggestions to programming problems for dynamic, interpreted languages,” Master’s

thesis, RWTH Aachen University, 2011.
[21] S. Leone, “Information components as a basis for crowdsourced information system development,” Ph.D. dissertation, Swiss Federal

Institute of Technology in Zurich, 2011.
[22] S. Nag, “Collaborative competition for crowdsourcing spaceflight software and STEM education using SPHERES Zero Robotics,”

Master’s thesis, Massachusetts Institute of Technology, 2012.
[23] M. Saengkhattiya, M. Sevandersson, and U. Vallejo, “Quality in crowdsourcing - How software quality is ensured in software

crowdsourcing,” Master’s thesis, Lund University, 2012.
[24] A. Gritti, “Crowd outsourcing for software localization,” Master’s thesis, Universitat Politécnica de Catalunya, 2012.
[25] L. Ponzanelli, “Exploiting crowd knowledge in the IDE,” Master’s thesis, University of Lugano, 2012.
[26] D. Phair, “Open crowdsourcing: Leveraging community software developers for IT projects,” PhD. in Computer Sci., Colorado

Technical University, 2012.
[27] M. Bruch, “IDE 2.0: Leveraging the wisdom of the software engineering crowds,” Ph.D. dissertation, Technische Universität

Darmstadt, 2012.
[28] M. Goldman, “Software development with real-time collaborative editing,” Ph.D. dissertation, Massachusetts Institute of Technology,

2012.
[29] A. Mijnhardt, “Crowdsourcing for enterprise software localization,” Master thesis, Utrecht University, 2013.
[30] A. Teinum, “User testing tool towards a tool for crowdsource-enabled accessibility evaluation of websites,” Master’s thesis,

University of Agder, 2013.
[31] O. Starov, “Cloud platform for research crowdsourcing in mobile testing,” Master’s thesis, East Carolina University, 2013.
[32] P. K. Chilana, “Supporting users after software deployment through selection-based crowdsourced contextual help,” Ph.D.

dissertation, University of Washington, 2013.
[33] D. Wightman, “Search interfaces for integrating crowdsourced code snippets within development environments,” Ph.D. dissertation,

Queen’s University, 2013.
[34] H. Xue, “Using redundancy to improve security and testing,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2013.
[35] J. Lin, “Understanding and capturing people’s mobile app privacy preferences,” Ph.D. dissertation, Carnegie Mellon University,

2013.
[36] R. Snijders, “Crowd-centric requirements engineering: A method based on crowdsourcing and gamification,” Master’s thesis, Utrecht

University, 2015.
[37] S. James, “The wisdom of the crowds,” New York: Randome House, 2004.

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

30 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

[38] B. Kogut and A. Metiu, “Open-source software development and distributed innovation,” Oxford Review of Economic Policy, vol. 17,
no. 2, pp. 248–264, 2001.

[39] D. Sobel, Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. Macmillan, 2005.
[40] “Innocentive,” http://www.innocentive.com, Accessed: 2015-03-01.
[41] “Topcoder,” http://www.topcoder.com, Accessed: 2015-03-01.
[42] J. M. Hughes, “Systems and methods for software development,” August 2010, US Patent 7778866 B2.
[43] D. C. Brabham, “Crowdsourcing as a model for problem solving an introduction and cases,” Convergence: the international journal

of research into new media technologies, vol. 14, no. 1, pp. 75–90, 2008.
[44] “Wikipedia for crowdsourcing,” http://en.wikipedia.org/wiki/Crowdsourcing, Accessed: 2015-03-01.
[45] “New dictionary words for 2011,” http://http://www.merriam-webster.com/info/newwords11.htm, Accessed: 2015-03-01.
[46] “Crowdsourcing definition,” http://www.merriam-webster.com/dictionary/crowdsourcing, Accessed: 2015-03-01.
[47] E. Estellés-Arolas and F. González-Ladrón-De-Guevara, “Towards an integrated crowdsourcing definition,” Journal of Information

Science, vol. 38, no. 2, pp. 189–200, Apr. 2012.
[48] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge: Crowdsourcing complex work,” in Proceedings of the 24th Annual

ACM Symposium on User Interface Software and Technology, 2011, pp. 43–52.
[49] L. Xiao and H.-Y. Paik, “Supporting complex work in crowdsourcing platforms: A view from service-oriented computing,” in

Proceedings of the 23rd Australian Software Engineering Conference, Apr. 2014, pp. 11–14.
[50] “List of crowdsourcing projects,” http://en.wikipedia.org/wiki/List of crowdsourcing projects, Accessed: 2015-03-01.
[51] F. Khatib, F. DiMaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zabranska, I. Pichova, J. Thompson, Z. Popović, et al.,

“Crystal structure of a monomeric retroviral protease solved by protein folding game players,” Nature Structural and Molecular
Biology, vol. 18, no. 10, pp. 1175–1177, 2011.

[52] R. Johnson, “Natural products: Crowdsourcing drug discovery,” Nature chemistry, vol. 6, no. 2, pp. 87–87, 2014.
[53] A. Misra, A. Gooze, K. Watkins, M. Asad, and C. A. Le Dantec, “Crowdsourcing and its application to transportation data collection

and management,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2414, no. 1, pp. 1–8, 2014.
[54] C. Muller, L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. Leigh, “Crowdsourcing for climate and

atmospheric sciences: current status and future potential,” International Journal of Climatology, 2015.
[55] M. Lease and E. Yilmaz, “Crowdsourcing for information retrieval,” in ACM SIGIR Forum, vol. 45, no. 2. ACM, 2012, pp. 66–75.
[56] T. D. Breaux and F. Schaub, “Scaling requirements extraction to the crowd: Experiments with privacy policies,” in Proceedings of the

22nd IEEE International Requirements Engineering Conference, Aug. 2014, pp. 163–172.
[57] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes, “Program boosting: Program synthesis via crowd-sourcing,” in

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2015, pp. 677–688.
[58] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact of social media on software engineering practices and

tools,” in Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, ser. FoSER ’10, 2010, pp. 359–364.
[59] K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to support empirical studies in software engineering,” in Proceedings

of the 4th ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, 2010, pp. 1–4.
[60] Y. Usui and S. Morisaki, “An Approach for Crowdsourcing Software Development,” Proceedings of the Joint Conference of the 21st

International Workshop on Software Measurement and the 6th International Conference on Software Process and Product Measurement, pp.
32–33, 2011.

[61] W. Wu, W.-T. Tsai, and W. Li, “An evaluation framework for software crowdsourcing,” Frontiers of Computer Science, vol. 7, no. 5,
pp. 694–709, Aug. 2013.

[62] W. Wu, W. T. Tsai, and W. Li, “Creative software crowdsourcing: from components and algorithm development to project concept
formations,” International Journal of Creative Computing, vol. 1, no. 1, pp. 57–91, 2013.

[63] H. Tajedin and D. Nevo, “Determinants of success in crowdsourcing software development,” in Proceedings of the 2013 annual
conference on Computers and people research, 2013, pp. 173–178.

[64] X. L. Xu and Y. Wang, “Crowdsourcing Software Development Process Study on Ultra-Large-Scale System,” Advanced Materials
Research, vol. 989-994, pp. 4441–4446, July 2014.

[65] H. Tajedin and D. Nevo, “Value-adding intermediaries in software crowdsourcing,” in Proccedings of the 47th Hawaii International
Conference on System Sciences, Jan. 2014, pp. 1396–1405.

[66] R. Prikladnicki, L. Machado, E. Carmel, and C. R. B. de Souza, “Brazil software crowdsourcing: A first step in a multi-year study,”
in Proceedings of the 1st International Workshop on CrowdSourcing in Software Engineering, June 2014, pp. 1–4.

[67] M. Aparicio, C. J. Costa, and A. S. Braga, “Proposing a system to support crowdsourcing,” in Proceedings of the 2012 Workshop on
Open Source and Design of Communication, 2012, pp. 13–17.

[68] M. N. Huhns, W. Li, and W.-T. Tsai, “Cloud-based software crowdsourcing (Dagstuhl seminar 13362),” Dagstuhl Reports, vol. 3,
no. 9, pp. 34–58, 2013.

[69] “Wikipedia for software crowdsourcing,” http://en.wikipedia.org/wiki/Crowdsourcing software development, Accessed: 2015-
03-01.

[70] “TopCoder - A platform for innovation overview,” http://www.nasa.gov/pdf/651447main TopCoder Mike D1 830am.pdf, Ac-
cessed: 2015-03-01.

[71] K. R. Lakhani, K. J. Boudreau, P.-R. Loh, L. Backstrom, C. Baldwin, E. Lonstein, M. Lydon, A. MacCormack, R. A. Arnaout, and
E. C. Guinan, “Prize-based contests can provide solutions to computational biology problems,” Nature Biotechnology, vol. 31, no. 2,
pp. 108–111, 2013.

[72] “The crowd sourced formal verification (CSFV) program,” http://www.darpa.mil/Our Work/I2O/Programs/Crowd Sourced
Formal Verification (CSFV).aspx, Accessed: 2015-03-01.

[73] “Verigames,” http://www.verigames.com, Accessed: 2015-03-01.
[74] “Challenge platform: NTL,” http://www.nasa.gov/sites/default/files/files/ntl-overview-sheet.pdf, Accessed: 2015-03-01.
[75] Wired, “How Microsoft crowdsourced the making of Office 2010,” http://www.wired.com/2010/06/microsoft-office-2010, Ac-

cessed: 2015-03-01.
[76] A. Greenberg, “Microsoft finally offers to pay hackers for security bugs with 100,000 bounty,” http://www.forbes.com/sites/

andygreenberg/2013/06/19/microsoft-finally-offers-to-pay-hackers-for-security-bugs-with-100000-bounty, Accessed: 2015-03-01.
[77] TheTechieGuy, “How microsoft is cleverly crowdsourcing windows 10 development from its customers,” http://thetechieguy.com/

how-microsoft-is-cleverly-crowdsourcing-windows-10-development-from-its-customers, Accessed: 2015-03-01.
[78] Massolution, “Crowdsourcing industry report,” http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-

infographic/18725, Accessed: 2015-03-01.
[79] “AppStori,” http://www.appstori.com, Accessed: 2015-03-01.
[80] “Mob4Hire,” http://www.mob4hire.com, Accessed: 2015-03-01.
[81] “The 2012 ACM computing classification system,” http://www.acm.org/about/class/class/2012, Accessed: 2015-03-01.

http://www.innocentive.com
http://www.topcoder.com
http://en.wikipedia.org/wiki/Crowdsourcing
http://http://www.merriam-webster.com/info/newwords11.htm
http://www.merriam-webster.com/dictionary/crowdsourcing
http://en.wikipedia.org/wiki/List_of_crowdsourcing_projects
http://en.wikipedia.org/wiki/Crowdsourcing_software_development
http://www.nasa.gov/pdf/651447main_TopCoder_Mike_D1_830am.pdf
http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://www.verigames.com
http://www.nasa.gov/sites/default/files/files/ntl-overview-sheet.pdf
http://www.wired.com/2010/06/microsoft-office-2010
http://www.forbes.com/sites/andygreenberg/2013/06/19/microsoft-finally-offers-to-pay-hackers-for-security-bugs-with-100000-bounty
http://www.forbes.com/sites/andygreenberg/2013/06/19/microsoft-finally-offers-to-pay-hackers-for-security-bugs-with-100000-bounty
http://thetechieguy.com/how-microsoft-is-cleverly-crowdsourcing-windows-10-development-from-its-customers
http://thetechieguy.com/how-microsoft-is-cleverly-crowdsourcing-windows-10-development-from-its-customers
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.crowdsourcing.org/editorial/enterprise-crowdsourcing-trends-infographic/18725
http://www.appstori.com
http://www.mob4hire.com
http://www.acm.org/about/class/class/2012

RN/15/01 31

[82] “IEEE standard taxonomy for software engineering standards,” http://ieeexplore.ieee.org/servlet/opac?punumber=2601, Accessed:
2015-03-01.

[83] “2014 IEEE Taxonomy,” https://www.ieee.org/documents/taxonomy v101.pdf, Accessed: 2015-03-01.
[84] “TopCoder competition methodology,” http://www.topcoder.com/wp-content/uploads/sampleprojects/1/index.html, Accessed:

2015-03-07.
[85] “uTest - Getting started,” http://www.utest.com/getting-started, Accessed: 2015-03-23.
[86] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software engineering,” in Proceedings of the FSE/SDP Workshop on Future

of Software Engineering Research, 2010, pp. 33–38.
[87] E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing GUI tests,” in Proceedings of the 6th IEEE International Conference on

Software Testing, Verification and Validation, Mar. 2013, pp. 332–341.
[88] F. Pastore, L. Mariani, and G. Fraser, “CrowdOracles: Can the crowd solve the oracle problem?” in Proceedings of the 6th IEEE

International Conference on Software Testing, Verification and Validation, Mar. 2013, pp. 342–351.
[89] “Stack Overflow,” http://stackoverflow.com/, Accessed: 2015-03-01.
[90] B. Vasilescu, V. Filkov, and A. Serebrenik, “StackOverflow and GitHub: Associations between software development and crowd-

sourced knowledge,” in Proceedings of the 2013 International Conference on Social Computing, Sept. 2013, pp. 188–195.
[91] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social Q&A sites are changing knowledge sharing in open source

software communities,” Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work and Social Computing, pp.
342–354, 2014.

[92] A. Zagalsky, O. Barzilay, and A. Yehudai, “Example Overflow: Using social media for code recommendation,” in Proceedings of the
3rd International Workshop on Recommendation Systems for Software Engineering, June 2012, pp. 38–42.

[93] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing Stack Overflow for the IDE,” in Proceedings of the 3rd International Workshop
on Recommendation Systems for Software Engineering, June 2012, pp. 26–30.

[94] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowledge for software comprehension and development,” in
Proceedings of the 17th European Conference on Software Maintenance and Reengineering, Mar. 2013, pp. 57–66.

[95] ——, “Seahawk: Stack Overflow in the IDE,” in Proceedings of the 35th International Conference on Software Engineering, May 2013,
pp. 1295–1298.

[96] L. B. L. de Souza, E. C. Campos, and M. D. A. Maia, “Ranking crowd knowledge to assist software development,” in Proceedings
of the 22nd International Conference on Program Comprehension, 2014, pp. 72–82.

[97] H. C. Jiau and F.-P. Yang, “Facing up to the inequality of crowdsourced API documentation,” ACM SIGSOFT Software Engineering
Notes, vol. 37, no. 1, pp. 1–9, Jan. 2012.

[98] C. Parnin, C. Treude, L. Grammel, and M. Storey, “Crowd documentation: Exploring the coverage and the dynamics of API
discussions on Stack Overflow,” Georgia Institute of Technology, Tech. Rep., 2012.

[99] X. Peng, M. Ali Babar, and C. Ebert, “Collaborative Software Development Platforms for Crowdsourcing,” IEEE Software, vol. 31,
no. 2, pp. 30–36, 2014.

[100] D. Fried, “Crowdsourcing in the software development industry,” Nexus of Entrepreneurship and Technology Initiative, 2010.
[101] “Amazon Mechanical Turk,” https://www.mturk.com, Accessed: 2015-03-01.
[102] “MathWorks,” http://www.mathworks.com, Accessed: 2015-03-07.
[103] N. Archak, “Money, glory and cheap talk: Analyzing strategic behavior of contestants in simultaneous crowdsourcing contests on

TopCoder.com,” in Proceedings of the 19th international conference on World wide web, 2010, pp. 21–30.
[104] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, “SPHERES Zero Robotics software development: Lessons on crowdsourcing and

collaborative competition,” in Proceedings of the 2012 IEEE Aerospace Conference, Mar. 2012, pp. 1–17.
[105] K. Li, J. Xiao, Y. Wang, and Q. Wang, “Analysis of the key factors for software quality in crowdsourcing development: An empirical

study on TopCoder.com,” in Proceedings of the IEEE 37th Annual Computer Software and Applications Conference Analysis, 2013, pp.
812–817.

[106] B. Fitzgerald and K.-J. Stol, “The dos and don’ts of crowdsourcing software development,” in SOFSEM 2015: Theory and Practice of
Computer Science, ser. Lecture Notes in Computer Science, 2015, vol. 8939, pp. 58–64.

[107] “Zero robotics,” http://zerorobotics.mit.edu, Accessed: 2015-05-06.
[108] S. Nag, J. G. Katz, and A. Saenz-Otero, “Collaborative gaming and competition for cs-stem education using SPHERES zero robotics,”

Acta Astronautica, vol. 83, no. 0, pp. 145 – 174, 2013.
[109] J. Farrell and M. Rabin, “Cheap talk,” The Journal of Economic Perspectives, vol. 10, no. 3, pp. 103–118, 1996.
[110] S. Zogaj and U. Bretschneider, “Crowdtesting with testcloud - managing the challenges of an intermediary in a crowdsourcing

business model,” in Proceedings of the 21st European Conference on Information Systems, 2013.
[111] B. Bergvall-Kå reborn and D. Howcroft, “The Apple business model: Crowdsourcing mobile applications,” Accounting Forum, vol. 37,

no. 4, pp. 280–289, Dec. 2013.
[112] L. Machado, G. Pereira, R. Prikladnicki, E. Carmel, and C. R. B. de Souza, “Crowdsourcing in the Brazilian it industry: What we

know and what we don’t know,” in Proceedings of the 1st International Workshop on Crowd-based Software Development Methods and
Technologies, 2014, pp. 7–12.

[113] S. F. Martin, H. Falkenberg, T. F. Dyrlund, G. A. Khoudoli, C. J. Mageean, and R. Linding, “PROTEINCHALLENGE: crowd sourcing
in proteomics analysis and software development.” Journal of Proteomics, vol. 88, pp. 41–6, Aug. 2013.

[114] N. Shah, A. Dhanesha, and D. Seetharam, “Crowdsourcing for e-Governance: Case study,” in Proceedings of the 3rd International
Conference on Theory and Practice of Electronic Governance, 2009, pp. 253–258.

[115] J. Warner, “Next steps in e-government crowdsourcing,” in Proceedings of the 12th Annual International Digital Government Research
Conference on Digital Government Innovation in Challenging Times, 2011, pp. 177–181.

[116] S. L. Lim, D. Quercia, and A. Finkelstein, “StakeSource: Harnessing the power of crowdsourcing and social networks in stakeholder
analysis,” in Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol. 2, 2010, pp. 239–242.

[117] S. Lim, D. Quercia, and A. Finkelstein, “StakeNet: Using social networks to analyse the stakeholders of large-scale software projects,”
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol. 2010, 2010.

[118] N. Seyff, F. Graf, and N. Maiden, “Using mobile re tools to give end-users their own voice,” in Proceedings of the 18th IEEE
International Conference on Requirements Engineering, 2010, pp. 37–46.

[119] S. L. Lim, D. Damian, and A. Finkelstein, “StakeSource2.0: Using social networks of stakeholders to identify and prioritise
requirements,” in Proceeding of the 33rd international conference on Software engineering, 2011, pp. 1022–1024.

[120] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh, and W. Maalej, “Social sensing: When users become monitors,” in Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, ser. ESEC/FSE ’11,
2011, pp. 476–479.

[121] S. L. Lim and A. Finkelstein, “StakeRare: Using social networks and collaborative filtering for large-scale requirements elicitation,”
IEEE Transactions on Software Engineering, vol. 38, no. 3, pp. 707–735, 2012.

http://ieeexplore.ieee.org/servlet/opac?punumber=2601
https://www.ieee.org/documents/taxonomy_v101.pdf
http://www.topcoder.com/wp-content/uploads/sampleprojects/1/index.html
http://www.utest.com/getting-started
http://stackoverflow.com/
https://www.mturk.com
http://www.mathworks.com

32 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

[122] A. Adepetu, K. Ahmed, and Y. A. Abd, “CrowdREquire: A requirements engineering crowdsourcing platform,” AAAI, Tech. Rep.
Goodin 2005, 2012.

[123] P. Nascimento, R. Aguas, D. Schneider, and J. de Souza, “An approach to requirements categorization using Kano’s model and
crowds,” in Proceedings of the 16th IEEE International Conference on Computer Supported Cooperative Work in Design, May 2012, pp.
387–392.

[124] N. Muganda, D. Asmelash, and S. Mlay, “Groupthink decision making deficiency in the requirements engineering process: Towards
a crowdsourcing model,” SSRN Electronic Journal, 2012.

[125] P. Greenwood, A. Rashid, and J. Walkerdine, “UDesignIt: Towards social media for community-driven design,” Proceedings of the
34th International Conference on Software Engineering, pp. 1321–1324, June 2012.

[126] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “Towards crowdsourcing for requirements engineering,” in Proceedings of the 20th
International working conference on Requirements engineering: foundation for software quality (Empirical Track), 2013.

[127] S. L. Lim and C. Ncube, “Social networks and crowdsourcing for stakeholder analysis in system of systems projects,” in Proceeding
of the 8th International Conference on System of Systems Engineering, June 2013, pp. 13–18.

[128] R. Snijders and F. Dalpiaz, “Crowd-centric requirements engineering,” in Proceedings of the 2nd International Workshop on Crowd-
sourcing and Gamification in the Cloud, 2014.

[129] H. Wang, Y. Wang, and J. Wang, “A participant recruitment framework for crowdsourcing based software requirement acquisition,”
in Proceedings of the 9th IEEE International Conference on Global Software Engineering, Aug. 2014, pp. 65–73.

[130] M. Nayebi and G. Ruhe, “An open innovation approach in support of product release decisions,” in Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering, 2014, pp. 64–71.

[131] M. Hosseini, A. Shahri, K. Phalp, J. Taylor, R. Ali, and F. Dalpiaz, “Configuring crowdsourcing for requirements elicitation,” in
Proceedings of the 9th International Conference on Research Challenges in Information Science, 2015.

[132] M. S. Bernstein, “Crowd-powered interfaces,” in Proceedings of the 23nd annual ACM symposium on User interface software and
technology, 2010, pp. 347–350.

[133] M. Nebeling, S. Leone, and M. Norrie, “Crowdsourced web engineering and design,” in Proceedings of the 12th International Conference
on Web Engineering, 2012, pp. 1–15.

[134] T. D. LaToza, M. Chen, L. Jiang, M. Zhao, and A. V. D. Hoek, “Borrowing from the crowd : A study of recombination in software
design competitions,” in Proceedings of the 37nd ACM/IEEE International Conference on Software Engineering, 2015.

[135] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S. Bernstein, “Apparition: Crowdsourced user interfaces that come
to life as you sketch them,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2015, pp.
1925–1934.

[136] B. Hartmann, D. Macdougall, J. Brandt, and S. R. Klemmer, “What would other programmers do? Suggesting solutions to error
messages,” in Proceedings of the 28th ACM Conference on Human Factors in Computing Systems, 2010, pp. 1019–1028.

[137] M. Mooty, A. Faulring, J. Stylos, and B. a. Myers, “Calcite: Completing code completion for constructors using crowds,” in Proceedings
of the 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, Sept. 2010, pp. 15–22.

[138] M. Bruch, E. Bodden, M. Monperrus, and M. Mezini, “IDE 2.0: Collective intelligence in software development,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research, ser. FoSER ’10, 2010, pp. 53–58.

[139] C. Watson, F. W. B. Li, and J. L. Godwin, “BlueFix: Using crowd-sourced feedback to support programming students in error
diagnosis and repair,” in Proceedings of the 11th International Conference on Web-Based Learning, 2012, pp. 228–239.

[140] O. Barzilay, C. Treude, and A. Zagalsky, “Facilitating crowd sourced software engineering via stack overflow,” in Finding Source
Code on the Web for Remix and Reuse. Springer New York, 2013, pp. 289–308.

[141] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining stackoverflow to turn the ide into a self-confident
programming prompter,” in Proceedings of the 11th Working Conference on Mining Software Repositories, 2014, pp. 102–111.

[142] ——, “Prompter: A self-confident recommender system,” in Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution, Sept 2014, pp. 577–580.

[143] E. Fast, D. Steffee, L. Wang, J. R. Brandt, and M. S. Bernstein, “Emergent, crowd-scale programming practice in the IDE,” in
Proceedings of the 32nd annual ACM conference on Human factors in Computing Systems, 2014, pp. 2491–2500.

[144] M. Goldman, G. Little, and R. C. Miller, “Real-time collaborative coding in a web IDE,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology, 2011, pp. 155–164.

[145] M. Goldman, “Role-based interfaces for collaborative software development,” in Proceedings of the 24th Annual ACM Symposium
Adjunct on User Interface Software and Technology, 2011, pp. 23–26.

[146] P. Minder and A. Bernstein, “CrowdLang - First steps towards programmable human computers for general computation,” in
Proceedings of the 3rd Human Computation Workshop, JAN 2011, pp. 103–108.

[147] ——, “CrowdLang: A programming language for the systematic exploration of human computation systems,” in Proceedings of the
4th International Conference on Social Informatics. Lausanne: Springer, DEC 2012.

[148] T. Ball, S. Burckhardt, J. de Halleux, M. Moskal, and N. Tillmann, “Beyond open source: The touchdevelop cloud-based integrated
development and runtime environment, Tech. Rep. MSR-TR-2014-63, May 2014.

[149] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky programming environment for structured social computing,”
in Proceedings of the 24th annual ACM symposium on User interface software and technology, 2011, pp. 53–64.

[150] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “AutoMan: A platform for integrating human-based and digital
computation,” in Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications,
2012, pp. 639–654.

[151] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit: Human computation algorithms on Mechanical Turk,” in Proceedings
of the 23nd Annual ACM Symposium on User Interface Software and Technology, 2010, pp. 57–66.

[152] T. D. LaToza, E. Chiquillo, W. Ben Towne, C. Adriano, and A. van der Hoek, “CrowdCode - A platform for crowd development,”
in CrowdConf 2013, 2013.

[153] T. Xie, J. Bishop, R. N. Horspool, N. Tillmann, and J. de Halleux, “Crowdsourcing code and process via Code Hunt,” in Proceedings
of the 2nd International Workshop on CrowdSourcing in Software Engineering, May 2015.

[154] C. Schneider and T. Cheung, “The power of the crowd: Performing usability testing using an on-demand workforce,” in Proceedings
of the 20th International Conference on Information Systems Development Cutting edge research on Information Systems, 2011.

[155] D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing for usability testing,” in Proceedings of the American Society for
Information Science and Technology, vol. 49, no. 1, Jan. 2012, pp. 1–10.

[156] M. Nebeling, M. Speicher, M. Grossniklaus, and M. C. Norrie, “Crowdsourced web site evaluation with crowdstudy,” in Proceedings
of the 12th International Conference on Web Engineering, 2012, pp. 494–497.

[157] F. Meier, A. Bazo, M. Burghardt, and C. Wolff, “Evaluating a web-based tool for crowdsourced navigation stress tests,” in Proceedings
of the 2nd International Conference on Design, User Experience, and Usability: Web, Mobile, and Product Design, 2013, pp. 248–256.

[158] M. Nebeling, M. Speicher, and M. C. Norrie, “CrowdStudy: General toolkit for crowdsourced evaluation of web interfaces,” in
Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 2013.

RN/15/01 33

[159] V. H. M. Gomide, P. A. Valle, J. O. Ferreira, J. R. G. Barbosa, A. F. da Rocha, and T. M. G. d. A. Barbosa, “Affective crowdsourcing
applied to usability testing,” International Journal of Computer Science and Information Technologies, vol. 5, no. 1, pp. 575–579, 2014.

[160] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Ganguly, “Leveraging the Crowd: How 48,000 Users Helped Improve
Lync Performance,” IEEE Software, vol. 30, no. 4, pp. 38–45, July 2013.

[161] R. Vliegendhart, E. Dolstra, and J. Pouwelse, “Crowdsourced user interface testing for multimedia applications,” in Proceedings of
the ACM multimedia 2012 workshop on Crowdsourcing for multimedia, 2012, pp. 21–22.

[162] K.-t. Chen, C.-j. Chang, A. Sinica, C.-c. Wu, Y.-c. Chang, and C.-l. Lei, “Quadrant of Euphoria: A crowdsourcing platform for QoE
assessment,” IEEE Network, no. April, pp. 28–35, 2010.

[163] B. Gardlo, S. Egger, M. Seufert, and R. Schatz, “Crowdsourcing 2.0: Enhancing execution speed and reliability of web-based QoE
testing,” in Proceedings of the 2014 IEEE International Conference on Communications, June 2014, pp. 1070–1075.

[164] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, and K. Diepold, “Best practices for QoE crowdtesting : QoE assessment with
crowdsourcing,” IEEE Transactions on Multimedia, vol. 16, no. 2, pp. 541–558, 2014.

[165] T. Hossfeld, C. Keimel, and C. Timmerer, “Crowdsourcing quality-of-experience assessments,” Computer, pp. 98–102, 2014.
[166] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing humans into the loop by solving puzzles,” in Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering, 2012, pp. 140–149.
[167] R. Pham, L. Singer, and K. Schneider, “Building test suites in social coding sites by leveraging drive-by commits,” in Proceedings of

the 35th International Conference on Software Engineering, May 2013, pp. 1209–1212.
[168] M. Yan, H. Sun, and X. Liu, “iTest: Testing software with mobile crowdsourcing,” in Proceedings of the 1st International Workshop on

Crowd-based Software Development Methods and Technologies, 2014, pp. 19–24.
[169] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson, H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao, “Caiipa

: Automated large-scale mobile app testing through contextual fuzzing,” in Proceedings of the 20th annual international conference on
Mobile computing and networking, 2014.

[170] R. Blanco, H. Halpin, D. M. Herzig, P. Mika, J. Pound, H. S. Thompson, and T. Tran Duc, “Repeatable and reliable search system
evaluation using crowdsourcing,” in Proceedings of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2011, pp. 923–932.

[171] N. Sherief, N. Jiang, M. Hosseini, K. Phalp, and R. Ali, “Crowdsourcing software evaluation,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp. 1–4.

[172] N. Sherief, “Software evaluation via users’ feedback at runtime,” in Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, 2014, pp. 1–4.

[173] W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper, T. Pavlik, and Z. Popović, “Verification games: Making verification
fun,” in Proceedings of the 14th Workshop on Formal Techniques for Java-like Programs, 2012, pp. 42–49.

[174] W. Li, S. Seshia, and S. Jha, “CrowdMine: Towards crowdsourced human-assisted verification,” in Proceedings of the 49th Annual
Design Automation Conference, 2012, pp. 2–3.

[175] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A market-based approach to software evolution,” in Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems languages and applications, 2009, pp. 973–980.

[176] M. Nebeling and M. C. Norrie, “Context-aware and adaptive web interfaces : A crowdsourcing approach,” in Proceedings of the 11th
International Conference on Web Engineering, 2011, pp. 167–170.

[177] ——, “Tools and architectural support for crowdsourced adaptation of web interfaces,” in Proceedings of the 11th International
Conference on Web Engineering, 2011, pp. 243–257.

[178] W. Maalej and D. Pagano, “On the socialness of software,” in Proceedings of the 9th International Conference on Dependable, Autonomic
and Secure Computing, Dec 2011, pp. 864–871.

[179] R. Ali, C. Solis, I. Omoronyia, M. Salehie, and B. Nuseibeh, “Social adaptation: When software gives users a voice,” in Proceedings
of the 7th International Conference Evaluation of Novel Approaches to Software Engineering, June 2012.

[180] P. Akiki, A. Bandara, and Y. Yu, “Crowdsourcing user interface adaptations for minimizing the bloat in enterprise applications,”
in Proceedings of the 5th ACM SIGCHI symposium on Engineering interactive computing systems, 2013, pp. 121–126.

[181] C. Challiol, S. Firmenich, G. A. Bosetti, S. E. Gordillo, and G. Rossi, “Crowdsourcing mobile web applications,” in Proceedings of
the ICWE 2013 Workshops, 2013, pp. 223–237.

[182] M. Nebeling, M. Speicher, and M. C. Norrie, “CrowdAdapt: Enabling crowdsourced web page adaptation for individual viewing
conditions and preferences,” in Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 2013,
pp. 23–32.

[183] H. He, Z. Ma, H. Chen, and W. Shao, “How the crowd impacts commercial applications: A user-oriented approach,” in Proceedings
of the 1st International Workshop on Crowd-based Software Development Methods and Technologies, 2014, pp. 1–6.

[184] M. Almaliki, C. Ncube, and R. Ali, “The design of adaptive acquisition of users feedback: An empirical study,” in Proceedings of
the 9th International Conference on Research Challenges in Information Science, 2014.

[185] S. Hamidi, P. Andritsos, and S. Liaskos, “Constructing adaptive configuration dialogs using crowd data,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, 2014, pp. 485–490.

[186] C. Chen and K. Zhang, “Who asked what: Integrating crowdsourced FAQs into API documentation,” in Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion), 2014, pp. 456–459.

[187] A. Pawlik, J. Segal, M. Petre, and H. Sharp, “Crowdsourcing scientific software documentation: a case study of the NumPy
documentation project,” Computing in Science and Engineering, 2014.

[188] C. Exton, A. Wasala, J. Buckley, and R. Schäler, “Micro crowdsourcing: A new model for software localisation,” Localisation Focus,
vol. 8, no. 1, 2009.

[189] C. Arellano, O. Dı́az, and J. Iturrioz, “Crowdsourced web augmentation : A security model,” in Proceedings of the 11 International
Conference on Web Information Systems Engineering, 2010, pp. 294–307.

[190] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based malware detection system for Android,” in Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and mobile devices, 2011, pp. 15–26.

[191] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “LemonAid: Selection-based crowdsourced contextual help for web applications,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’12, 2012, pp. 1549–1558.

[192] P. K. Chilana, A. J. Ko, J. O. Wobbrock, and T. Grossman, “A multi-site field study of crowdsourced contextual help : Usage and
perspectives of end users and software teams,” in Proceedings of the 31st Annual CHI Conference on Human Factors in Computing
Systems, 2013.

[193] W. Ebner, M. Leimeister, U. Bretschneider, and H. Krcmar, “Leveraging the wisdom of crowds: Designing an IT-supported ideas
competition for an ERP software company,” in Proceedings of the 41st Annual Hawaii International Conference on System Sciences, Jan.
2008, pp. 417–417.

[194] H. Krcmar, U. Bretschneider, M. Huber, and J. M. Leimeister, “Leveraging crowdsourcing: Activation-supporting components for
IT-based ideas competition,” Journal of Management Information Systems, vol. 26, no. 1, pp. 197–224, 2009.

34 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

[195] R. Jayakanthan and D. Sundararajan, “Enterprise crowdsourcing solution for software development in an outsourcing organization,”
in Proceedings of the 11th International Conference on Web Engineering, 2011, pp. 177–180.

[196] ——, “Enterprise crowdsourcing solutions for software development and ideation,” in Proceedings of the 2nd international workshop
on Ubiquitous crowdsouring, 2011, pp. 25–28.

[197] G. Standish, “The chaos report,” http://www.standishgroup.com/sample research files/chaos report 1994.pdf, Accessed: 2015-
01-27.

[198] Y.-C. Huang, C.-I. Wang, and J. Hsu, “Leveraging the crowd for creating wireframe-based exploration of mobile design pattern
gallery,” in Proceedings of the companion publication of the 2013 international conference on Intelligent user interfaces companion, 2013, pp.
17–20.

[199] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann, “Crowdsourcing suggestions to programming problems for dynamic web
development languages,” in Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems, 2011,
pp. 1525–1530.

[200] W. B. Langdon and M. Harman, “Optimising existing software with genetic programming,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 1, pp. 118–135, Feb 2015.

[201] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic improvement & code transplants to specialise a C++ program
to a problem class,” in Proceedings of the 17th European Conference on Genetic Programming, April 2014, pp. 132–143.

[202] M. Orlov and M. Sipper, “Flight of the FINCH through the java wilderness,” IEEE Transactions Evolutionary Computation, vol. 15,
no. 2, pp. 166–182, 2011.

[203] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement of programs,” IEEE Transactions on Evolutionary Computation,
vol. 15, no. 4, pp. 515–538, 2011.

[204] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic method for automatic software repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[205] W. B. Langdon, B. Lam, J. Petke, and M. Harman, “Improving cuda dna analysis software with genetic programming,” in Proceedings
of the 2015 Genetic and evolutionary computation conference, July 2015.

[206] B. Bruce, J. Petke, and M. Harman, “Reducing energy consumption using genetic improvement,” in Proceedings of the 2015 Genetic
and evolutionary computation conference, July 2015.

[207] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software engineer’s energy-optimization decision support framework,” in
Proceedings of the 36th International Conference on Software Engineering, 2014, pp. 503–514.

[208] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications more energy efficient for OLED smartphones,” in Proceedings
of the 36th International Conference on Software Engineering, 2014, pp. 527–538.

[209] F. Wu, M. Harman, Y. Jia, J. Krinke, and W. Weimer, “Deep parameter optimisation,” in Proceedings of the Genetic and evolutionary
computation conference, July 2015.

[210] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, 2013.

[211] M. Harman, W. B. Langdon, and Y. Jia, “Babel pidgin: SBSE can grow and graft entirely new functionality into a real world system,”
in Proceedings of the 6th Symposium on Search Based Software Engineering, August 2014, pp. 247–252.

[212] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix: program repair via semantic analysis,” in Proceedings of the
35th International Conference on Software Engineering, B. H. C. Cheng and K. Pohl, Eds., May 18-26 2013, pp. 772–781.

[213] “Bing code search,” http://codesnippet.research.microsoft.com, Accessed: 2015-05-06.
[214] S. Amann, S. Proksch, and M. Mezini, “Method-call recommendations from implicit developer feedback,” in Proceedings of the 1st

International Workshop on CrowdSourcing in Software Engineering, June 2014, pp. 5–6.
[215] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test inputs using a natural language model to reduce human

oracle cost,” Proceedings of the 6th IEEE International Conference on Software Testing, Verification and Validation, vol. 0, pp. 352–361,
2013.

[216] M. Bozkurt and M. Harman, “Automatically generating realistic test input from web services,” in Proceedings of the 6th IEEE
International Symposium on Service Oriented System Engineering, December.

[217] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der Hoek, “Microtask programming: Building software with a crowd,” in
Proceedings of the 27th annual ACM symposium on User interface software and technology, 2014, pp. 43–54.

[218] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “TouchDevelop: Programming cloud-connected mobile devices via
touchscreen,” in Proceedings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, 2011, pp. 49–60.

[219] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. de Halleux, “Code Hunt: Experience with coding contests at scale,” Proceedings
of the 37th International Conference on Software Engineering - JSEET, June 2015.

[220] A. Bernstein, M. Klein, and T. W. Malone, “Programming the global brain,” Communications of the ACM, vol. 55, no. 5, pp. 41–43,
May 2012.

[221] R. Auler, E. Borin, and P. D. Halleux, “Addressing JavaScript JIT engines performance quirks : A crowdsourced adaptive compiler,”
in Proceedings of the 23rd International Conference on Compiler Construction, 2014, pp. 218–237.

[222] “Microsoft Lync,” http://office.microsoft.com/lync, Accessed: 2015-01-11.
[223] “Chrome Telemetry,” http://www.chromium.org/developers/telemetry, Accessed: 2015-04-30.
[224] “Firefox Telemetry,” https://telemetry.mozilla.org, Accessed: 2015-04-30.
[225] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field study of browser security warning effectiveness,” in Proceedings

of the 22Nd USENIX Conference on Security, 2013, pp. 257–272.
[226] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineering of graphical user interfaces for testing,” in Proceedings

of the 10th Working Conference on Reverse Engineering, Nov 2003, pp. 260–269.
[227] K. Lakhotia, P. McMinn, and M. Harman, “Automated test data generation for coverage: Haven’t we solved this problem yet?”

in Proceedings of the 4th Testing Academia and Industry Conference — Practice And Research Techniques, 4th–6th September 2009, pp.
95–104.

[228] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, T. Ball and R. Jones, Eds., 2006, vol. 4144, pp. 419–423.

[229] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-Directed Random Test Generation,” Proceedings of the 29th International
Conference on Software Engineering, pp. 75–84, May 2007.

[230] N. Tillmann and J. de Halleux, “Pex-White Box Test Generation for .NET,” in Proceedings of the 2nd International Conference on Tests
and Proofs, ser. Lecture Notes in Computer Science, B. Beckert and R. Hhnle, Eds., 2008, vol. 4966, pp. 134–153.

[231] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider, “Creating a shared understanding of testing culture on a social
coding site,” in Proceedings of the 2013 International Conference on Software Engineering, 2013, pp. 112–121.

[232] E. J. Weyuker, “On testing non-testable programs,” The Computer Journal, vol. 25, no. 4, pp. 465–470, Nov. 1982.

http://www.standishgroup.com/sample_research_files/chaos_report_1994.pdf
http://office.microsoft.com/lync
http://www.chromium.org/developers/telemetry
https://telemetry.mozilla.org

RN/15/01 35

[233] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in software testing: A survey,” IEEE Transactions
on Software Engineering, 2015, to appear.

[234] D. Peters and D. Parnas, “Using test oracles generated from program documentation,” IEEE Transactions on Software Engineering,
vol. 24, no. 3, pp. 161–173, Mar 1998.

[235] T. Xie, “Cooperative testing and analysis: Human-tool, tool-tool, and human-human cooperations to get work done,” in Proceedings
of the 12th IEEE International Working Conference on Source Code Analysis and Manipulation (Keynote), 2012.

[236] M. D. Ernst and Z. Popović, “Crowd-sourced program verification,” University OF Washington, Tech. Rep., 2012.
[237] R. Watro, K. Moffitt, T. Hussain, D. Wyschogrod, J. Ostwald, D. Kong, C. Bowers, E. Church, J. Guttman, and Q. Wang, “Ghost

Map: Proving software correctness using games,” in The 8th International Conference on Emerging Security Information, Systems and
Technologies, 2014.

[238] C. Cook and M. Visconti, “Documentation is important,” CrossTalk, vol. 7, no. 11, pp. 26–30, 1994.
[239] M. Visconti and C. Cook, “An overview of industrial software documentation practice,” in Proceedings. 22nd International Conference

of the Chilean Computer Science Society, 2002, pp. 179–186.
[240] M. Kajko-Mattsson, “A survey of documentation practice within corrective maintenance,” Empirical Software Engineering, vol. 10,

no. 1, pp. 31–55, 2005.
[241] B. Esselink, A practical guide to localization. John Benjamins Publishing, 2000, vol. 4.
[242] Z. P. Fry and W. Weimer, “A human study of fault localization accuracy,” in Proceedings of the 26th IEEE International Conference on

Software Maintenance, 2010.
[243] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch maintainability,” in Proceedings of the 2012 International Symposium

on Software Testing and Analysis, 2012, pp. 177–187.
[244] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach, E. Moritz, M. Gethers, D. Poshyvanyk, J. H. Hayes, and W. Li,

“Toward actionable, broadly accessible contests in software engineering,” in Proceedings of the 34th International Conference on Software
Engineering, June 2012, pp. 1329–1332.

[245] M. Harman and B. F. Jones, “Search-based software engineering,” Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[246] Y.-H. Tung and S.-S. Tseng, “A novel approach to collaborative testing in a crowdsourcing environment,” Journal of Systems and
Software, vol. 86, no. 8, pp. 2143–2153, Aug. 2013.

[247] K. Stolee and S. Elbaum, “Identification, impact, and refactoring of smells in pipe-like web mashups,” IEEE Transactions on Software
Engineering, vol. 39, no. 12, pp. 1654–1679, Dec 2013.

[248] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp.
26:1–26:45, June 2014.

[249] T. D. LaToza and A. van der Hoek, “A vision of crowd development,” in Proceedings of the 37th International Conference on Software
Engineering, NIER Track, 2015, to appear.

[250] R. Kazman and H.-M. Chen, “The metropolis model a new logic for development of crowdsourced systems,” Communications of
the ACM, vol. 52, no. 7, pp. 76–84, 2009.

[251] ——, “The metropolis model and its implications for the engineering of software ecosystems,” in Proceedings of the 2010 FSE/SDP
workshop on Future of software engineering research, 2010, pp. 187–190.

[252] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing Crowdsourcing Based Software Development Tasks,” in Proceedings of the 2013
International Conference on Software Engineering (NIER Track), 2013, pp. 1205–1208.

[253] G. D. Saxton, O. Oh, and R. Kishore, “Rules of Crowdsourcing: Models, Issues, and Systems of Control,” Information Systems
Management, vol. 30, no. 1, pp. 2–20, Jan. 2013.

[254] W.-T. Tsai, W. Wu, and M. N. Huhns, “Cloud-based software crowdsourcing,” IEEE Internet Computing, vol. 18, no. 3, pp. 78–83,
May 2014.

[255] Z. Hu and W. Wu, “A game theoretic model of software crowdsourcing,” in Proceedings of the 8th IEEE International Symposium on
Service Oriented System Engineering, Apr. 2014, pp. 446–453.

[256] X. L. Xu and Y. Wang, “On the Process Modeling of Software Crowdsourcing Based on Competitive Relation,” Advanced Materials
Research, vol. 989-994, pp. 4708–4712, July 2014.

[257] T. D. LaToza, W. B. Towne, and A. V. D. Hoek, “Harnessing the crowd : Decontextualizing software work,” in Proceedings of the 1st
International Workshop on Context in Software Development Workshop, 2014, pp. 2–3.

[258] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings, “Efficient crowdsourcing of unknown experts using bounded multi-armed
bandits,” Artificial Intelligence, vol. 214, pp. 89–111, Sept. 2014.

[259] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer recommendation for crowdsourced software development tasks,”
in Proceedings of the 9th IEEE International Symposium on Service-Oriented System Engineering, 2015, pp. 347–356.

[260] M. V. Mäntylä and J. Itkonen, “More testers - the effect of crowd size and time restriction in software testing,” Information and
Software Technology, vol. 55, no. 6, pp. 986–1003, June 2013.

[261] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson, “Models of motivation in software engineering,” Information and
Software Technology, vol. 51, no. 1, pp. 219–233, 2009.

[262] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation in software engineering: A systematic literature review,”
Information and Software Technology, vol. 50, no. 9, pp. 860–878, 2008.

[263] B. W. Boehm et al., Software engineering economics. Prentice-hall Englewood Cliffs (NJ), 1981, vol. 197.
[264] L. R. Varshney, “Participation in crowd systems,” in Proceedings of the 50th Annual Allerton Conference on Communication, Control, and

Computing, Oct. 2012, pp. 996–1001.
[265] D. L. Olson and K. Rosacker, “Crowdsourcing and open source software participation,” Service Business, vol. 7, no. 4, pp. 499–511,

Nov. 2012.
[266] S. Ramakrishnan and V. Srinivasaraghavan, “Delivering software projects using captive university crowd,” in Proceedings of the 7th

International Workshop on Cooperative and Human Aspects of Software Engineering, 2014, pp. 115–118.
[267] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon mechanical turk,” in Proceedings of the 2010 ACM SIGKDD

Workshop on Human Computation, 2010, pp. 64–67.
[268] M.-C. Yuen, I. King, and K.-S. Leung, “A survey of crowdsourcing systems,” in Proceedings of the 2011 IEEE Third International

Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Inernational Conference on Social Computing, Oct 2011, pp. 766–773.
[269] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. Motahari-Nezhad, E. Bertino, and S. Dustdar, “Quality control in crowdsourcing

systems: Issues and directions,” IEEE Internet Computing, vol. 17, no. 2, pp. 76–81, March 2013.
[270] S. M. Wolfson and M. Lease, “Look before you leap: legal pitfalls of crowdsourcing,” Proceedings of the American Society for Information

Science and Technology, vol. 48, no. 1, pp. 1–10, 2011.
[271] L. P. Cox, “Truth in crowdsourcing,” IEEE Journal on Security and Privacy, vol. 9, no. 5, pp. 74–76, 2011.
[272] M. Vukovic, J. Laredo, and S. Rajagopal, “Challenges and experiences in deploying enterprise,” in Proceedings of the 10th International

Conference on Web Engineering, 2010.

36 MAO ET AL.: A SURVEY OF THE USE OF CROWDSOURCING IN SOFTWARE ENGINEERING

[273] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds., Software Engineering for Self-Adaptive Systems (Dagstuhl
Seminar), ser. Dagstuhl Seminar Proceedings, vol. 08031, 2008.

[274] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo, and F. Wu, “Genetic improvement for adaptive software
engineering (keynote),” in Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
2014, pp. 1–4.

[275] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf,
“An architecture-based approach to self-adaptive software,” IEEE Intelligent Systems, vol. 14, pp. 54–62, May 1999.

[276] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR for App Stores,” in Proceedings of the 9th Working Conference
on Mining Software Repositories, June 2012, pp. 108–111.

[277] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,” in Proceedings of the 21st IEEE International Conference
on Requirements Engineering, July 2013, pp. 125–134.

[278] E. Guzman and W. Maalej, “How do users like this feature? A fine grained sentiment analysis of app reviews,” in Proceedings of
the 22nd International Conference on Requirements Engineering, Aug 2014, pp. 153–162.

[279] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “AR-Miner: Mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference on Software Engineering, 2014, pp. 767–778.

[280] K. Adamopoulos, M. Harman, and R. M. Hierons, “Mutation testing using genetic algorithms: A co-evolution approach,” in
Proceedings of the 2004 Genetic and Evolutionary Computation Conference, June 2004, pp. 1338–1349.

[281] A. Arcuri, D. R. White, J. A. Clark, and X. Yao, “Multi-objective improvement of software using co-evolution and smart seeding,”
in Proceedings of the 7th International Conference on Simulated Evolution and Learning, vol. 5361, December 2008, pp. 61–70.

	Introduction
	Background
	Crowdsourcing
	Crowdsourced Software Engineering
	Claimed Advantages and Growth Trends in Crowdsourced Software Engineering

	Research Topics

	Crowdsourcing Practice in Software Engineering
	Commercial Platforms
	Case Studies

	Crowdsourcing Applications to Software Engineering
	Crowdsourcing for Software Requirements Analysis
	Crowdsourcing for Software Design
	Crowdsourcing for Software Coding
	Crowdsourcing for Software Testing and Verification
	Crowdsourcing for Software Testing
	Crowdsourcing for Software Verification

	Crowdsourcing for Software Evolution and Maintenance
	Crowdsourced Software Evolution
	Crowdsourcing for Software Documentation
	Crowdsourcing for Software Localisation

	Crowdsourcing for Other Software Engineering Activities

	Issues and Open Problems
	Theory and Model Foundations
	Task Decomposition
	Planning and Scheduling
	Motivation and Remuneration
	Quality Assurance
	Unexplored Issues

	Opportunities
	Who is the Crowd?
	Speculative Crowdsourced Software Engineering
	Hybrid Crowdsourced Software Engineering
	Multi-Crowdsourced Software Engineering
	Iterative Crowdsourced Software Engineering

	Conclusions
	Appendix A: Search Terms
	References

