

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

08/05/2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and
ranking statements according to the predicted risk. Designing a risk evaluation formula is
often an intuitive process done by human software engineer. This paper presents a Genetic
Programming approach for evolving risk assessment formulæ. The empirical evaluation
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations
can consistently outperform many of the human-designed formulæ, such as Tarantula,
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2
(ITE2) structure, or even outperform it against other program structures.

1 The program spectra data used in the paper, as well as the complete empirical results, are available from:
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/16/05

Fitness Landscape of the Triangle Program

10 June 2016

To be presented at
Workshop on Landscape-Aware Heuristic Search (PPSN 2016)

Nadarajen Veerapen and Gabriela Ochoa (editors), 17-21 September

William B. Langdon and Mark Harman

Abstract

Trying all hopeful high order mutations to source code shows none of the first order schema
of triangle software engineering benchmark are deceptive. Indeed these unit building blocks
lead to all global optima. Suggesting program improvements may not be as hard to find as is
often assumed.

Keywords

theory, genetic improvement, genetic algorithms, genetic programming, software engineering, SBSE,
search, heuristic methods,

http://www.cs.stir.ac.uk/events/ppsn2016-landscape/

Fitness Landscape of the Triangle Program William B. Langdon and Mark Harman

0
1
2
3
4
5
6

Figure 1: Fitness landscape of binary comparison improvement of triangle program. 2048 test equivalent
mutants in white. The regular pattern of individuals with the same fitness indicates short building blocks.
E.g. the vertical strips 8 pixels wide indicates the first three bits do not impact fitness. In contrast the last
but one bit divides the figure into four horizontal stripes, two contain 50 176 mutants which fail 4 or more
tests (dark pixels) whilst the others hold all the solutions (white).

Table 1: Hardest to detect mutations of triangle program [1, Fig. 3]. Column 1 number of individual
changes in test equivalent mutations up to 4th order.

354 == replaced by >=
576 <= replaced by <
708 == replaced by <=

1062 > replaced by !=
1992 <= replaced by ==

1 Introduction

The triangle program is well studied software engineering benchmark. It can be thought of as a model of
unit testing. It classifies triangles as scalene, isosceles, equilateral or not a triangle. We have previously
used it to study high order mutation, concentrating particularly on injecting faults which change the numeric
comparison operators (<, <=, ==, !=, => and >) [1]. We now consider mutation of all the comparison
operators in the triangle program as a genetic algorithm fitness landscape. Taking as our fitness the number
of tests [1, Tab. 2] which the modified code fails. A test equivalent mutant is one that passes all the tests
and so has the best fitness value, which is zero. In [1] we considered higher order mutations, i.e. making
multiple changes. For the triangle program we considered up to four simultaneous changes. Up to fourth
order, there are 6 211 885 mutations, of which 1313 are test equivalent [1, Tab. 3].

Table 1 shows the individual changes and their frequency in all (up to 4th order) test equivalent mutants.
Instead of allowing all possible combination, we study all of the most hopeful combinations. I.e. only
the three most common mutations in Table 1 are used. Since there are six comparison operators and 17
potential mutation sites, this reduces the search space from 617 to 217. We evaluate all possible mutants.

2 The Whole Space, Zeroth Order Schema

There are 2048 global optima. (shown in white in Figure 1). On average each mutant fails only
4.344 ±1.360 tests. The worst mutants fail six of the 14 tests.

RN/16/05 Page 1

Fitness Landscape of the Triangle Program William B. Langdon and Mark Harman

Table 2: Mean and standard deviation of number of tests failed for first order schema (excluding 22
with average means). Last column is estimated population size needed for a random sample to distinguish
between competing pairs of first order schema.-4 3.719 ±1.328 1.9

4 4.969 ±1.075
-5 4.062 ±1.478 4.7
5 4.625 ±1.166

-6 3.812 ±1.509 2.4
6 4.875 ±0.927

-11 3.438 ±1.273 1.1
11 5.250 ±0.661

-14 4.312 ±1.424 43.5
14 4.375 ±1.293

-16 4.188 ±1.550 8.6
16 4.500 ±1.118

3 First Order Schema are Not Deceptive

Of the 34 first order schema, 22 have exactly average fitness and contain exactly half the global optima.

The other 12 schema either contains no solutions or all of them. In the six schema which contain solutions,
on average individuals are better than the average of the whole space. In the other six, the schema average
is worse than the average of the whole space.

That is, 22 schema have no signal and the remaining 12 are not deceptive. In the best schema mutants pass
on average 1.813 ±1.015 more tests than its opposite (see also Table 2).

4 Schema Predict All Test Equivalent Mutants

As the previous section showed, there are 22 first order schema that have exactly average fitness. These
correspond to 11 gene locations (211 = 2048). If we treat each as though it did not care and fix the remain-
der to the value corresponding to the better than average first order schema, we get 2048 combinations,
each of which is one of the solutions!

That is, once we fix the six mutation sites in the C source code corresponding to the schema in Table 2 we
are free to mutate all the others (using our restricted mutation operator, last three rows of Table 1) and the
new program will return the correct answer for all of the tests.

5 Conclusions

Although the triangle program is small, the number of possible triangle programs is huge. We have fully
explored a regular subset of it. We reduced the size of its search space by considering only potential
improvements to the existing code made by replacing its comparisons and by restricting the comparator
mutations. This enabled us to analyse a systematic subset of the whole improvement fitness landscape.
Solutions in the subset will still be solutions in the full problem. There are many solutions all of which are
readily found by first order schema analysis. Suggesting the program fitness landscape is not as difficult to
search as is often assumed.

References

[1] Langdon, W.B., Harman, M., Jia, Yue: Efficient multi-objective higher order mutation testing with
genetic programming. Journal of Systems and Software 83(12) (2010) 2416–2430

RN/16/05 Page 2

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html

	Introduction
	The Whole Space, Zeroth Order Schema
	First Order Schema are Not Deceptive
	Schema Predict All Test Equivalent Mutants
	Conclusions

