

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

08/05/2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and
ranking statements according to the predicted risk. Designing a risk evaluation formula is
often an intuitive process done by human software engineer. This paper presents a Genetic
Programming approach for evolving risk assessment formulæ. The empirical evaluation
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations
can consistently outperform many of the human-designed formulæ, such as Tarantula,
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2
(ITE2) structure, or even outperform it against other program structures.

1 The program spectra data used in the paper, as well as the complete empirical results, are available from:
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/16/04

The Genetic Improvement Fitness Landscape

10 June 2016

William B. Langdon

Abstract

Trying all simple changes (first order mutations) to executed source code shows software en-
gineering artefacts are more robust than is often assumed. Of those that compile, up to 89%
run without error. Indeed a few non equivalent mutants are improvements.

Keywords

theory, genetic improvement, genetic algorithms, genetic programming, software engineering, SBSE,
search, heuristic methods,

The Genetic Improvement Fitness Landscape William B. Langdon

no change
 1

 10
 100

 1000
 10000

 100000
 1e+06

 1

 10

 100 2000

 4000

 8000

 10000

 11115

count

14,173 BWA compiles and no abort

Faster

Slower

Error

Increase in time (1% bins)

count

Figure 1: Impact of all (61 775) possible executable changes on BWA [18] [17, sec. 2.1] Of the 23% which
compile and run normally 89% produce the same answer as the original code (“no change”). Indeed 3 of
them are faster (×). From [17]

Genetic improvement (GI) [1] is the use of search heuristics, typically genetic programming (GP) [2], on
existing software to find one or more better programs. For example, better could be having fewer bugs [3],
a smaller source code [4], going faster [5, 6], using less resources [7, 8], having more features [9, 10] or
simply being different. We deal with mutating source code, however GI has also been successfully applied
directly to machine [11, 12] and Java byte code [13, 14].

Figure 1 show the impact of single mutations on a real C++ program. Whilst many changes do damage the
source code, the plot is dominated by a large spike at the origin, showing many mutants do not damage the
program. Schulte [11] and other have shown that contrary to popular assumptions such software resilience
is wide spread. In mutation analysis [15] these are known as test equivalent mutants. Although equivalent
mutants [16] are well known in software engineering, software engineers cling to the notion that software
is a precious fragile thing, even though accepting that many random changes do not destroy it.

Figure 1 and similar graphs (e.g. [17]) are a start to trying to visualise the GI fitness landscape. They only
show the impact of one change at a time. In a more academic example (comparison changes to the triangle
program [15, Fig. 3]) we looked at all second, third and fourth order changes [Tab. 3][15]. This gave the
alarming picture that although the number of equivalent mutants grows rapidly as the new code becomes
more distant from the original the total number of possible changes grows even more rapidly. Thus the
chance of finding a large change with no effect at random falls rapidly. However Figure 2 shows if a set
of tests fail to detect a single change they are more likely to fail to detect both two and three simultaneous
changes. I.e., in a fitness landscape, if a one step change passes the test suite then two step changes will
also tend to pass it. Such non-uniform behaviour suggests that perhaps starting from a passing mutation
will make it easier to find a passing two step mutation. However experiments based on the triangle program
may have limited generality.

We wish to debunk the myth that any random change will destroy human-written programs. Whilst a
random change might be bad, there is increasing evidence that if you are prepared to try multiple times,
you can quickly find test equivalent mutants. However we have only a limited map of multiple changes
which are needed to analyse the GI fitness landscape.

References

[1] Langdon, W.B.: Genetically improved software. In Gandomi, A.H., et al., eds.: Handbook of Genetic
Programming Applications. Springer (2015) 181–220

[2] Poli, R., et al.: A field guide to genetic programming. Published via http://lulu.com and

RN/16/04 Page 1

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html

The Genetic Improvement Fitness Landscape William B. Langdon

 0

 500

 1000

 1500

 2000

 2500

 3000

 3311

 0 10 20 30 40 50 60 71
 0

10000

20000

30000

40000

50000

60000

70000

80000

3
4

0
0

 S
e
c
o

n
d

 O
rd

e
r

T
ri
a
n
g

le
 M

u
ta

n
ts

8
5
0

0
0

 T
h

ir
d
 O

rd
e
r

T
ri
a

n
g

le
 M

u
ta

n
ts

85 First Order Triangle Mutants

2nd order linear
3rd any triangle

3rd only not a triangle
2nd any triangle

2nd only not a triangle

Figure 2: 16 383 test suites were generated by selectively including parts of the triangle test suite. Test
suites that kill more first order mutants tend to kill more second order mutants (red) and third order mu-
tants (blue). There is a near linear relationship, but most test suites are proportionately more effective
against higher order triangle mutants. However test suites where all tests have an expected output of “not a
triangle” (×) are closer to the proportionate response. From [15]

freely available at http://www.gp-field-guide.org.uk (2008) (With contributions by J.
R. Koza).

[3] Le Goues, C., et al.: Current challenges in automatic software repair. Software Quality Journal 21
(2013) 421–443

[4] Landsborough, J., et al.: Removing the kitchen sink from software. In Langdon, W.B., et al., eds.:
Genetic Improvement 2015 Workshop, ACM 833–838

[5] Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. IEEE Trans-
actions on Evolutionary Computation 19(1) (2015) 118–135

[6] Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA pseudoknot free
energy calculation. In Genetic Improvement 2015 Workshop, 805–810

[7] Bruce, B.R., et al.: Reducing energy consumption using genetic improvement. In Silva, S., et al.,
eds.: GECCO ’15: Genetic and Evolutionary Computation Conference, Madrid, Spain, ACM, ACM
1327–1334

[8] Wu, Fan, et al.: Deep parameter optimisation. In Silva, S., et al., eds.: GECCO ’15: Proceedings of
the 2015 on Genetic and Evolutionary Computation Conference, Madrid, ACM (2015) 1375–1382

[9] Harman, M., et al.: Babel pidgin: SBSE can grow and graft entirely new functionality into a real
world system. In Le Goues, C., Yoo, S., eds.: SSBSE 2014. LNCS 8636, 247–252 Winner SSBSE
2014 Challange Track.

[10] Marginean, A., et al.: Automated transplantation of call graph and layout features into Kate. In
Labiche, Y., Barros, M., eds.: SSBSE 2015. LNCS 9275, 262–268

[11] Schulte, E., et al.: Software mutational robustness. Genetic Programming and Evolvable Machines
15(3) (2014) 281–312

RN/16/04 Page 2

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/legouesWFSQJO2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bruce2015reducing.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html

The Genetic Improvement Fitness Landscape William B. Langdon

function notme($ip) {
return $ip!="93.4.203.5" &&

$ip!="93.4.201.238" &&
$ip!="93.4.201.15" &&
$ip!="93.4.201.196" &&
$ip!="93.4.201.125" &&
$ip!="93.4.201.43" &&
$ip!="93.4.203.196" &&
$ip!="93.4.201.38" &&

//
//probably me?

$ip!="215.88.203.93" &&
$ip!="215.88.151.5" &&

$ip!="93.4.201.5" &&
$ip!="93.4.151.5" &&
$ip!="109.142.203.5" &&
$ip!="109.142.54.196" &&
$ip!="109.142.203.93" &&

$ip!="86.162.4.128" &&
$ip!="86.162.4.5" &&
$ip!="86.162.212.5";

}

function me($ip,$year) {
if($ip=="93.4.203.5" ||

$ip=="93.4.201.238" ||
$ip=="93.4.201.15" ||
$ip=="93.4.201.196" ||
$ip=="93.4.201.125" ||
$ip=="93.4.201.43" ||
$ip=="93.4.203.196" ||
$ip=="93.4.201.38")

return during($year,2004,2006);
//probably me?

if($ip=="215.88.203.93" ||
$ip=="215.88.151.5")

return during($year,2007,2007);
if($ip=="93.4.201.5" ||

$ip=="93.4.151.5")
return during($year,2006,2008);

if($ip=="109.142.203.5" ||
$ip=="109.142.54.196" ||
$ip=="109.142.203.93")

return during($year,2008,2010);
if($ip=="86.162.4.128")

return during($year,2010,2015);
if($ip=="86.162.4.5" ||

$ip=="86.162.212.5")
return during($year,2010,2100);
return false;

}
function during($year,$start,$end) {

if($year<2000 || $year>2100) {
echo "during($year,$start,$end) bad year"; exit;}

return ($year>=$start && $year<=$end);
}

Figure 3: Change designed to restrict exclusion of my use of the GP bibliography [19] from
statistics according to when I was using each computer. Exclusion was originally based only
on computers’ internet address (ip). Left: fragment of original PHP code. In calling code
if(!notme($parts[1])) replaced by if(me($parts[1],$year)). Right new code. Coded
by hand. Could artificial intelligence have made this change? Anonymised training data available via
http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/notme

RN/16/04 Page 3

http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/notme

The Genetic Improvement Fitness Landscape William B. Langdon

[12] Schulte, E., et al.: Repairing COTS router firmware without access to source code or test suites: A
case study in evolutionary software repair. In Genetic Improvement 2015 Workshop, 847–854 Best
Paper.

[13] Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE Transactions on
Evolutionary Computation 15(2) (2011) 166–182

[14] Yeboah-Antwi, K., Baudry, B.: Embedding adaptivity in software systems using the ECSELR frame-
work. In Langdon, W.B., et al., eds.: Genetic Improvement 2015 Workshop, Madrid, ACM (2015)
839–844

[15] Langdon, W.B., et al.: Efficient multi-objective higher order mutation testing with genetic program-
ming. Journal of Systems and Software 83(12) (2010) 2416–2430

[16] Yao, Xiangjuan, et al.: A study of equivalent and stubborn mutation operators using human analysis
of equivalence. In: ICSE 2014, 919–930

[17] Langdon, W.B., Petke, J.: Software is not fragile. In Bourgine, P., Collet, P., eds.: Complex Systems
Digital Campus E-conference, CS-DC’15. Proceedings in Complexity, Springer (2015) Paper ID: 356
Invited talk, Forthcoming.

[18] Li, Heng, Durbin, Richard: Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics 26(5) (2010) 589–595

[19] Langdon, W.B., Gustafson, S.M.: Genetic programming and evolvable machines: ten years of re-
views. 11(3/4) (2010) 321–338

RN/16/04 Page 4

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yeboah-Antwi_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://dx.doi.org/10.1145/2568225.2568265
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_GPEM.html

