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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Trying all simple changes (first order mutations) to executed source code shows software en-
gineering artefacts are more robust than is often assumed. Of those that compile, up to 89%
run without error. Indeed a few non equivalent mutants are improvements.
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Figure 1: Impact of all (61 775) possible executable changes on BWA [18] [17, sec. 2.1] Of the 23% which
compile and run normally 89% produce the same answer as the original code (“no change”). Indeed 3 of
them are faster (×). From [17]

Genetic improvement (GI) [1] is the use of search heuristics, typically genetic programming (GP) [2], on
existing software to find one or more better programs. For example, better could be having fewer bugs [3],
a smaller source code [4], going faster [5, 6], using less resources [7, 8], having more features [9, 10] or
simply being different. We deal with mutating source code, however GI has also been successfully applied
directly to machine [11, 12] and Java byte code [13, 14].

Figure 1 show the impact of single mutations on a real C++ program. Whilst many changes do damage the
source code, the plot is dominated by a large spike at the origin, showing many mutants do not damage the
program. Schulte [11] and other have shown that contrary to popular assumptions such software resilience
is wide spread. In mutation analysis [15] these are known as test equivalent mutants. Although equivalent
mutants [16] are well known in software engineering, software engineers cling to the notion that software
is a precious fragile thing, even though accepting that many random changes do not destroy it.

Figure 1 and similar graphs (e.g. [17]) are a start to trying to visualise the GI fitness landscape. They only
show the impact of one change at a time. In a more academic example (comparison changes to the triangle
program [15, Fig. 3]) we looked at all second, third and fourth order changes [Tab. 3][15]. This gave the
alarming picture that although the number of equivalent mutants grows rapidly as the new code becomes
more distant from the original the total number of possible changes grows even more rapidly. Thus the
chance of finding a large change with no effect at random falls rapidly. However Figure 2 shows if a set
of tests fail to detect a single change they are more likely to fail to detect both two and three simultaneous
changes. I.e., in a fitness landscape, if a one step change passes the test suite then two step changes will
also tend to pass it. Such non-uniform behaviour suggests that perhaps starting from a passing mutation
will make it easier to find a passing two step mutation. However experiments based on the triangle program
may have limited generality.

We wish to debunk the myth that any random change will destroy human-written programs. Whilst a
random change might be bad, there is increasing evidence that if you are prepared to try multiple times,
you can quickly find test equivalent mutants. However we have only a limited map of multiple changes
which are needed to analyse the GI fitness landscape.
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Figure 2: 16 383 test suites were generated by selectively including parts of the triangle test suite. Test
suites that kill more first order mutants tend to kill more second order mutants (red) and third order mu-
tants (blue). There is a near linear relationship, but most test suites are proportionately more effective
against higher order triangle mutants. However test suites where all tests have an expected output of “not a
triangle” (×) are closer to the proportionate response. From [15]
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function notme($ip) {
return $ip!="93.4.203.5" &&

$ip!="93.4.201.238" &&
$ip!="93.4.201.15" &&
$ip!="93.4.201.196" &&
$ip!="93.4.201.125" &&
$ip!="93.4.201.43" &&
$ip!="93.4.203.196" &&
$ip!="93.4.201.38" &&

//
//probably me?

$ip!="215.88.203.93" &&
$ip!="215.88.151.5" &&

$ip!="93.4.201.5" &&
$ip!="93.4.151.5" &&
$ip!="109.142.203.5" &&
$ip!="109.142.54.196" &&
$ip!="109.142.203.93" &&

$ip!="86.162.4.128" &&
$ip!="86.162.4.5" &&
$ip!="86.162.212.5";

}

function me($ip,$year) {
if( $ip=="93.4.203.5" ||

$ip=="93.4.201.238" ||
$ip=="93.4.201.15" ||
$ip=="93.4.201.196" ||
$ip=="93.4.201.125" ||
$ip=="93.4.201.43" ||
$ip=="93.4.203.196" ||
$ip=="93.4.201.38" )

return during($year,2004,2006);
//probably me?

if( $ip=="215.88.203.93" ||
$ip=="215.88.151.5" )

return during($year,2007,2007);
if( $ip=="93.4.201.5" ||

$ip=="93.4.151.5" )
return during($year,2006,2008);

if( $ip=="109.142.203.5" ||
$ip=="109.142.54.196" ||
$ip=="109.142.203.93" )

return during($year,2008,2010);
if( $ip=="86.162.4.128" )

return during($year,2010,2015);
if( $ip=="86.162.4.5" ||

$ip=="86.162.212.5" )
return during($year,2010,2100);
return false;

}
function during($year,$start,$end) {

if($year<2000 || $year>2100) {
echo "during($year,$start,$end) bad year"; exit;}

return ($year>=$start && $year<=$end);
}

Figure 3: Change designed to restrict exclusion of my use of the GP bibliography [19] from
statistics according to when I was using each computer. Exclusion was originally based only
on computers’ internet address (ip). Left: fragment of original PHP code. In calling code
if(!notme($parts[1])) replaced by if(me($parts[1],$year)). Right new code. Coded
by hand. Could artificial intelligence have made this change? Anonymised training data available via
http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/notme
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