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Abstract

Examples of quadrotor helicopters models described in the literature (e.g. [6], [4],
[17]) tend to focus on reproducing only the dynamic aspects the aerial platform and their
primary use is in the domain of closed loop flight control. When the aim is simulating
more general higher level tasks that involve multiple platforms which sense and react in
their environment, the usefulness of such models is limited.

This document describes the multi-vehicle simulator software QRSim developed to
devise and test algorithm that allow a set of UAVs to communicate and cooperate to
achieve common goals. In addition to realistically simulate the dynamic of the aerial
platform (learned from flight tests), the software simulates the sensors suite that typically
equip a UAV (i.e. GPS, IMU, camera) and the endogenous and exogenous sources of
inaccuracies that characterize them. Environmental effects that affect directly (e.g. wind)
or indirectly (e.g. the plume dispersion) the task are also part of the simulation.

To offer a well structured and challenging set of control and machine learning problems
we present a number of non trivial task scenarios and their implementations.
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1 Introduction

UAVs provide a rich source of control problems spanning a whole spectrum, from flight
attitude control to multi-platform high level collaborative behaviour.

Past research efforts ([12],[22],[6] to list a few) made considerable advancement in the
understanding of the flight dynamics and control of a quadrotor platform to the point that
such helicopters are now readily available on the market ([25],[15],[14]). Such platforms
are generally able to fly autonomously to specified waypoints but still rely on an operator
to specify meaningful obstacle free paths. Recent research has shown promising result in
the coordination of multiple quadrotor UAVs (e.g.[16],[5],[20]) but more work needs to be
done to tackle more useful applications as well as the difficulties posed by unstructured
indoor and outdoor environments.

The QRSim software we describe herein is designed to be a useful tool to test and
develop algorithms for complex outdoor quadrotor tasks, tasks involving both sensing and
control. To this aim the simulator includes realistic models of the helicopter dynamics
learned from flight data, probabilistic models of inertial, localization and vision sensors.
Similarly, the simulator includes environmental effects such as wind and GPS propagation
errors that affect all the platforms in a correlated fashion. The combination of such
features makes QRSim substantially different from existing freely available quadrotor
simulators.

This research note is divided in four parts, the first two sections (i.e. section 2 and
3) explain respectively the conceptual framework of the simulator and its use, section 4
presents three application scenarios and finally section 5 covers in detail the models that
the simulator implements.

A companion to this note is the documentation that Matlab can automatically gen-
erate from the source code (i.e. using the command doc), the reader is referred to it for
all the more specific API details.

2 Concepts

In the following sections we start by presenting the main conceptual blocks that constitute
the simulator, we then present the simulator core in section 2.6.

2.1 Platforms and Environment Objects

Within QRSim we make a clear logical distinction between two types of objects:

• platforms,

• environment objects.

To the first type belong the description of the quadrotor dynamics but also the models of
sensors and other phenomena that are platform specific (e.g. aerodynamic turbulence).
The second class comprehends all the phenomena that are not platform specific and have
direct or indirect impact on several platforms (e.g. the flight area or the satellite vehicles
of the GPS system). In many ways this distinction is rather natural and in QRSim we
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are simply exploiting it in order to provide an intuitive structure for to the simulator
code and its API.

In general the platforms are the only objects that can be controlled by means of
actions, of course those might eventually have an indirect effect on the environment. We
must underline that this does not impose for any of the two classes to be time invariant;
in fact both types of objects might change during the course of a simulation as result of
actions or simply as result of the time passing.

To the extent allowed by Matlab we used object-oriented programming concepts in
order to map physical objects directly into the corresponding software classes. Platforms
subclass the abstract class Platform (defined in /qrsim/platforms/Platform.m) and
environment objects subclass EnvironmentObject (defined in /qrsim/environment).

2.2 State

At any point in time the simulator must maintain the state of all the objects taking that
are part of the simulation; this is accomplished with a data structure defined by a Matlab
class called (rather obviously) State.

A handle to an object of this type is returned during the initialisation of the simulator
and can be used to reference the various simulation objects. For instance the fields
environment and platforms store respectively the handles to all the environment objects
and to the cell array of platforms objects. Given such a structure accessing the state
of a specific object is trivial, for instance state.platforms{1}.getX() gives access to
the state variables of the first platform, while state.environment.area.getLimits()

returns the size of the flying area.
When meaningful, the Platform and EnvironmentObject classes define methods to

retrieve the object state (e.g. getX() in the case of a platform1), to reset the state to its
initial value defined by the task (see section 3.2) and to set the object state (e.g. setX(X)
in the case of a platform)2.

The State structure stores also other important variables:

• the simulator time (field t), used to ensure synchronization between all the envi-
ronment and platforms objects;

• the independent pseudo-random number generator streams (field rStreams), used
by any of the objects that requires any form of random numbers (e.g. to simulate
noise samples);

• the simulator time step (field DT), the time granularity with which the simulator
time is incremented;

• the handle to the 3D graphics visualization (field display3d).

1In addition to getX() platforms define getEX() to return the estimated state and getEXasX() which
returns the estimated state with the same format of getX(); we refer to the Matlab API for more details.

2In addition to overwriting the object’s state these calls also make sure that any other internal variable
(e.g. noise model states) is appropriately set. It is worth stressing that simply using setX(X) will not
allow to produce identical trajectories even when a fix seed for the pseudorandom number generator
is specified, this is because the platform dynamics depends also on the environment objects. Refer to
section 2.6 for how to produce identical runs.
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2.3 Steppable

Since the platforms and environment that we are simulating are representation of phys-
ical objects, one simple way to think about their evolution in time is to consider time
discretized into steps and to “step forward” the object’s state at each time step. In the
case of a quadrotor for instance, stepping forward is nothing more than integrating the
ODEs that describe its dynamics; for other objects stepping forward might mean instead
triggering an event associated with a specific time. In our implementation every object
that evolves with time is derived from a common class (i.e. Steppable) which defines an
abstract update() method and a time step property dt.

The method update() propagates the object’s state forward to the current time (field
t of the State data structure), the object’s field dt specifies with what (time) granularity
update() should be called.

As we will see in section 2.6, the update() method is never called directly, instead
the Steppable class exposes the method step() which in turns only calls update() if a
time equal to dt has passed since the last update3.

2.4 Task

By combining different types of environment objects and platforms QRSim allows to
define a variety of single and multiple helicopter scenarios as well as many different
objectives to be accomplished by the platforms.

The abstract class Task provides a way to derive task objects that specify both a
scenario and an activity to be learned; the class defines four required and one optional
methods:

• init() allows the user to define the type of each of the environment objects (i.e.
the class name) and of each platform and sensor. Along with the object type, a
specification of all the class specific parameters is also needed.

• updateReward(U) allows for defining an instantaneous reward for the task which is
accumulated as the task progresses (e.g. this could be used to include a control or
state cost). This method is called by QRSim after a step; its content depends on
how the task is defined.

• reward() allows for defining the total reward for the task (e.g. the sum of the
integrated instantaneous reward plus a final reward). The design of a reward func-
tion is again very task specific but most often the user will rely on the state data
structure in order to compute such a reward.

• reset()4 defines the initial state of the platforms and of any other task specific
object.

3To simplify the implementation the time step dt of any object must be a multiple of the simulator
time step (DT); in practise this is not a restrictive requirement.

4Introduced in version 1.2.0.
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• step(U)5 (optional) allows for defining a method that handles inputs in a format
specific to the task (i.e. not the standard U=[upt;url;uth;uya]), or for triggering any
other task specific update.

We will discuss in detail how to create a task in section 3.2.

2.5 Other Abstract Classes

At the aim of making the code easy to extend, the software API defines also several other
abstract classes:

• AerodynamicTurbulence

• Sensors

• AHARS

• OrientationEstimator

• Gyroscope

• Altimeter

• Accelerometer

• Camera.

Such abstract classes are used very much like software interfaces and allow to load at
run time the suite of sensors needed for the task (see section 3.2).

2.6 The QRSim Object

After introducing of the fundamental building blocks of QRSim we can look at how they
are used within the main class of the simulator called QRSim.

The object QRSim allows to initialize, setup and control the simulator as a whole; it
exposes three main methods:

• init(’task name’), initializes the platforms the environment objects and the task
according to what specified in the file ’task name’ (see section 3.2) additionally it
also creates the state data structure. This is generally the first command called
soon after the creation of the QRSim object and must be called only once.

• qrsim.reset() resets the simulator to the initial state specified by the task. This
calls the method reset() of the task which takes care of re-initializing the platforms
state, it also resets the task reward to zero. This method is generally called after a
learning episode in order to restore the state of the simulator. Note however that
reset() will not reinitialize the random number generator6.

5Introduced in version 1.2.0.
6The rationale for this is that in general is useful to generate statistically independent runs with the

same initial state as opposed to identical runs.
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• qrsim.resetSeed() resets the seed of the pseudorandom number generator to the
value specified in the task (or to a random value if in the task the seed is set to
0). After calling resetSeed() is necessary to call reset() in order to reinitialise
all the platforms and environment objects. Running repeatedly a task with a fixed
seed followed by the two calls resetSeed() and reset() will lead to identical runs.

• step(U), steps forward in time all the environment objects and all the platforms.
This command accepts a matrix of control inputs U (i.e. one column array for each
platform) and calls the step() method for each of the objects. Listing 1 shows the
implementation of the method.

The sequence of operations executed during a step is straightforward, first the
simulation time obj.simState.t is updated7, then all the environment objects are
propagated and only later each of the platforms is stepped forward. At this point
the new state of the platforms can be accessed as described in section 2.2. Line
13 shows how, if any task specific computation of the platforms controls is defined
using the task method step (see section 2.4), this takes precedence to the controls
U.

Listing 1: QRSim step() method

1 function obj=step ( obj ,U)
2 for j =1: obj . s imState . task . dt/ obj .DT,
3 % update time
4 obj . s imState . t=obj . s imState . t+obj . s imState .DT;
5
6 % step a l l the environment o b j e c t s
7 envObjs = f i e ldnames ( obj . s imState . environment ) ;
8 for i = 1 : numel ( envObjs )
9 obj . s imState . environment . ( envObjs{ i } ) . s t ep ( [ ] ) ;

10 end
11
12 % see i f the t a s k i s the one genera t ing the c on t r o l s
13 UU = obj . s imState . task . s tep (U) ;
14 i f (˜ isempty (UU) )
15 U = UU;
16 end
17
18 % step a l l the p l a t f o rms g iven U
19 for i =1: length ( obj . s imState . p la t fo rms )
20 obj . s imState . p la t fo rms { i } . s t ep (U( : , i ) ) ;
21 end
22 end
23
24 % update the t a s k reward
25 obj . s imState . task . updateReward (U) ;
26 end

7This is the only statement that updates the simulation time.
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• reward(), returns the instantaneous reward defined by the current task. This is
simply a pass through call to the task reward() method and is meant to be called
after stepping the simulator.

3 Installation and Use

3.1 Installation

The simulator is entirely written in Matlab and does not depend on any additional tool-
box; the only requirement is a recent version of Matlab (i.e. version number greater than
7.6; see section 3.1.1 for details on the configurations tested).

To retrieve the software one can simply clone the git8 source code repository9 into a
directory of choice:

$ git clone https://github.com/UCL-CompLACS/qrsim.git

$ cd qrsim

Alternatively, the master branch of the software repository is also available as a zip
archive from https://github.com/UCL-CompLACS/qrsim/archive/master.zip. In this
case the archive needs to be downloaded and unpacked into a directory of choice.

Once we have the software in a local directory (let’s assume it to be ~/qrsim), in
order to use it is necessary to add the absolute path to the sim directory to the current
Matlab search path. This can be done using the menu File > Set Path from the Matlab
toolbar. Alternatively this can be done from the Matlab console: after navigating to the
local simulator directory (~/qrsim in our example) one can issue the command10

>> addpath([pwd,filesep,’sim’]);

You now have all that is needed to run the basic examples main.m and main10.m. To
do so navigate to the example directory (i.e. ~/qrsim/example) and then simply run the
main.m script. If main.m fails with the message

??? Undefined function or variable ’QRSim’

the path was not set correctly; use the toolbar menu File > Set Path to confirm that the
absolute path of the directory sim was added correctly.

At the aim of improving performance, some of the most computationally expensive
functions in the simulator have been written also as MEX function, these can be easily
compiled using the function mexify(’compile’)11.

8The git version control software is available for Linux (usually from the package manager), OSX
(http://code.google.com/p/git-osx-installer/) and Windows (http://code.google.com/p/msysgit/)

9Please note that currently the git repository is read only.
10Note that this command depends on the location from which it is executed.
11Depending on your system setup you might need to configure the MEX compiler using mex -setup;

please refer to the Matlab documentation for more details.
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3.1.1 Tested OS

The software was tested succesfully on the following setups :

• Ubuntu 11.10 with Matlab R2010b and gcc version 4.6.112.

• Windows XP SP3 with Matlab 2010a.

• Windows Server 2008 R2 with Matlab 2011a and Visual Studio 2008.

• OSX 10.5 with Matlab 2010a and Xcode gcc version 4.213.

3.2 Creating a Task

As a first example of use we look at a single platform task which requires to maintain
the quadrotor hovering at the position it has when the task starts; the solution requires
continuous adjustment of the controls since the helicopter is affected by time varying
wind disturbances. We call this task TaskKeepSpot.

To implement such a task, we start by creating a new class that extends the abstract
class Task and implements the init(), updateReward(U) and reward() methods.

The init() method (see listing 2) returns the state data structure presented in
section 2.2. The environment and platform objects within the state structure exposes
the following standard fields:

• on, the flag that allows to enable and disable the object in question,

• dt, the time step of the object,

• type, the class name of the object.

In addition depending on the object type other fields and methods will be available.
The number of sensors and parameters present in a platform makes the process of

defining several identical platforms programatically very cumbersome; for this reason all
the platform parameters are specified in a single configuration file (see ’pelican config’).
In this way the same settings can be loaded for more than one platform.

Lastly we see the taskparams.display3d parameters which allow specifying if the
3D visualization is active and the size of the window used for its rendering.

The second of the methods that is necessary to define in a task is the method reset().
In such method14 the user specifies that starting state of each platform and also of any
other task specific object. This method is called after init() but also every time qrsim

resets; it is therefore possible, for instance, to design the init method to have different
randomly generated position of the platform at every task reset.

12With gcc 4.6.1 mex compilation warns the user that gcc 4.6.1 is not a supported compiler, in our
experience this warning can be safely ignored.

13We removed the option -isysroot from the CFLAGS and CXXFLAGS in the file mexopts.sh. For newer
versions of Xcode see http://www.mathworks.co.uk/support/solutions/en/data/1-FR6LXJ/

14Prior to version 1.2.0 the syntax taskparams.platforms(1).X was used within the init method to
set the platform initial state; such syntax is now meaningless and if used a runtime error will prompt
the user to conform to the new API.

RN/13/08 7



The QRSim Quadrotors Simulator Renzo De Nardi

Listing 2: TaskKeepSpot init() method

1 function taskparams=i n i t ( obj )
2 taskparams . dt = 0 . 0 2 ; % task time−s t ep
3 taskparams . seed = 0 ; % i f 0 the seed depends on the system time
4
5 %%%%% v i s u a l i z a t i o n %%%%%
6 % 3D d i s p l a y parameters
7 taskparams . d i sp lay3d . on = 1 ;
8 taskparams . d i sp lay3d . width = 1000 ;
9 taskparams . d i sp lay3d . he ight = 600 ;

10
11 %%%%% environment %%%%%
12 % l im i t s need to f o l l ow the convent ions o f a x i s ( ) , in m, Z down
13 taskparams . environment . area . l i m i t s = [−10 20 −10 10 −20 0 ] ;
14 taskparams . environment . area . type = ’ BoxArea ’ ;
15
16 % utm or i g i n depends on gpsspacesegment . o r b i t f i l e
17 [E N zone h ] = l la2utm ( [ 5 1 . 7 1 1 9 0 ; −0 . 2 1 0 5 2 ; 0 ] ) ;
18 taskparams . environment . area . or ig inutmcoords .E = E;
19 taskparams . environment . area . or ig inutmcoords .N = N;
20 taskparams . environment . area . or ig inutmcoords . h = h ;
21 taskparams . environment . area . or ig inutmcoords . zone = zone ;
22 taskparams . environment . area . g raph i c s . type = ’ AreaGraphics ’ ;
23
24 % GPS − the space segment o f the gps system
25 taskparams . environment . gpsspacesegment . on = 1 ; % no i s e l e s s i f 0
26 taskparams . environment . gpsspacesegment . dt = 0 . 2 ;
27 taskparams . environment . gpsspacesegment . o r b i t f i l e = . . .
28 ’ ngs15992 16to17 . sp3 ’ ; % rea l s a t e l l i t e o r b i t s from NASA JPL
29 % simu la t i on s t a r t in GPS time , needs to agree wi th f i l e above
30 taskparams . environment . gpsspacesegment . t S t a r t = 0 ;
31 % id number o f v i s i b l e s a t e l l i t e s , matches the con ten t s o f o r b i t f i l e
32 taskparams . environment . gpsspacesegment . svs = [3 , 5 , 7 , 13 , 16 , 19 , 20 , 22 , 29 ] ;
33 taskparams . environment . gpsspacesegment . type = ’GPSSpaceSegmentGM2 ’ ;
34 taskparams . environment . gpsspacesegment .PR BETA2 = 4 ; % t cons t
35 taskparams . environment . gpsspacesegment .PR BETA1 = 1 . 0 0 5 ; % t cons t
36 taskparams . environment . gpsspacesegment .PR SIGMA = 0 . 0 0 3 ; % sd
37
38 % Wind − a s teady homogeneous wind common to a l l h e l i c o p t e r s
39 taskparams . environment . wind . on = 0 ;
40 taskparams . environment . wind . type = ’WindConstMean ’ ;
41 askparams . environment . wind . d i r e c t i o n=degsToRads ( 4 5 ) ; %mean d i r e c t i o n
42 taskparams . environment . wind .W6 = 0 . 5 ; % ve l a t 6m from ground in m/s
43
44 %%%%% pla t f o rms %%%%%
45 % Conf igura t ion f o r each o f the p l a t f o rms
46 taskparams . p la t fo rms ( 1 ) . c o n f i g f i l e = ’ p e l i c a n c o n f i g ’ ;
47 end
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Listing 3: TaskKeepSpot reset() method

1 function reset ( obj )
2 % de f i n e s the p la t form i n i t i a l s t a t e
3 obj . s imState . p la t fo rms {1} . setX ( [ 0 ; 0 ; − 1 0 ; 0 ; 0 ; 0 ] ) ;
4 end

A task must also define the updateReward(U) and reward() functions. For TaskKeepSpot
a straightforward update reward can be defined as a quadratic cost of the control inputs
(see listing 4) in order to penalize large controls. An appropriate total reward can be de-
fined adding the current reward to a final reward computed as the square of the distance
to the quadrotor initial position (see listing 5). Such a function gives higher rewards to
a policy that at the end of the task gets the quadrotor close to the starting point.

The complete listing for this task can be found in the file TaskKeepSpotWithReward.m.

Listing 4: TaskKeepSpotWithReward updateReward(U) method

1 function updateReward ( obj ,U)
2 % updates the reward based on con t r o l c o s t s
3 for i =1: s ize (U, 2 )
4 u = (U( : , i )−obj .U NEUTRAL) ;
5 obj . currentReward = obj . currentReward . . .
6 − ( ( obj .R∗u ) ’∗ ( obj .R∗u ) )∗ obj . dt ;
7 end
8 end

Listing 5: TaskKeepSpot reward() method

1 function r=reward ( obj )
2 % re turns the t o t a l reward f o r t h i s t a s k
3 i f ( obj . s imState . p la t fo rms {1} . i s V a l i d ( ) )
4 e = obj . s imState . p la t fo rms {1} . getX ( 1 : 1 2 ) ;
5 e = e (1:3)− obj . i n i t i a l X ( 1 : 3 ) ;
6 % con t r o l co s t so f a r p l u s end co s t
7 r = obj . currentReward − e ’ ∗ e ;
8 else
9 r = − obj .PENALTY;

10 end
11 end

3.3 Example Main

To clarify the use of the simulator by means of the QRSim object, we shall present a simple
example of use; namely we will use a manually designed PID controller to achieve the
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Listing 6: main script

1
2 % crea t e s imu la tor o b j e c t
3 qrsim = QRSim ( ) ;
4
5 % load ta s k parameters and re turn hanle to s imu la tor s t a t e
6 s t a t e = qrsim . i n i t ( ’ TaskKeepSpot ’ ) ;
7
8 % crea t e a PID ob j e c t
9 pid = WaypointPID ( s t a t e .DT) ;

10
11 % number o f s t e p s we run the s imu la t i on f o r
12 N = 3000 ;
13
14 % i n i t i a l p o s i t i o n o f the h e l i c o p t e r
15 wp = [ s t a t e . p la t fo rms {1} . getX ( 1 : 3 ) ’ , 0 ] ;
16
17 t s t a r t = t ic ;
18
19 for i =1:N,
20 t l oop=t ic ;
21
22 % compute c on t r o l s based on the ESTIMATED s t a t e
23 U = pid . computeU ( s t a t e . p la t fo rms {1} . getEX ( ) ,wp ) ;
24
25 % step s imu la tor
26 qrsim . s tep (U) ;
27
28 % wait so to run in r e a l time
29 wait = max(0 , s t a t e . task . dt−toc ( t l oop ) ) ;
30 pause ( wait ) ;
31 end
32
33 % ge t reward
34 % r = qrsim . reward ( ) ;
35
36 e lapsed = toc ( t s t a r t ) ;

required behaviour15. Listing 6 shows the code of this bare bone example.
Before anything else we are required to instantiate the QRSim object, this will make

sure that all the functions and classes of the simulator are reachable. Next we load all the
task parameters by calling qrsim.init(), such function returns a handle to the simulator
state.

15We want to clarify that the PID controller was chosen exclusively for its simplicity, in facts it is a
very conservative controller and its performance are suboptimal. This said it might still be useful as a
baseline for comparisons.
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The main for loop (see line 19) drives the simulation forward by calling in sequence the
PID controller and the qrsim.step(U) method. Given the current state of the platform,
the PID computes the new control action U which is then used to step the dynamics
forward in time.

A quadrotor requires four control inputs U=[upt;url;uth;uya] respectively pitch roll
throttle and yaw. In hover condition pitch and roll are zero, the throttle is the amount
required to counterbalance the gravity force16 while yaw controls the direction in which
the helicopter is pointing. Any pitch or roll rotation away from the level attitude will
produce a corresponding translational acceleration. To move forward is sufficient a small
amount of pitch (negative pitch to be precise), and a roll motion allows to move left and
right.

The PID controller computes the required pitch, roll, yaw and throttle commands
proportionally to the current distance between the helicopter and the selected waypoint.

Since we are using a PID controller and no learning is involved, after running the
predefined number of iterations we do not make use of the reward returned by the task.
In the listing (line 34) we show the call commented out to give an idea of when normally
the total task reward would be retrieved.

The task defines to run the simulation with the 3D visualization so it makes sense to
run it in real time; line 30 introduces the necessary pause.

Figure 3.3 shows a snapshot from the 3D visualization of the simulator where both
the platform and its past trajectory are visible.

Figure 1: 3D visualization

There is obviously no need to define a specific main script like the one presented
above, in certain application for instance it might make more sense to call the QRSim

16With our dynamic model and a mass of 1.68Kg the required throttle control is 0.59
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directly from a learning algorithm; this is perfectly fine as long as the calls are executed
in the same sequence shown in listing 6.

An additional example called main10.m is also present in the example directory and
shows how to generalize the TaskKeepSpot to a group of ten helicopters.

3.4 Controllers

The directory /controllers contains baseline implementations of simple controllers17

that are often useful in a variety of tasks. Such controllers can be used to compute the
set of control inputs U given the current platform state and a waypoint or a velocity that
the UAV is meant to reach.

Currently the following controllers are available:

• WaypointPID Controller that computes the pitch, roll and throttle input necessary
to achieve a desired 3D position (NED) while maintaining a specified heading.

• VelocityPID Controller that computes the pitch, roll and throttle input necessary
to maintain a desired velocity (NED) while keeping a specified heading.

• VelocityHeightPID Controller that computes the pitch and roll input necessary
to achieve a desired 2D (NE) velocity while maintaining a specified altitude and
heading.

• AnglesHeightPID Simple controller that computes the throttle and yaw input nec-
essary to maintain a specified height and heading. The roll and pitch angle controls
are left to the user.

To use one or more of such controllers simply add the directory controllers to the
Matlab path.

3.5 Multiple Simulations

Since the implementation of the simulator is completely object oriented, it is possible (and
sometimes very useful) to instantiate multiple and completely independent simulations
within the same Matlab workspace.

The script /example/multisim.m shows an example in which one simulator is used
to sample control actions the best of which (in terms of reward) is then carried out on
the second simulator18.

3.6 TCP Interface (Linux)

We also provide a TCP interface to the quadrotor simulator QRSim so that its function-
alities can by easily accessed by a second software. The interface is constituted of two
parts: a Matlab (Java) server that is responsible for listening to client connection and

17We believe these controllers to be qualitatively similar to the ones implemented in the Pelican
helicopter, however at present no quantitative comparison has been carried out.

18This replicates what one might do in reality where the simulation is used to evaluate control action
that are then carried out on a real platform.
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managing the QRSim simulation and a client library that allows a client to communicate
with such server. Currently the client library is written in C++ for Linux but very similar
libraries could be developed easily for other languages19.

3.6.1 Client

The client library exposes a series of convenient methods to interact with the Matlab simu-
lator QRSim. We present them briefly below and refer to the header file QRSimTCPClient.h
and to the QRSim API documentation for more details about the meaning of the param-
eters.

• bool connectTo(string ip, int port)

Connects to the Matlab server of QRSim listening at the specified ip address and
port.

• bool init(string task,vector<vector<double>>& X,vector<vector<double>>

& eX,double& tStep,int& nUAVs,bool realTime)

Send to the server the command to initialize the simulator by loading the specified
task file; the initial state is returned;

• bool reset()

Sends a reset command to the server, this will cause the simulator to set itself to
the initial state defined in the task.

• bool disconnect()

Disconnects from the server without turning off the simulator.

• bool quit()

Disconnects from the server and turns off the simulator.

• bool setState(const vector<vector<double>>& X)

Send to the server the command to set the UAV noiseless states to the values
provided. The state must be within the limits specified in the task.

• bool stepWP(double dt,const vector<vector<double>>& WP,

vector<vector<double>>& X,vector<vector<double>>& eX)

Step forward the simulator giving to each of the UAVs the specified waypoint as
input. The simulator uses a WaypointPID controller to reach the waypoint, once
the waypoint is achieved the UAV will remain stationary at the waypoint.

• bool stepVel(double dt, const vector<vector<double>>& vel,

vector<vector<double>>& X,vector<vector<double>>& eX)

Steps forward the simulator giving to each of the UAVs the specified velocity com-
mands as input. The simulator uses a VelocityPID in order to achieve and maintain
the velocity command specified.

19The data serialization is based on the Google protocol buffers library, so writing a client for any of
the languages supported by protocol buffer is pretty straightforward.
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• bool stepCtrl(double dt, const vector<vector<double>>& ctrl,

vector<vector<double>>& X,vector<vector<double>>& eX)

Steps forward the simulator giving to each of the UAVs the specified control com-
mands as input. The input is expressed in terms of angles and throttle commands
so it is directly passed to the platforms.

3.6.2 Server

The server code20 is constituted by the Matlab function QRSimTCPServer.m which exe-
cutes the incoming commands in the quadrotor simulator and the Java class QRSimTCPServer.java
which manages the TCP connection and the data serialization.

In general a user of the client library does not need to modify the server code, but
this needs to be compiled21 and installed (see section 3.6.3 and 3.6.3) on the machine
that will run the quadrotor simulation.

3.6.3 Compilation and Installation

The current version of the TCP interface only supports Linux22, in the following we as-
sume to be working on one of such systems.

Dependencies:
The C++ client uses Google protocol buffers23 for data serialization and CMake24

to manage the build process, so both of these tools needs to be available in your Linux
machine. On Ubuntu 12.04 these can be installed as follows25:

$ sudo apt-get install cmake

$ sudo apt-get install libprotoc-dev libprotobuf7 libprotobuf-lite7

$ sudo apt-get install libprotobuf-java

Compilation:
To compile the server and client code cd into qrsim/tcp-linux/build26 and run:

$ cmake ..

$ make

all should compile cleanly.
CMake is configured to compile and install only the C++ client if Java is not installed

in your machine. Note that this is a legitimate scenario since you might be interested in
connecting to a remote server which takes care of running QRSim.

20Under the directory qrsim/tcp-linux/.
21Google protocol buffer serialization has strong dependencies on the specific version of the protocol

buffer library so shipping a pre-compiled server library is not a viable option.
22Currently we only tested the code on Ubuntu 10.04LTS and Ubuntu 12.04LTS, but (assuming that

all the dependencies are satisfied) the code should compile in any other recent Linux distribution.
23https://developers.google.com/protocol-buffers/
24http://www.cmake.org/
25On a different distro the protocol buffer library might have a different name.
26If the directory build does not exist, create it.
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Installation:
Installing27 the library is nothing different from any usual Linux library compiled from

source:

$ sudo make install

3.6.4 Using the Client Library in your C++ code

Now that the client library is compiled and installed in your system, using it in your
custom C++ code is straightforward. As you commonly do with other shared library
installed in your system:

• include the file QRSimTCPClient.h in you source code to have access to the library
definitions and function prototypes

• link against libqrsim libqrsimtcpclient.so.

Two small examples of using the client library are provided with the files qrsim/tcp-linux
/src/exampleclient.cpp and qrsim/tcp-linux/src/testclient.cpp.

3.6.5 Running the Server

The server code runs in Matlab; reach the directory qrsim/tcp-linux/matlab from the
Matlab console and run:

>> QRSimTCPServer(10000)

where 10000 is the number of the TCP port you want to use. As the program starts you
should see the following message:

>> QRSimTCPServer(10000)

Waiting for client to connect to this host on port : 10000

indicating that the server is running correctly and is awaiting for connecting from the
client.

3.6.6 Testing the Interface

We provide a simple binary to test the TCP interface, after the compilation this should
be present in the directory qrsim/tcp-linux/bin. Once the server is up and running
you can run the client as follows:

$ testclient 127.0.0.1 10000

where 127.0.0.1 and 10000 are the IP address and TCP port of the server. If the tests
run successfully you should obtain the following output:

27The library is installed in /usr/local/lib and the header files in
/usr/local/include/qrsimtcpclient/.
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$ ./testclient 127.0.0.1 10000

QRSIM init test[PASSED]

QRSIM reset test [PASSED]

QRSIM stepWP test [PASSED]

QRSIM stepCtrl test [PASSED]

QRSIM stepVel test [PASSED]

QRSIM disconnect test [PASSED]

QRSIM quit test [PASSED]

4 Scenarios

This section describes the use of QRSim to implement three types of scenarios devised
to develop and test learning and control algorithm. The three scenarios are explicitly
chosen to expose different types of challenges that occur in the domain of multi-platform
aerial robotics so to provide a variety of opportunities for investigation.

For each of the three scenarios; we give a formal description of the scenario in terms
of its setup, its objective, and its variations as well as handy code examples.

4.1 Scenario 1: Cats and Mouse Game

The first of the scenarios is designed to focus primarily on the challenges encountered in
the coordinated control of multiple UAVs; the associated problems of sensing and state
estimation are somewhat simplified by the choice of task, environment and platform
sensors.

4.1.1 Description

The task to be accomplished in this scenario is in the form of a team game in which
N helicopters (cats) have to surround and effectively trap (i.e. get close to) another
helicopter (mouse) at the end of the allotted time.

For simplicity the task is assumed to take place in an area devoided of obstacles
so that helicopters can fly freely. Getting in contact with the ground or another UAV
will however produce a collision. The platforms are equipped with noisy sensors so only
observation of the vehicle state are available. Depending on the circumstances wind and
other aerodynamic disturbances that affect the flight behaviour might be present in the
flying area.

Snapshots of the initial (t = 0) and terminal (t = T ) configurations from a typical
successful run are visible in figures 2(a) and 2(b) respectively.

In the next section we give a more formal description of the problem.

4.1.2 MDP

The system underlying the task is modelled as a discrete time, finite horizon MDP on a
continuous state space. The system runs from t = 0 to t = T with a time step equivalent
to 1s of simulated time28.

28The update rate is user-configurable with default value of 1Hz.
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(a) t = 0 (b) t = T

Figure 2: Typical successful run: start(a) and end(b) configurations.

State: The state st = (x1t , ..., x
N
t , x

m
t ) at time t comprises of the state vectors of all

the cats (x1, ..., xN) and of the mouse (xm) helicopters. Each platform state contains in
turn the position ([px, py, pz]

ᵀ), velocity ([u, v, w]ᵀ), orientation ([φ, θ, ψ]ᵀ) and rotational
velocity ([p, q, r]ᵀ) of the platform:

x = [px, py, pz, φ, θ, ψ, u, v, w, p, q, r] ᵀ . (1)

All of these are continuous variables (see section 4.1.4 for more details).
The environment is itself three dimensional although we will see (section 4.1.2) that

the helicopters are assumed to fly at a fixed altitude.

Initial State: At the beginning of the task the mouse is placed at the origin of the
flight space29 and the cats are positioned randomly around the mouse.

The initial positions of cats are generated as: pix
piy
piz


0

=

 pmx
pmy
0

+

 di cos(αi)
di sin(αi)
−hfix

 i ∈ 1..N

where αi ∼ U(0, 2π), di ∼ U(Dm, DM) and U(a, b) indicates a uniform distribution over
the interval [a, b]. The minimum and maximum distance from the mouse Dm, DM and
the altitude hfix are user-configurable. An additional parameter Dc2c allows to define a
minimum distance between any two cats; this prevent the occurrence of an initial state
in which two cats are too close.

At t = 0 all the helicopters are stationary (i.e. their velocities are zero).

Actions: A real quadrotor of the type considered in our task generally presents four
continuous control inputs (i.e. pitch, roll, yaw angles and throttle) which needs to be
updated at a rate of 50Hz. Even with a moderately long time horizon the control space
becomes rather large.

29Without loss of generality since the control problem depends on the relative positions of mouse and
cats as long as the flying area is sufficiently large.
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To limit the space of control inputs, in our setup each UAV is equipped with a closed
loop PID controller that accepts 2D linear velocity commands ait = [vix, v

i
y]

ᵀ (in global
coordinates) and combines them with the estimated platform velocity to produce the
necessary attitude and throttle commands for the platform. The PID accepts commanded
velocity at a rate of 1Hz and provides the platform controls at 50Hz. To additionally
reduce the control space the PID takes also care of maintaining a constant altitude and
heading30.

The reduced action space at at time t comprises of the 2D linear velocity commands
for each of the cats helicopters:

at = (a1t , ..., a
N
t ). (2)

Dynamics: The task has a Markovian transition dynamics defined by P (st+1|st, at)
which denotes the conditional density of state s at time t+ 1 given state-action (st, at) =
(s, a) at time t.

In the case of the cats helicopters the transition dynamics is defined by the combi-
nation of PID velocity controllers, platforms dynamics, sensor and wind dynamics (since
these in turn effect the quadrotor) all of which are part of the QRSim simulator31.

For the mouse helicopter the transition dynamics is not only based on the platform
dynamics but also on the way the mouse moves in response to the cats.

As the task starts the mouse helicopter tries to escape the cats by moving at a constant
(max) speed32 and choosing a direction that prioritize escaping from the closer cats. In
specific the 2D velocity action for the mouse at time t is computed as:

amt = VM
vt
‖vt‖ where vt =

∑N
i=1

 pix
piy


t

−

 pmx
pmy


t∥∥∥∥∥∥

 pix
piy


t

−

 pmx
pmy


t

∥∥∥∥∥∥
2 (3)

and VM is the (user-configurable) maximum speed that the mouse can achieve.
Different control strategies could be considered for the mouse; in practice the one

considered in equation 3 is both simple and has shown to be sufficient to provide for a
challenging task.

Observations The helicopter state xit is observed directly although depending on the
specific task variation (see Section 4.1.3) the state variables might be affected by stochas-
tic noise. For more details about the noise models used by QRSim we refer the reader to
section 5.

Reward: The cats are successful if they are able to trap the mouse at the end of the
task; a meaningful final reward can be defined as the sum of the squared (2D) distances33

30The use of a PID controller in addition to reducing the number of control inputs makes the task
closer to what is possible to implement and test using real quadrotors.

31We refer to the QRSim manual for details.
32While the control law that governs the quadrotor attempts to maintain a fix maximum speed, in

practice the true speed will not be constant due to sensor noise wind disturbance and dynamic effects.
33d2D(xiT , x

m
T ) = ‖[pix, piy]ᵀT − [pmx , p

m
y ]ᵀT ‖.
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between the cats and the mouse at time T :

rT = −
N∑
i=1

d2D(xiT , x
m
T )2.

A large negative reward34 is returned if any of the helicopters (including the mouse) goes
outside of the flying area or if any collision happens during the task.

4.1.3 Task Variations

The difficulty of the considered control problem depends on the level of sensor noise and
wind disturbance; so we define three versions of the task with increasing level of realism
(and consequently of difficulty):

• 1A noiseless: the dynamics of the quadrotors is deterministic and the state re-
turned is the true platform state;

• 1B noisy: the dynamics of the quadrotors is stochastic and the state returned is a
noisy estimate of the platform state (i.e. with additional correlated noise);

• 1C noisy and windy: the dynamics of the quadrotors is stochastic and affected by
wind disturbances (following a wind model), the state returned is a noisy estimate
of the platform state (i.e. with additional correlated noise).

4.1.4 Simulation Code

The cat and mouse scenario can be easily implemented on top of QRSim by means of
dedicated task classes (see section 2.4). In specific we make available one task class for
each of the three scenario variations just introduced:

• 1A: TaskCatsMouseNoiseless.m,

• 1B : TaskCatsMouseNoisy.m,

• 1C : TaskCatsMouseNoisyAndWindy.m.

Commenting the code in details is beyond the scope of this note but it is useful to
briefly outline which task methods are responsible for handling the various task specific
components:

• init(): defines all the platforms and sensor parameters;

• reset(): defines the UAVs starting condition;

• step(U): defines the mouse evasion strategy and uses the PID controllers to trans-
form velocity commands into angle command to the helicopters;

• reward(): defines the task reward.
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Listing 7: main catsmouse.m

1 qrsim = QRSim ( ) ;
2
3 % load ta s k parameters and do housekeep ing
4 s t a t e = qrsim . i n i t ( ’ TaskCatsMouseNoisyAndWindy ’ ) ;
5
6 U = zeros (2 , s t a t e . task . Nc ) ;
7
8 % run the scenar io and at every time s t ep genera te a con t r o l
9 % input f o r each o f the uavs

10 for i =1: s t a t e . task . durat ionInSteps ,
11
12 % ge t the mouse po s i t i o n ( note id s t a t e . t a s k .Nc+1)
13 mousePos = s t a t e . p la t fo rms { s t a t e . task . Nc+1}.getEX ( 1 : 2 ) ;
14
15 % quick and easy way o f computing v e l o c i t y c on t r o l s f o r each ca t
16 for j =1: s t a t e . task . Nc ,
17 c o l l i s i o n D i s t a n c e = s t a t e . p la t fo rms { j } . g e t C o l l i s i o n D i s t a n c e ( ) ;
18
19 % vec to r to the mouse
20 u = mousePos − s t a t e . p la t fo rms { j } . getEX ( 1 : 2 ) ;
21
22 % add a weighted v e l o c i t y (” p r e d i c t ” where the mouse w i l l be )
23 u = u+(norm(u )/2)∗ s t a t e . p la t fo rms { s t a t e . task . Nc+1}.getEX ( 1 8 : 1 9 ) ;
24
25 % keep away from other ca t s i f c l o s e r than 2∗ c o l l i s i o nD i s t a n c e
26 for k = 1 : s t a t e . task . Nc ,
27 i f ( s t a t e . p la t fo rms {k } . i s V a l i d ( ) )
28 d = s t a t e . p la t fo rms { j } . getEX ( 1 : 2 )
29 − s t a t e . p la t fo rms {k } . getEX ( 1 : 2 ) ;
30 i f ( ( k˜=j )&&(norm(d)<2∗ c o l l i s i o n D i s t a n c e ) )
31 u = u+(1/(norm(d)− c o l l i s i o n D i s t a n c e ( ) ) ) ∗ ( d/norm(d ) ) ;
32 end
33 end
34 end
35
36 % sca l e by the max a l l owed v e l o c i t y
37 U( : , j ) = s t a t e . task . velPIDs{ j } . maxv∗(u/norm(u ) ) ;
38 end
39
40 % step s imu la tor
41 qrsim . s tep (U) ;
42 end
43
44 % ge t f i n a l reward
45 fpr intf ( ’ f i n a l reward : %f \n ’ , qrsim . reward ( ) ) ;
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Listing 7 (file main catsmouse.m) shows the set of steps that are necessary to run a
scenario task.

After the desired task is initialized (line 4), a basic for loop is executed for the number
of time steps specified by the task. Within the loop the 2D velocity control is computed
for each helicopter and passed to the corresponding PID (line 37). In our listing we show
a simple (and suboptimal) scheme in which the velocity direction of each cat is chosen
as a combination of a component directly towards the future mouse position mouse (line
20-23) and a component that keeps the UAV away from neighbouring cats (line 26-33).
The helicopter control inputs produced by the PID controllers are then used to step the
simulator (line 41). Finally after the execution of the task is concluded, the final reward
for the task can be retrieved (line 45).

We remind the reader that within the simulator the helicopter state xit is denoted as
eX:

eX = [p̃x, p̃y, p̃z, φ̃, θ̃, ψ̃, 0, 0, 0, p̃, q̃, r̃, 0, ãx, ãy, ãz, h, ṗx, ṗy, ḣ]ᵀ

while the actions ait are denoted as controls u:

u = [vx, vy]
ᵀ

with the variables defined in section 5.1.
The task, the configurations and the example main files are in the directory scenar-

ios/catsmouse within the QRSim simulator.

4.2 Scenario 2: Search and Rescue

The second scenario is designed explicitly to expose the complex interplay between sensing
and acting typical in autonomous robotics task. To solve the task the agent/s has to
perform inference about the state of the environment given some observations and take
actions based on its belief.

4.2.1 Description

The task to be accomplished in this scenario is in the form of a wilderness search and
rescue mission; several targets (people) are lost/injured on the ground in a landscape and
need to be located and rescued.

In addition to its navigation sensors each helicopter agent taking part in the search
is equipped with a camera/classification module that allows it to detect the presence of
targets in its field of view. Rather than raw images the camera module provides higher-
level data in the form of log likelihood ratios for the current observation conditioned on
the presence or absence of a target. The quality of detection depends upon the ground
type and the geometry between helicopter and ground (e.g. the distance).

The search area is limited but its extent is so that a trivial lawn mower pattern of
search will not allow covering all the area in the allotted time. The landscape has different
types of terrain; persons are more likely to be present on some class of terrain than others.
The persons are assumed to not move during the task.

34The default value of the negative reward is −1000 but it can be configured by the user.
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Figure 3: Search and rescue run with three helicopters; note the different terrain types
(denoted by different colors) and the persons (red dots). The insert shows the camera
observation from UAV 1 that happens to be over a person.

Additionally we assume that the flying area is free of obstacles so that the UAVs can
move freely in the 3D space. Getting in contact with the ground or another UAV will
however produce a collision.

A snapshot from a typical run is shown in figure 3 along with an example of the
observation returned by the camera/classifier model.

4.2.2 MDP

The system underlying the task is modelled as a discrete time, finite horizon MDP on a
continuous state space. The system runs from t = 0 to t = T with a time step equivalent
to 1s of simulated time35.

States: The state st = (x1t , ..., x
N
t , b

1
t , ..., b

P
t ) at time t comprises the helicopters state

vectors xit and the location of the P targets bjt .
Each platform state contains in turn the position ([px, py, pz]

ᵀ), velocity ([u, v, w]ᵀ),
orientation ([φ, θ, ψ]ᵀ) and rotational velocity ([p, q, r]ᵀ) of the platform:

x = [px, py, pz, φ, θ, ψ, u, v, w, p, q, r]
ᵀ. (4)

The environment is itself three dimensional and the helicopter can freely move in three
dimensions.

The person’s location is expressed in terms of its coordinate w.r.t. the global reference
frame bj = [pjx, p

j
y, 0]ᵀ; the person’s z coordinate is zero since we assume that the ground

is flat and that the targets are located on the ground.

35The update rate is user-configurable with default value of 1Hz.
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Initial State: At the beginning of the task a new terrain map is generated based on
the number of terrain classes and split between class types specified by the user36. The
extent of the flying area is scaled accordingly to the number of platforms and time horizon
in order to ensure that the task is nontrivial.

Subsequently a number of persons is randomly placed in the search area. The user
can specify the total number of persons as well as control where persons are placed by
specifying the probability of a target to be located on a specific terrain class37.

Finally the helicopters are located randomly (with uniform probability) around the
flying area at the nominal flight height38.

Actions: At each time step the agent specifies an action ait for each of the UAVs taking
part in the task; the action is expressed in terms of a 3D velocity vector in global NED
coordinates:

ait = [vix, v
i
y, v

i
z]

ᵀ
t i ∈ [1..N ]. (5)

Similarly to what explained for in section 4.1.2 the actions are nothing more than set
points to a PID controller that attempts to fly the UAV at the requested velocity. Due
to delays and disturbances mismatches between the commanded and the actual velocity
of the UAV have to be expected.

Dynamics: For the UAVs the transition dynamics is defined by the combination of PID
velocity controllers, platforms dynamics, sensor and wind dynamics (since these in turn
effect the quadrotor) all of which are specified by the QRSim simulator. Such transition
dynamics are Markovian and defined by P (xt+1|xt, at) which denotes the conditional
density of state x at t+ 1 given (xt, at) = (x, a) at time t. The dynamics of the UAVs is
independent of the targets bjt .

Targets bj are stationary unless a helicopter hovers (i.e. its speed is low) sufficiently
close to it, in which case the target is considered rescued and removed from the environ-
ment. More formally:

if ∃ i, j : d3D
(
xit, b

j
t

)
< δ ∧ ‖ [ui, vi, wi]ᵀt ‖< ε

⇒ P = P − 1 i ∈ {1, ..., N}, j ∈ {1, ..., P} (6)

where d3D is the standard Euclidean distance in three dimensions39 and (ε, δ) are user
specified thresholds40.

Observations The helicopter state xt is observed directly although depending on the
specific task variation (see Section 4.2.3) the state variables might be affected by stochas-
tic noise.

36The user specifies what percentage of the total area belongs to each class.
37Each person’s location is generated independently.
38The initial altitude can be configured by the user but is set to a 25m default value.
39Defined as

d3D(xt, b
j
t ) =‖ bjt − [px, py, pz]ᵀt ‖ .

40The default values for the distance threshold and the speed threshold are δ = 5m and ε = 0.1m/s
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The position of the targets bjt is not known, but observations ot are provided by the
camera at each time step.

Following standard object detection techniques we assume that the incoming image
(at time t) is split into Mt windows {wkt }Mt

k=1 which are then analysed for targets41. Given
the current UAV pose xt and the fixed camera parameters the set of windows projects
on the ground to a set of M patches {gkt }Mt

k=1. More precisely this assumes that a map is
available and that the mapping

{gkt }Mt
k=1 7→ {w

k
t }Mt

k=1

is known, but does not have to be considered explicitly by the agent.
We assume that some form of person detection algorithm is run on each of the image

windows wkt . As a result it is possible to evaluate the probability that such image patch
was originated by a person (at the corresponding ground location gkt ) versus the proba-
bility that wkt was originated by clear ground at location gkt ; what is commonly called a
likelihood ratio.

To generate likelihood ratios we use a model learned from the scores obtained by
running an off-the-shelf person classifier on aerial images collected with the quadrotor
UAV in use at UCL. We refer to section 5.8 for more details about such model.

The observation ot is simply the collection of the log likelihood ratios obtained for
each of the image windows wkt (and therefore also for the corresponding ground patches
gkt ):

ot =

{
log

(
Pr(image at time t | target in gkt , UAV at xt)

Pr(image at time t | no target in gkt , UAV at xt)

)}Mt

k=1

.

An example of the observation returned by our simulated scenario is visible in the
insert of figure 3. A higher value of the ratio (red colour) is noticeable for the ground
patches that are at the person location; also note how the patches are conveniently
expressed in ground coordinates.

Reward: The reward rt for the task is designed to prize the UAVs for quickly rescuing
targets. In this spirit rt at time t is defined to be 1 when a helicopter hovers sufficiently
close to a target and a small negative value otherwise. More formally:

rt =

{
1 if ∃ i, j : d3D

(
xit, b

j
t

)
< δ ∧ ‖ [u, v, w]ᵀt ‖< ε i ∈ {1, ..., N}, j ∈ {1, ..., P}

− 1
T

otherwise

(7)

where T is the task duration T and ε, δ are respectively the distance and velocity thresh-
olds that define a person as rescued (see section 4.2.2). A large negative reward42 is
returned if the helicopter goes outside of the flying area or if any collision happens during
the task.

41The window size is informed by the current altitude and an assumed fixed size for the person.
42The default value of the negative reward is −1000 but it can be configured by the user.
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4.2.3 Task Variations

The difficulty of solving the task depends on the number of platforms that are employed
as well as on the level of sensor noise and wind disturbance; we provide four versions of
the task with increasing level of difficulty:

• 2A single helicopter noiseless: only one helicopter is used for the search, its dynamic
is deterministic and the state returned is the true platform state;

• 2B single helicopter noisy: only one helicopter is used for the search, its dynamics
is stochastic and the state returned is a noisy estimate of the platform state (i.e.
with additional correlated noise);

• 2C multiple helicopters noiseless: several helicopters are used for the search, their
dynamics is deterministic and the state returned is the true platform state;

• 2D multiple helicopters noisy and windy: several helicopters are used for the search,
their dynamics is stochastic and affected by wind disturbances (following a wind
model), the state returned is a noisy estimate of the platform state (i.e. with
additional correlated noise).

4.2.4 Simulation Code

A simulated version of each of the variations of this scenario is made available in the form
of a task class that can be readily used within the QRSim helicopter simulator. More
specifically the four task variations presented in section 4.2.3 are named:

• 2A: TaskSearchRescueSingleNoiseless.m,

• 2B : TaskSearchRescueSingleNoisy.m,

• 2C : TaskSearchRescueMultipleNoiseless.m

• 2D : TaskSearchRescueMultipleNoisyAndWindy.m.

Commenting the code in details is beyond the scope of this node but it is useful to
briefly outline which task methods are responsible for handling the various task specific
components:

• init(): defines all the platforms, sensor and environment parameters;

• reset(): defines the task starting condition for UAVs and persons;

• step(U): uses the PID controllers to transform velocity commands into angle com-
mand to the helicopters, checks if a target was located and removes it;

• reward(): returns the reward at the current time step;

• getNumberOfPersons(): returns the number of persons present at the beginning
of the task.
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Listing 8: main searchrescue.m

1 % crea t e s imu la tor o b j e c t
2 qrsim = QRSim ( ) ;
3
4 % load ta s k parameters and do housekeep ing
5 s t a t e = qrsim . i n i t ( ’ TaskSearchRescueS ing l eNo i se l e s s ’ ) ;
6
7 % crea t e a 3 x h e l i c o p t e r s matrix o f c on t r o l i npu t s column i
8 % w i l l conta in the 3D NED v e l o c i t y [ vx ; vy ; vz ] f o r h e l i c o p t e r i
9 U = zeros (3 , s t a t e . task .numUAVs) ;

10
11 % number o f persons to l o c a t e in t h i s t a s k
12 np = s t a t e . task . getNumberOfPersons ( ) ;
13
14 % run the scenar io and at every time s t ep genera te a con t r o l
15 % input f o r each o f the uavs
16 for i =1: s t a t e . task . durat ionInSteps ,
17 % random search p o l i c y in which the h e l i c o p t e r ( s ) moves around
18 % at a f i x e d v e l o c i t y changing d i r e c t i o n every once in a wh i l e
19 i f (rem( i −1,10)==0)
20 for j =1: s t a t e . task .numUAVs,
21 i f ( s t a t e . p la t fo rms { j } . i s V a l i d ( ) )
22 % random v e l o c i t y d i r e c t i o n
23 u ( : , j ) = rand ( 2 , 1 ) − [ 0 . 5 ; 0 . 5 ] ;
24 % f i x e d v e l o c i t y 0 .5 t imes max a l l owed v e l o c i t y
25 U( : , j ) = [ 0 . 5 ∗ s t a t e . task . velPIDs{ j } . maxv ∗ . . .
26 (u ( : , j )/norm(u ( : , j ) ) ) ; 0 ] ;
27 % i f the uav i s go ing as t ray we po in t i t back to the cen ter
28 p = s t a t e . p la t fo rms { j } . getEX ( 1 : 2 ) ;
29 i f (norm(p)>100)
30 U( : , j ) = [−0.8∗ s t a t e . task . velPIDs{ j } . maxv∗p/norm(p ) ; 0 ] ;
31 end
32 end
33 end
34 end
35 % step s imu la tor
36 qrsim . s tep (U) ;
37
38 % camera measurements , a s imple s t r u c t u r e wi th f i e l d s :
39 % l l k d log− l i k e l i h o o d d i f f e r e n c e f o r each ground patch
40 % wg l i s t o f corner po in t s f o r the ground patches
41 % gridDims dimensions o f the g r i d o f measurements
42 for j =1: s t a t e . task .numUAVs,
43 m = s t a t e . p la t fo rms { j } . getCameraOutput ( ) ;
44 end
45 % reward (1 as soon as we hover ing c l o s e enough to a person )
46 r = qrsim . reward ( ) ;
47 end
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We also provide the example file main searchrescue.m (listing 8) which briefly shows
how to initialize and run any of the search and rescue tasks. The layout of the code is
very similar to what we have seen for the cats and mouse scenarios; after a preliminary
initialization (lines 2 − 9), a for loop takes care of stepping the simulation (line 36) for
the predefined number of time steps. For simplicity in this example, the UAVs move in
the space at a fix velocity changing their direction randomly every 10 time steps (lines
19 − 34). For each UAV the camera measurement can be retrieved after stepping the
simulator with a new action (line 43). In a more interesting policy than the random one
we are showing, an agent would make use of this new observation (and of the previous)
to decide its next action. Lastly line 46 shows how to retrieve the reward at the current
time step.

In some situations it might be useful to know the total number of targets present in
the environment, line 12 shows how to do that using the getNumberOfPersons() method.

We remind the reader that within the simulator the helicopter state xit is denoted as
eX:

eX = [p̃x, p̃y, p̃z, φ̃, θ̃, ψ̃, 0, 0, 0, p̃, q̃, r̃, 0, ãx, ãy, ãz, h, ṗx, ṗy, ḣ]ᵀ

while the actions ait are denoted as controls u:

u = [vx, vy, vz]
ᵀ

with the variables defined in section 5.1.
The task, the configurations and the example main files are in the directory scenar-

ios/searchrescue within the QRSim simulator.

4.3 Scenario 3: Plume Modelling

In the third and last scenario we design tasks in which sensing and estimation of the
target environment play a crucial role. In specific the actions of the agent are aimed at
generating reliable predictions about the flying area.

4.3.1 Description

In this scenario we envisage the situation in which a plume is dispersed in the flying area
and we are interested in using one or more UAVs to estimate its concentration43.

Depending on the task settings (see section 4.3.3) one or more sources might be present
in the environment and the plume distribution might evolve over time. Any wind affects
both the UAV flight behaviour and the plume distribution. Each UAV is equipped with
noisy navigation sensors that allow observing its location, attitude and velocity and also
with a sensor that produces noisy observation of the plume concentration.

The plume concentration follows a known model but with unknown parameter values;
the task objective is to provide a concentration estimate ĉT at some pre-specified time
T . For this scenario we selected three main classes of concentration models; they were
chosen for being widely adopted ([24]) while remaining relatively simple:

43Hereby we simply refer to ”concentration”, in a real environment this would be a property of the
plume that can be realistically measured e.g. CO concentration.
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• Gaussian: when no wind is present in the flying area and the source emits plume
with a constant rate, the plume disperses around the source and its concentration
can be described by a three dimensional Gaussian (see section 5.9.1). Since the
source emits at constant rate the resulting dispersion pattern is static, however to
make the model not completely trivial we assume that the dispersion is not nec-
essarily isotropic. Figure 4(a) depicts an example of type of concentration pattern
produced by this model.

• Gaussian Dispersion: when wind is present in the flying area, and the source emits
plume with a constant rate, the plume is blown downwind and disperses as it gets
farther from the source. The concentration takes a cone like shape which expands
as the distance from the source increases (see section 5.9.2). In the case in which
the mean wind velocity and direction do not change with time44, the resulting
concentration is also time invariant. An example of the resulting dispersion is
visible in Figure 4(b).

• Gaussian Puff Dispersion when wind is present in the flying area but the source
emits plume for short time intervals (i.e. short puffs), each puff travels downwind
expanding as it gets farther from the source. At every time instant the resulting
concentration is the superposition of the many puffs (see section 5.9.2); the concen-
tration is therefore time variant. Figure 4(c) shows an example of such dispersion
model.

For each type of dispersion model the case in which more than one source is present in the
environment can be considered simply by superimposing the effects of several individual
sources; superposition gives origin to substantially more complex concentration patterns.

As in the previous tasks we assume that the flying area is free of obstacles so that the
UAVs can move freely in the 3D space. Getting in contact with the ground or another
UAV will however produce a collision.

Note: Since the dispersion models are known, one possible way to solve the tasks is to
estimate the model parameters (or a distribution over them). While this is an appropriate
solution we emphasize that the agent is not required to solve the task in this way and so
model agnostic way of producing concentration estimations are equally appropriate.

4.3.2 MDP

The system underlying the task is modelled as a discrete time Markov process on a
continuous state space. The system is updated at a frequency of 1Hz45 and the task has
a duration T .

States: the state st = (x1t , .., x
N
t , ct) at time t comprises the helicopter/s state xit and the

plume concentration ct. Each platform state contains in turn the position ([px, py, pz]
ᵀ),

velocity ([u, v, w]ᵀ), orientation ([φ, θ, ψ]ᵀ) and rotational velocity ([p, q, r]ᵀ) of the plat-
form:

x = [px, py, pz, φ, θ, ψ, u, v, w, p, q, r]
ᵀ. (8)

44This will be the case in our settings.
45The update rate is user-configurable with default value of 1Hz.
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(a) Single source Gaussian concentration. (b) Multiple sources Gaussian dispersion.

(c) Single source Gaussian puff dispersion.

Figure 4: Plume models; darker markers indicate lower concentration.

The environment is itself three dimensional and the helicopter can freely move in three
dimensions.

The plume concentration is defined at every 3D location over the whole flight volume.

Initial State: At the beginning of the task a new set of source locations within the
flying area is created with their associated emission rates so that given the current wind,
the complete plume distribution can be computed. The user can control the number,
height and emission rate of sources through task parameters.

At t = 0 the helicopters are located randomly (with uniform probability) in the fly
area at the starting flight height46.

Actions: At each time step the agent specifies an action ait for each of the UAV taking
part in the task; the action is expressed in terms of a 3D velocity vector in global NED
coordinates:

ait = [vix, v
i
y, v

i
z]

ᵀ
t i ∈ [1..N ]. (9)

46The initial altitude can be configured by the user but is set to a 25m default value.
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The actions are nothing more than set points to a PID controller that attempts to fly
the UAV at the requested velocity. Due to delays and disturbances mismatches between
the commanded and the actual velocity of the UAV have to be expected.

Dynamics: For the UAVs the transition dynamics is defined by the combination of PID
velocity controllers, platforms dynamics, sensor and wind dynamics (since these in turn
effect the quadrotor) all of which are specified by the QRSim simulator. Such transition
dynamics are Markovian and defined by P (xt+1|xt, at) which denotes the conditional
density of state x at t+ 1 given (xt, at) = (x, a) at time t.

In the case of non puff-like dispersion models the plume distribution is stationary and
therefore does not evolve during the task. For plume distributions defined by the Gaussian
puff dispersion model puffs are emitted at random intervals drawn from an exponential
distribution. Each puff travels downwind at the mean wind speed and simultaneously
expands as specified by equations 58 and 61.

For simplicity any effect that a UAV might have on the plume concentration is ne-
glected and the evolution in time of the plume is assumed to be independent of the
helicopter actions and state P (ct+1|ct, xt, at) = P (ct+1|ct).

Observations: The helicopter state xt is observed directly although depending on the
specific task variation (see Section 4.3.3) the state variables might be affected by stochas-
tic noise.

The plume concentration ct is not known; at each time step a noisy observations ot
at the position in which the helicopter is located is returned by a concentration sensor.
At present the sensor reading are corrupted by additive Gaussian noise.

Reward: The task objective is to provide a concentration estimate ĉT at some pre-
specified time T (i.e. at the end of the task).

For the tasks in which the concentration is stationary (i.e. tasks 3A, 3B, 3C and 3D),
the agent must provide a set of concentration estimates {ĉjT}Mj=1 at a series of M spatial

locations specified at the beginning of the task. Given the {ĉjT}Mj=1 the task reward is
simply computed as (minus) the square error between the true concentrations and the
estimates provided by the agent:

rT = −
M∑
j=1

|cjT − ĉ
j
T |

2.

For tasks in which the concentration evolves over time (i.e. tasks 3E, 3F and 3G),
the concentration at each location ĉjT can be thought of as a random variable with an
associated probability distribution Pr(ĉjT ). The better the agent is at approximating
such distribution, the higher should be its reward. A simple way to compute the reward
is in the form of (minus) the KL divergence between true concentration distribution
Pr(c1T , .., c

M
T ) and the estimate provided by the agent47 Pr(ĉ1T , .., ĉ

M
T ):

rT = −KL(Pr(c1T , .., c
M
T )‖Pr(ĉ1T , .., ĉ

M
T )).

47In practice in order to enable the empirical computation of the reward the agent will be asked to
return several samples of the concentration at each of the M locations specified by the task.
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4.3.3 Task Variations

The complexity of the estimation problem changes substantially depending on the type of
dispersion model followed by the plume, and on the number of helicopters used to tackle
the task hence we provide several version of the task:

• 3A single source static Gaussian concentration: only one helicopter is used for the
sampling, its dynamic is deterministic, the navigation sensors return the true plat-
form state, the plume concentration is static and has the form or a three dimensional
Gaussian centred at the source (see equation 55).

• 3B single source static Gaussian dispersion model: only one helicopter is used for
the sampling, its dynamics is stochastic and affected by wind disturbances (following
a wind model), the navigation sensors return a noisy estimate of the platform state
(i.e. with additional correlated noise) and the plume concentration is static and has
the form specified by what is commonly called a Gaussian dispersion model (see
equation 56).

• 3C multiple sources static Gaussian dispersion model: only one helicopter is used
for the sampling, its dynamics is stochastic and affected by wind disturbances (fol-
lowing a wind model), the navigation sensors return a noisy estimate of the platform
state (i.e. with additional correlated noise) and the plume concentration is static
and has the form specified by the superposition of several sources each of which
follows a Gaussian dispersion model (see equation 57).

• 3D multiple helicopters multiple sources static Gaussian dispersion model : as above
but multiple helicopters are used for the sampling.

• 3E single source time-varying Gaussian puff dispersion model: only one helicopter is
used for the sampling, its dynamics is stochastic and affected by wind disturbances
(following a wind model), the navigation sensors return a noisy estimate of the
platform state (i.e. with additional correlated noise) and the plume concentration
is time-varying and has the form specified by what is commonly called a Gaussian
puff dispersion model (see equation 58).

• 3F multiple sources time-varying Gaussian puff dispersion model: only one heli-
copter is used for the sampling, its dynamics is stochastic and affected by wind
disturbances (following a wind model), the navigation sensors return a noisy esti-
mate of the platform state (i.e. with additional correlated noise) and the plume
concentration is static and has the form specified by the superposition of several
sources each of which follows a Gaussian puff dispersion model (see equation 61).

• 3G multiple helicopters multiple sources time-varying Gaussian puff dispersion
model : as above but multiple helicopters are used for the sampling.

4.3.4 Simulation Code

As for the previous scenarios, we provide an implementation of a simulated version of
each of the scenario variations in the form of a task class that can be readily used within
the QRSim helicopter simulator. The seven variations of the scenario are named:
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• 3A: TaskPlumeSingleSourceGaussian.m,

• 3B : TaskPlumeSingleSourceGaussianDispersion.m,

• 3C : TaskPlumeMultiSourceGaussianDispersion.m,

• 3D : TaskPlumeMultiHeliMultiSourceGaussianDispersion.m,

• 3E : TaskPlumeSingleSourceGaussianPuffDispersion.m,

• 3F : TaskPlumeMultiSourceGaussianPuffDispersion.m,

• 3G : TaskPlumeMultiHeliMultiSourcePuffDispersion.m.

Commenting the code in details is beyond the scope of this note but it is useful to
briefly outline which task methods are responsible for handling the various task specific
components:

• init(): defines all the platforms, sensor and plume parameters;

• reset(): defines the task starting condition for UAVs and plume;

• step(U): uses the PID controllers to transform velocity commands into helicopter
controls;

• reward(): returns the final reward;

• getLocations(): returns the list of 3D locations at which the agent is expected to
return predictions;

• getSamplesPerLocation(): returns the number samples the agent needs to return
at each location, this will be larger than 1 only if the concentration is time variant
(i.e. for puff models);

• setSamples(samples): allows the agent to return the predictions at each of the
3D locations so that the task can compute a reward.

We provide the example file main plume.m (listing 9) which shows how to initialize
and run one of such tasks.

After the usual initializations (lines 1-7) we show how to retrieve the list of 3D loca-
tions at which the agents has to return predictions (line 10).

In the main loop (lines 16-40) for each simulation step we generate a velocity command
for each of the UAVs; in this example we follow a random search strategy that consist
in flying to a new direction every 10 time steps. After stepping the simulator (line 35)
the concentration measurement for the location at which the helicopters are flying can
be retrieved (line 38).

Finally after the task time is elapsed, we are required to provide the simulator with
the concentration estimates (line 45); in this case for simplicity we set those to randomly
generated values (line 43). At line 47 we obtain the reward associated with the provided
estimates.
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Listing 9: main plume.m

1 % crea t e s imu la tor o b j e c t and load ta s k parameters
2 qrsim = QRSim ( ) ;
3 s t a t e = qrsim . i n i t ( ’ TaskPlumeSingleSourceGauss ianDispers ion ’ ) ;
4 U = zeros (3 , s t a t e . task .numUAVs) ;
5
6 % a l l o c a t e up a matrix to s t o r e a l l the concen t ra t ion measurements
7 plumeMeas = zeros ( s t a t e . task .numUAVs, s t a t e . task . durat ionInSteps ) ;
8
9 % ge t the l i s t o f l o c a t i o n s the agent needs to re turn p r e d i c t i o n s at

10 p o s i t i o n s = s t a t e . task . ge tLocat i ons ( ) ;
11
12 % pred i c t i o n s to be re turned at each l oca t i on , >1 only f o r pu f f models
13 samplesPerLocat ion = s t a t e . task . getSamplesPerLocat ion ( ) ;
14
15 % run the scenar io and at every time s t ep genera te uav c on t r o l s
16 for i =1: s t a t e . task . durat ionInSteps ,
17 % random exp l o r a t i on p o l i c y in which the h e l i c o p t e r ( s ) moves around
18 % at a f i x e d v e l o c i t y changing d i r e c t i o n every once in a wh i l e
19 i f (rem( i −1,10)==0)
20 for j =1: s t a t e . task .numUAVs,
21 i f ( s t a t e . p la t fo rms { j } . i s V a l i d ( ) )
22 % random v e l o c i t y d i r e c t i o n s ca l e d by the max a l l owed v e l o c i t y
23 u ( : , j ) = rand ( 2 , 1 ) − [ 0 . 5 ; 0 . 5 ] ;
24 U( : , j ) = [ 0 . 5 ∗ s t a t e . task . velPIDs{ j } . maxv . . .
25 ∗(u ( : , j )/norm(u ( : , j ) ) ) ; 0 ] ;
26 % i f the uav i s go ing as t ray we po in t i t back to the cen ter
27 p = s t a t e . p la t fo rms { j } . getEX ( 1 : 2 ) ;
28 i f (norm(p)>100)
29 U( : , j ) = [−0.8∗ s t a t e . task . velPIDs{ j } . maxv∗p/norm(p ) ; 0 ] ;
30 end
31 end
32 end
33 end
34 % step s imu la tor
35 qrsim . s tep (U) ;
36 % ge t plume measurements
37 for j =1: s t a t e . task .numUAVs,
38 plumeMeas ( j , i )= s t a t e . p la t fo rms { j } . getPlumeSensorOutput ( ) ;
39 end
40 end
41 % matrix con ta in ing a l l the p r e d i c t i o n s made by the agent
42 % for the purpose o f i l l u s t r a t i o n we genera te those randomly
43 samples = randn( samplesPerLocation , s ize ( p o s i t i o n s , 2 ) ) ;
44 % pass the sample to the t a s k so t ha t a reward can be computed
45 s t a t e . task . setSamples ( samples ) ;
46 % ge t f i n a l reward ( note : t h i s works on ly a f t e r se tSamples ( ) ) .
47 r = qrsim . reward ( ) ;
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The task, the configurations and the example main files are in the directory scenar-

ios/plume within the QRSim simulator.
We remind the reader that within the simulator the helicopter state xit is denoted as

eX:
eX = [p̃x, p̃y, p̃z, φ̃, θ̃, ψ̃, 0, 0, 0, p̃, q̃, r̃, 0, ãx, ãy, ãz, h, ṗx, ṗy, ḣ]ᵀ

while the actions ait are denoted as controls u:

u = [vx, vy, vz]
ᵀ

with the variables defined in section 5.1.

5 Simulator Implementation Details

This section explains in detail the models used in QRSim in order to simulate the quadro-
tor dynamics, its sensors and the various elements of the environment.

5.1 Reference Frame and Symbols

For convenience we start by showing show the body frame of reference used in many of
the computation involving the helicopter dynamics (see figure 5).

The global frame (not shown in the figure) is defined as the local tangent plane to the
earth surface at the origin. By definition the body and global frame coincide when the
quadrotor is at coordinates (0, 0, 0) and its attitude is zero in all three angles.

Figure 5: Body NED frame of reference and state variables.
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For completeness we report a list of the various symbols that appear throughout this
note:

• True platform state

X = [px; py; pz;φ; θ;ψ;u; v;w; p; q; r;Fth]

• Estimated platform state

eX = [p̃x; p̃y; p̃z; φ̃; θ̃; ψ̃; 0; 0; 0; p̃; q̃; r̃; 0; ãx; ãy; ãz;h; ṗx; ṗy; ḣ]

• Platform controls

U = [upt;url;uth;uya;Vb]

t time s
T task duration s
st task state at time t
xit state vector of UAV i at time t
ait action input to UAV i at time t
N number of UAVs taking part in the task
bj target/person j state at time t
P number of person/targets in the search area
wkt window k in input image at time t
gkt ground patch k at time t
Mt number of windows in image frame at time t
ot observation at time t
ct plume concentration at time t
M number of locations for which the agent should provide estimates
ĉt estimated plume concentration at time t
rt reward at time t
px UAV true x position (NED coordinates) m
py UAV true y position (NED coordinates) m
p̃x UAV x position estimate from GPS (NED coordinates) m
p̃y UAV y position estimate from GPS (NED coordinates) m
p̃z UAV z position estimate from GPS (NED coordinates) m

φ̃ UAV roll attitude in Euler angles right-hand ZYX convention rad

θ̃ UAV pitch attitude in Euler angles right-hand ZYX convention rad

ψ̃ UAV yaw attitude in Euler angles right-hand ZYX convention rad
p̃ UAV rotational velocity about x body axis from gyro rad/s
q̃ UAV rotational velocity about y body axis from gyro rad/s
r̃ UAV rotational velocity about z body axis from gyro rad/s
ãx UAV linear acceleration in x body axis from accelerometer m/s2

ãy UAV linear acceleration in y body axis from accelerometer m/s2

ãz UAV linear acceleration in z body axis from accelerometer m/s2

h UAV altitude from altimeter NED m
ṗx UAV x velocity from GPS (NED coordinates) m/s
ṗy UAV y velocity from GPS (NED coordinates) m/s
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ḣ UAV altitude rate from altimeter NED m/s
vx UAV desired x velocity control (NED coordinates) m/s
vy UAV desired y velocity control (NED coordinates) m/s
vz UAV desired z velocity control (NED coordinates) m/s

5.2 Quadrotor Dynamic Model

Several dynamic models of quadrotor helicopters based on first principles have been pub-
lished in the literature ([6], [4], [11] to name a few); such examples consider the forces
and moments acting on the helicopter in order to obtain the rotational and translational
dynamics.

These types of models replicate only the “mechanics” and the aerodynamics of the
flying machine but do not include the action of the low level control system necessary
to stabilise the rotational dynamics. Since the manufacturer of our quadrotor does not
make public the design of the stabilization system, simulating it is not a straightforward
task.

Given that close loop flight control of the quadrotor is not our primary interest, for
the rotational dynamics we prefer to use an equivalent model that replicates directly the
combined effect of both the quadrotor and of its controller. We learn the parameter of
such a model directly from flight data in order to match as accurately as possible the
characteristics of our flight machine.

For the translational dynamics we use a more standard model that consider the forces
acting on the center of mass of the flight machine but we learn from data the relationship
between the throttle control input and the generated thrust force. This is known to be
very much dependent on the type of motor and propeller, learning it ensures we capture
the characteristics of our platform.

Rotational Dynamics
In the case of the pitch and roll motion the Pelican platform accepts as control input

the angles that the platform should maintain (upt and url respectively); our model needs
to map such controls into the rate of change of the corresponding rotational velocities
q and p. From flight tests data we deemed that a second order model can provide a
good representation of the dynamic response of the state variable θ and φ to changes in
control. It was also evident that the low level controller drives the propellers so to limit
the maximum rotational velocity (a common precaution that ensures to not exceed the
sensing and/or control envelope).

We encoded these findings in equations 10 and 11 where Kpq0, Kpq1 and Kpq2 are
constant factors that are obtained from flight data while pmax = qmax are derived from
the platform firmware settings.

ṗ =

{
Kpq1(Kpq0url − φ) + pKpq2 |p| < pmax
0 |p| ≥ pmax

(10)

q̇ =

{
Kpq1(Kpq0upt − φ) + qKpq2 |q| < qmax
0 |q| ≥ qmax

(11)

Perhaps quite obviously the same parameters are used for the pitch and roll dynamics
since the platform is symmetric.
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In the case of the yaw motion the control input to the pelican platform takes the for
of the desired yaw speed uya. Even in this case a second order model provides a good fit
to the flight data and leads to equation 12.

ṙ = Kr0uya + rKr1. (12)

Again the constants were obtained from flight data.
A Gaussian white noise component is added to each of the angular velocity derivatives

in order to account for those effects that are not captured by the model.

Translational Dynamics
In the case of the translational dynamics the first relationship to capture is the one

between the throttle control input (uth) and the thrust force (Fth) experienced by the
quadrotor. Through a series of static tests emerged that the relationship between throttle
and thrust can be represented by a second order polynomial:

FT = Cth0 + Cth1uth + Cth2u
2
th (13)

this is a typical result ([19],[11]) in accordance with basic lift theory which predicts a lift
proportional to the square of the blades speed. Full throttle tests also evidenced that the
maximum thrust is proportional to the current battery voltage (Vb) and decreases as the
battery depletes:

FM = Cvb0 + Cvb1Vb. (14)

As expected due to inertia and drag effects, dynamic tests showed that the thrust
cannot change instantaneously, but instead it changes at a constant rate48 τ1. Exception
to this are very slow speed ranges for which behaviour compatible with a first order
system is exhibited instead. Combining this dynamic behaviour with the maximum
thrust defined by the lowest between (13) and (14) we obtain:

Ḟth =

{
−τ1 max(FT , FM) < Fth
τ1 max(FT , FM) ≤ Fth.

(15)

Given Fth, the gravity force in body coordinates gb and the wind velocity in body
coordinates [uw, vw, ww], the resulting accelerations in body coordinates can be computed
as:

u̇ = −qw + rv + gbx +Kuv(u− uw) (16)

v̇ = −ru+ pw + gby +Kuv(v − vw) (17)

ẇ = −pv + qu+ gbz −
Fth
m

+Kw(w − ww). (18)

Where m is the mass of the quadrotor and the the terms Kuv(u − uw),Kuv(v − vw) and
Kw(w−ww) are the effects of the aerodynamic drag. The first two terms on the right hand
side of the equations are needed to take into account the fact that the linear velocities
u, v, w are expressed in a rotating frame.

48We believe that this is due to the speed control loop present in the electronic speed controllers
governing the motors.
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Equations (10)-(12) and (16)-(18) provide the state update equations which are nu-
merically integrated in order to simulate the time evolution of the state variables.

Similarly to the rotational dynamics even for the translational velocity derivatives we
consider an additive Gaussian white noise component in order to account for those effects
that are not captured by the model.

The interested reader can find the implementation of the model presented in this
section in the file pelicanODE.m.

The behaviour of real quadrotor platform depends on environmental conditions as
well as on the nature of its on-board sensors; the following sections explain in detail how
both sensors and environment are modelled in the simulator.

5.3 Barometric Altimeter

Pressure base altimeter constitutes a light weight and economical way of recovering the
altitude of a flying machine. Their precision can reach the order of decimetres making
them more accurate than a GPS receiver especially when coupled with other sensors.

The main drawback of a barometric altimeter is that the air pressure tends to change
slowly with time due to meteorological effects. Its noise process is therefore time cor-
related. Obviously the measured pressure is also affected by the local air turbulence
(produced both by wind and the propellers). Following [3] and [21] we model the altime-
ter measurements as follows:

h = −pz + bh + νhm (19)

ḃ = − 1

τb
b+ νhc (20)

where h is altimeter output, −pz is the true altitude, b is the bias noise and νhm is white
Gaussian measurement noise. b is modelled as a first order Gauss-Markov process with
time constant τb driven by the white Gaussian noise νhc . It is worth noting that −pz
is due to our choice of following the aeronautic convention and adopting a NED body
frame.

The interested reader can find the implementation of the model presented in this
section in the file AltimeterGM.m.

5.4 Orientation Estimator

The orientation of the flying machine is generally estimated on-board using primarily
the input from gyros accelerometers and magnetometers, but in some cases might also
include other sensors (i.e. the GPS and barometer). Since all these sensors are combined
using an estimator (e.g. a Kalman filter), designing a noise model for the orientation
measurement that correctly takes into account the estimation effects is all but trivial.
In our case matters are further complicated by the fact that the manufacturer does not
make available any clear information about the attitude estimator.

Pragmatically we decide to go for a much simpler noise model that attempts to capture
the main characteristic of the errors in the estimated attitude. Since the primary com-
ponent of the estimated attitude is the integration of the gyros readings, the orientation
noise tends to be correlated due to uncorrected gyro bias errors. Additional correlation
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might be introduced also during high acceleration manoeuvres due to the simplification
often adopted in the mechanization equation of the estimator process model. Errors
are mitigated by the use of acceleration and magnetometer measurements which allow
estimating and compensating for such biases.

To replicate such behaviour of reverting back to zero, we choose to model the noise on
each each of the three estimated angles a zero mean Ornstein–Uhlenbeck process. This
allows to replicate the desired time correlation of the attitude estimates while still being
a simple model. The resulting noise model is the following:

φ̃ = φ+ bφ (21)

θ̃ = θ + bθ (22)

ψ̃ = ψ + bψ (23)

ḃφ = −λφbφ + νbφ (24)

ḃθ = −λθbθ + νbθ (25)

ḃψ = −λψbψ + νbψ (26)

where λφ, λθ, λψ are mean reversion speeds and νbφ , νbθ , νbψ are white Gaussian noises.
The interested reader can find the implementation of the model presented in this

section in the file OrientationEstimatorGM.m.

5.5 Accelerometer and Gyroscope

Several authors have studied the types of errors that commonly affect accelerometers and
gyros ([23][13]) and very accurate, albeit complex, representation of such noise models
have been standardised [2]. For the type of high level tasks we consider acceleration and
rotational velocity measurements are of secondary importance. At this stage we prefer
to go for a simpler model that considers only the main white noise component of the
standardized model. The modular nature of the simulator will allow to easily upgrade to
a more complex noise model if this is deemed necessary.

For both accelerometer and gyros reading (respectively [ãx; ãy; ãz] and [p̃; q̃; r̃]) the
noise is considered additive:

p̃ = p+ νp (27)

q̃ = q + νq (28)

r̃ = r + νr (29)

ãx = ax + νx (30)

ãy = ay + νy (31)

ãz = az + νz (32)

where νp, νq, νr, νx, νy, νz are white Gaussian processes.
The interested reader can find the implementation of the model presented in this

section in the file AccelerometerG.m and GyroscopeG.m.

RN/13/08 39



The QRSim Quadrotors Simulator Renzo De Nardi

5.6 GPS

GPS is complex and errors arise from a wide variety of sources with differing charac-
teristics. The quality of the computed position depends on errors affecting the satellite
vehicles (sv from now on), the propagation of the GPS signal through the atmosphere,
the number and configuration of svs used to compute a solution and the receiver itself.

If instead of concentrating on a noise model at the level of computed receiver position,
we work at the level of the single pseudo-range measurement provided by each of the svs
our task is greatly simplified since accurate models of the typical pseudo-range errors are
available ([18], [7]). Given such measurements we will then need to compute the position
solution taking into account the receiver characteristics.

From an implementation perspective we split the GPS model into a GPSSpaceSeg-

mentGM (this is an environmentObject) which models the pseudo-range noise affecting
the svs, and a GPSreceiverG object that models the receiver present on each of the
quadrotors. Having a single GPSSpaceSegmentGM implies that the noise affecting the po-
sition measurement of quadrotors using the same satellites will be to a certain extent
correlated. This is exactly what happens in practice when quadrotor are flying in the
same geographical location and is one of the aspects that we necessarily want to capture
with our model.

Following [18] the pseudo-range measurements (ρ) can be written as:

ρ = r + δeph + δiono + δtropo − δclock + δmp + νrcvr, (33)

where:

• r, is the true range,

• δeph, is the satellite ephemeris error,

• δiono, is the ionosphere error,

• δtropo, is the troposphere error,

• δclock, is the receiver clock error,

• δmp, is the multipath error,

• νrcvr, is the receiver measurement noise.

The true range r is simply the distance between the current (simulated) position of
the receiver49 and the position of the satellite in question. The position the satellite is
obtained from a log of actual satellite positions (see parameter orbitfile in listing 2),
therefore as the simulation time progresses the position of the satellites changes as it
would in a real scenario.

As suggested in [18] we model the ephemeris, ionosphere, troposphere and multipath
errors as Gauss-Markov processes. These processes have an exponential autocorrelation
function with variance, σ2

s and time constant β; the receiver measurement noise term, is

49For simplicity we assume the position of the receiver coincides with the origin of the body frame of
reference.
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the accuracy with which the code can be tracked and is modelled as Gaussian white noise
(with variance σ2

r). A single pseudo-range measurement takes the form:

ρ = bpr + σrνr (34)

ḃpr = (e−βT − 1)bpr + σsνs, (35)

where νr and νs are unit variance Gaussian noise source and T is the time discretization
interval.

The missing part of the model is the simulation of the receiver, which is formed by
two main steps, defining which satellites are visible (i.e. which measurement can be used)
and computing the actual solution.

The number of satellites visible by a receiver depends on the location, the time of the
day, the antenna and the landscape surrounding the receiver (i.e. the obstacles). Since
it is usually difficult to tease apart the contribution of such effects we prefer to use data
from a representative flight test to establish what satellites are visible. At run time we
initialize each receiver with a potentially slightly different set of svs50

Given the set of svs associated to a receiver, for each of which we have a pseudo-range
measurement, simulating a new GPS position measurement is simply a matter of solving
a least squares problem.

The interested reader can find the implementation of the model presented in this
section in the files GPSSpaceSegmentGM.m and GPSreceiver.m.

5.7 Wind

The effects of wind and aerodynamic turbulence on a flying machine are notoriously
difficult to model and even when accurate techniques based on the physical processes
governing air flow are available (e.g. CFD) the level of computation involved tends to be
prohibitive.

An alternative approach is to use a model that does not have knowledge of the physics
governing turbulence but that reproduces only its statistical properties. According to
references [1] and [9] for low altitudes51 turbulence can be modelled as a stochastic process
defined by its velocity spectra. The turbulence field is assumed to be “frozen” in time and
space (i.e. time variations are statistically equivalent to distance variations in traversing
the turbulence field). This assumption implies that the turbulence-induced response
of the aircraft is result only of the motion of the aircraft relative to the turbulent field.
Under the “frozen field” assumption, the turbulence can be modelled as a one-dimensional
field that involves just the three orthogonal velocity components taken at a single point
(namely the aircraft centre of gravity).

For each component the PSD of the stochastic process is defined and the turbulence
can be generated using the corresponding time formulation. The von Karman and Dryden
spectrum are two of the most standard form of specifying the PSD of the turbulence, we
prefer the second (see equations 36) since, while more approximated, it is more easily
implemented computationally.

50The task parameter svs (see listing 2) defines the ids of the satellites that are potentially visible, a
random number of these defined by the platform parameter minmaxnumsv will be chosen and associated
with the receiver.

51We report here the form of the model valid for altitudes lower than 1000ft (304.8m).
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The Dryden spectrum takes the form:

φug(Ω) = σ2
u

2Lu
π

1

1 + (LuΩ)2
(36)

φvg(Ω) = σ2
v

2Lv
π

1 + 12(LvΩ)2

[1 + 4(LvΩ)2]2
(37)

φwg(Ω) = σ2
w

2Lw
π

1 + 12(LwΩ)2

[1 + 4(LwΩ)2]2
(38)

where Lu, Lv and Lw are the turbulence scale length and σu, σv and σw are their intensities.
Length scales and intensities depend on altitude and mean wind magnitude u20 as follows:

Lu = 2Lv = 2Lw =
h

(0.177 + 0.000823h)1.2
(39)

σw = 0.1u20 (40)
σu
σw

=
σu
σw

=
1

(0.177 + 0.000823h)0.4
. (41)

Roughly speaking equation (41) says that the RMS intensity of the turbulence increases
at lower altitude, while equation (39) express that to lower altitudes are associated shorter
length scales.

Following [1] in the time domain (36)-(38) can be implemented as discrete filters:

ug = (1− auT )ug +
√

2auTσuνnu (42)

vg = (1− avT )vg +
√

2avTσvνnv (43)

wg = (1− awT )wg +
√

2awTσwνnw (44)

where νnu , νnv and νnw are unit variance Gaussian noise source and T is the time dis-
cretization interval,

au =
V

Lu
(45)

av =
V

Lv
(46)

aw =
V

Lw
(47)

and V is the magnitude of the platform airspeed.
The turbulence model that we just presented provides a way of simulating time vary-

ing turbulences at the level of a single quadrotor, however it is often the case that a
predominant “mean” wind field is also present in the area and this affects all the plat-
forms.

To model this in addition to the turbulence model we also have a constant velocity
field52 which is identical for all the quadrotors.

It is well known ([1]) that even in the presence of a constant wind the airspeed depends
logarithmically on the distance from the ground, an effect that is commonly called wind

52Magnitude at 6m from the ground and direction can be defined in the task configuration parameters.
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shear. Following standard practise we define the magnitude of the mean wind field by
specifying its intensity at 20ft (6.096m) from the ground, the magnitude uh at altitude
h can then be obtained from :

uh = u20
ln(h/z0)

ln(20/z0)
(48)

where z0 = 0.15ft.
The interested reader can find the implementation of the turbulence and mean wind

models presented in this section in the files AerodynamicTurbulenceMILF8785.m and
WindConstMean.m respectively.

5.8 Person Classifier

In the search and rescue scenario we assume the UAV platform to be equipped with a
camera capable of observing the landscape in which the targets are located. Additionally
we assume that each camera frame is analysed by a classifier algorithm in order to scout
for persons.

Despite the latest advancement in the domain of computer vision ([10]), relying on first
principles to simulate camera images for generic outdoor scenes, is still very challenging
and computationally expensive. Constructing an accurate first principle model of the
accuracy of an image classifier is also similarly difficult.

For these reasons we choose to rely on experimental data to build a probabilistic
model of the joint camera and classifier system. In the first phase of devising the model
we apply an off-the-shelf image classification algorithm to real world imagery collected
with our quadrotor helicopters; in the second phase we devise an analytical model that
relates the scores returned by the classification algorithm to the task variables that have
a primary effect on the classification performance.

Our image dataset consists of several thousand images collected during multiple out-
door flights. Images were taken at different flight altitudes (up to ∼ 50m) and over a
variety of terrains (different types of grass, bushes, rocks). While the helicopter was flying
one or more persons were lying on the ground on a variety of poses so to be visible in at
least some of the images. An example of the type of images in our dataset is visible in
figure 6(a).

To perform person detection we used the histogram of gradients classifier (HOG)
described in [8]. We have chosen such classifier since it is effective, well know in the image
detection community and more importantly because the type of gradient descriptors it
uses are found at the core of many of the latest more sophisticated image classifiers.
Ultimately in our simulation we are interested in modelling a real world classifier more
than modelling the latest or best classifier.

We trained the classifier on a manually labelled subset of our data using a descriptor
size of 100 by 100 pixels. We then proceeded by running the classifier on the reminder of
our dataset. As it is commonly done in the object detection literature, images were anal-
ysed for target at different locations (windows) and at different scales. The highest scores
among scales were then aggregated for each image; figure 6(b) shows the classification
result for the image in figure 6(a).

The classifier model needs to be queried multiple times for each of the simulated image
observation, so limiting its computational complexity is crucial to a successful integration
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(a) Camera image (b) HOG classifier scores

Figure 6: Person detection from aerial images.

into our simulations. The UAV flying altitude has a direct effect on the size that a person
in the field of view has on the camera image, therefore is the primary variable that affects
the classifier ability to perform detections. For these two reasons at present we focus
on modelling the dependency between the flying altitude and the score returned by the
classifier. In specific we model the scores as belonging to a Gaussian distribution for
which with mean and standard deviation are simple functions of height.

If we plot the scores obtained by applying the HOG classifier to our dataset against
altitude and we distinguish between positive (i.e. the person was in the window considered
by the classifier) and negative examples (i.e. there was no person in the window), we
obtain the graph of figure 7(a).

At low altitudes (< 5m) positive and negative example generate similar scores; at such
altitudes only a part of the person is typically visible in the frame and this is not sufficient
to elicit a strong classifier response since the HOG template we use is based on a whole
body view of a person. As the altitude increases, positive examples are characterized by
higher scores than negative ones as one would expect. At altitudes above 40m again the
size of the person comes into play and simply the resolution is not sufficient to distinguish
the person reliably from the background.

Is interesting to note also how the variation in scores decreases with altitude for the
positive examples while it is almost independent from altitude for the negative examples.
The latter can at least in part be explained by the multi-scale nature of the image features
commonly present in a natural environment.

The relationship between scores and altitude can be easily captured and simple an-
alytic models can be devised for both the mean and the standard deviation of positive
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(a) Classifier scores as function of height, bars in-
dicate 1σ.

(b) Mean and standard deviation score as function
of height, experimental vs. model.

Figure 7: Scores as function of height.

(+) and negative (−) scores:

m+
s =

{
C+
m0 + C+

m1 cos(π(1 + C+
m2h)) h < hc

C+
m3 + C+

m4(h− hc) + C+
m5 h ≥ hc

(49)

σ+
s = C+

σ0 + C+
σ1h+ C+

σ2h
2 (50)

m−s =

{
C−m0 + C−m1h h < hc
C−m h ≥ hc

(51)

σ−s = C−σ0 + C−σ1h+ C−σ2h
2 (52)

where h is the UAV altitude and C+
m0, ..., C

+
m5, C

+
σ0, ..., C

+
σ2, C

−
m0, C

−
m1, C

−
σ0, ..., C

−
σ2 are ob-

tained by data fitting.
Within the simulator the UAV pose and the target locations are known, so it is

possible to compute in which windows of the image frame the target will appear. Since
the UAV height is known, to generate an observed score for a window we sample from
a Gaussian distribution with mean and variance defined by equations 49-52. We choose
the parameters for positive scores if the target appears in the window, for negative scores
otherwise.

Given the sampled score, the likelihood ratio for each window is easily obtained since
the positive and negative models are Gaussians distributions with known means and
standard deviations. In practice for numerical reason we compute log likelihoods and
therefore we return the difference between the positive and negative log likelihoods

5.9 Plume Propagation

This section gives more details about the dispersion models used for the plume modelling
scenario; before starting it is useful to introduce some nomenclature:

x, y, z coordinates w.r.t. the global NED frame of reference m
x′, y′, z′ coordinates w.r.t. the wind frame of reference m
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Xs, Ys coordinates of the source w.r.t. the global NED frame m
x′s, y′s coordinates of the source w.r.t. the wind frame of reference m
Qs emission rate of source s Kg/s
Hs equivalent height of source s m
u constant magnitude of the wind speed m/s
S number of sources
a diffusion parameter
b diffusion parameter
αw wind direction (clockwise from north) rads
Is total number of puff for source s
T is time at which puff i of source s was emitted s
Qi
s total amount of plume emitted by source s at time T i Kg

Σ Gaussian concentration covariance matrix

Several of the following models are more easily formulated in a frame of reference with
origin in the global frame and aligned with the wind direction (wind frame). We denote
such coordinate with ′ and the transformation between global and wind frame is simply:

x′ = x cos(αw) (53)

y′ = y sin(αw) (54)

where αw is the wind direction.

5.9.1 Gaussian Concentration Model

As a starting point for the plume modelling scenario discussed in section 4.3 it is very
useful to define a concentration model that has a small number of parameter and that is
straightforward to estimate. To this aim we chose a simple and familiar three dimensional
Gaussian model for the concentration c at a generic location x, y, z:

c(x, y, z) = exp

−1

2

 x−Xs

y − Ys
z −Hs

T Σ−1

 x−Xs

y − Ys
z −Hs


 (55)

where Σ is the usual covariance matrix which define the ellipsoid dimensions and principal
axes and Xs, Ys, Hs is the source location.

In practical terms such concentration pattern would be produced by a source emit-
ting at a constant rate in an environment where wind is not present; in such situation
wind advection can be neglected and only the diffusive contribution from turbulent eddy
motion in the atmosphere is considered. When specifying a covariance matrix which has
eigenvectors of different magnitude we implicitly define that the diffusivity in the 3D
space is non isotropic.

5.9.2 Gaussian Dispersion Models

In a more realistic situation than the one described in the previous section wind should
be considered since it generally has a strong influence on the plume dispersion.

Under the following assumptions:
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Figure 8: Gaussian plume dispersion driven by wind (from[24]).

• constant wind (with magnitude u);

• source with constant emission rate Q;

• sufficiently long time scale of interest;

• isotropic diffusion;

• negligible ground penetration;

• negligible variations in topography;

the advection-diffusion flux equation that distinguish how the plume disperse in the
environment has a closed form solution and the plume concentration can be computed in
closed form (see [24]). The resulting concentration has a cone-like shape starting at the
plume source and expanding downwind. Profile concentrations are symmetric about the
plume centerline and have the shape of a Gaussian (see figure 8).

Analytically such a concentration is more easily written in the wind frame of reference
(note the use of x′ and y′) as:

c(x′, y′, z) =
Q

2πua(x′ −X ′s)b
exp

(
− (y′ − Y ′s )2

2a(x′ −X ′s)b

)
[
exp

(
− (z −Hs)

2

2a(x′ −X ′s)b

)
+ exp

(
− (z +Hs)

2

2a(x′ −X ′s)b

)]
. (56)

where a and b are diffusion coefficients that regulate how the center line concentration
evolves as the distance from the source increases.

Multiple Sources Gaussian Dispersion Model
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In the case of a S number of sources the total concentration can be computed by
superposition of the effects of each of the single source:

c(x′, y′, z) =
S∑
s=1

c(x′, y′, z;X ′s, Y
′
s , Hs, Qs). (57)

where c(x′, y′, z;X ′s, Y
′
s , Hs, Qs) is nothing more equation 56 in which X ′s, Y

′
s , Hs is the

location of source s and Qs is its emission rate. We assume that the wind acting on each
source is the same and therefore the wind frame of reference is unique.

Single Source Gaussian Puff Dispersion Model
The Gaussian dispersion model we just presented looks at the plume distribution over

long time scales and assumes a constant emission rate from the source.
It is fairly common however the case in which the source emits plume intermittently,

the blob-like plume puffs are blown by the wind creating a time varying plume concen-
tration. A simple way of modelling this puff like dispersion is to assume that each puff
i generated by source s has an emission time T is following which it moves downwind at
the wind speed u. At a location x′, y′, z and time t the full concentration model is simply
the superposition of all the puffs generated so far:

c(x′, y′, z, t) =
I∑
i=1

{
Qi
s

8(πa(x′ −X ′s)b)3/2

exp

(
−(x′ −X ′s − u(t− T is))2 + (y′ − Y ′s )2

2a(x′ −X ′s)b

)
[
exp

(
− (z −Hs)

2

2a(x′ −X ′s)b

)
+ exp

(
− (z +Hs)

2

2a(x′ −X ′s)b

)]}
(58)

where a and b are the dispersion coefficients that we already encountered in equation 56
and Qi

s is the amount of plume emitted with puff i by source s. We sample Qi
s from a

uniform distribution:

Qi
s ∼ U(qm, qM). (59)

To fully define the model, the emission times need to be specified; in our settings we
sample the inter-emission time τ i from a exponential distribution with rate λ:

T is = T (i−1)
s + τ i τ i ∼ Exp(λ), T 0

s = 0. (60)

Multiple Sources Gaussian Puff Dispersion Model
Even in the case of a time varying dispersion model, multiple sources can be consid-

ered. The total concentration can be computed by superposition:

c(x′, y′, z, t) =
S∑
s=1

c(x′, y′, z, t;X ′s, Y
′
s , Hs). (61)

where c(x′, y′, z, t;X ′s, Y
′
s , Hs) is equation 58 in which X ′s, Y

′
s , Hs is the location of source

s and Qi
s and T is are respectively sampled from an exponential and uniform distribution

(i.e. equations 59-60). Again we implicitly assume that the wind acting on each source
is the same and therefore the wind frame of reference is unique.
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