
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/15/02

Improving the Module Clustering of a C/C++

Editor using a Multi-objective Genetic

Algorithm

May 5, 2015

Matheus Paixao1, Mark Harman1, Yuanyuan Zhang1

Affiliation: University College London1

email: {matheus.paixao.14, mark.harman, yuanyuan.zhang}@ucl.ac.uk

Abstract

This Technical Report applies multi-objective search based software remodularization to a C/C++
editor called Kate, showing how this can improve cohesion and coupling, and investigating dif-
ferences between weighted and unweighted approaches and between equal-size and maximising
clusters approaches. We also investigate the effects of considering omnipresent modules. Overall,
we provide evidence that search based modularization can benefit Kate developers.

Keywords: Software Module Clustering, Multi-objective Optimization, Search Based Software
Engineering

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

1 Introduction

Software systems are usually divided and organized in modules, such as packages, classes, func-
tions etc. Software Module Clustering consists in organizing the system’s modules into clusters,
in order to achieve some desired system structure. According to several software engineering text-
books, well-modularized systems are easier to maintain, develop and evolve [15][14][17]. Usually,
a good modularization presents a high degree of cohesion and a low degree of coupling between
the modules [17], alongside with other metrics [2].

Although a good modularization is constantly desired throughout the whole system’s life
cycle, metrics of cohesion and coupling, as well as other quality metrics, tend to degrade as the
software evolves [6]. Furthermore, regarding the specific domain of IDEs/Text Editors, which
the system under study in this work is part of, the extensive empirical study in [16] provides
evidence of quality degradation during system’s evolution. Therefore, for most systems, there
is a certain point in time (or more than one) where a re-modularization is needed in order to
improve both the system’s current comprehensibility and future maintainability and evolvability.

As one can expect, module clustering is not an easy task. This is mostly due to the high
number of modules the system usually has at this refactoring phase, which results in a big set
of possible solutions to consider. Even skillful developers may not be able to identify all the
modules that should be included in a certain cluster, or not recognize quality trade-offs between
clusters, for example.

Search-based approaches to module clustering were first introduced in the seminal paper by
Mancoridis et al. [9], aiming to automatically re-organize the system’s modules into existing or
new clusters. A Module Dependency Graph (MDG) is used to represent the modules, and this
graph can be either unweighted or weighted. In the unweighted MDG, an edge between two
modules denotes a dependency between the respective modules. For a weighted graph, an edge
between modules represents not only the existence of a dependency, but also the strength of this
dependency, where the greater the edge weight, the greater the dependency [7]. By using the
MDG, the optimization algorithm can then search for a partition of this graph that optimizes
the considered quality metrics.

For almost all systems, there is usually a subset of modules that have more dependencies
than the average. These modules have been called omnipresent [8] because it seems they do not
belong to any particular cluster, but rather to the whole system. Because omnipresent modules
have dependencies to a large number of modules in the system, they can affect the search-based
module clustering.

The clustering process is based on the cohesion and coupling metrics, which are considered
the fitness functions of the search algorithm. Most of the previous works in search-based module
clustering, e.g. [9][8][7], employ a single objective approach, where the cohesion and coupling
metrics are combined into one fitness function. Despite the single objective approach being able
to find good results [10], it fails to present trade-off analyses between the different objectives.

A multi-objective module clustering approach was presented in [12], and it aims to support
the developer decision making by providing a wide range of possible solutions, rather than only
one. Since most of the metrics used in module clustering are not measured in a comparable unit,
a multi-objective optimization process allows the developer to assess several trade-offs between
quality metrics. The multi-objective approach handles the different quality metrics using the
Pareto optimality concept [3], which tries to find not only one optimal solution, but a set of
non-dominated solutions, i.e., solutions that are equally optimal. When compared to the single
objective approach, the multi-objective one has found solutions that are better even for the
combined fitness function used by the previous works.

This work adapts and applies the multi-objective module clustering approach presented in

RN/15/02 1

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

[12] to Kate [5], a C/C++ editor for KDE platforms. Both unweighted and weighted datasets
were extracted from Kate. Omnipresent modules were also considered in different ways. The
objectives of this work are summarized in the following research questions:

• RQ1: How much Kate’s modularization can be improved regarding quality metrics previ-
ously used in the module clustering literature?

• RQ2: What is the difference between the results for Kate’s unweighted and weighted
datasets?

• RQ3: What is the difference in the results when omnipresent modules are considered?

• RQ4: Can the multi-objective optimization process provide useful advice to the developer?

The rest of this technical report is organized as follows: Section 2 presents the multi-objective
module clustering formulation used in this work, while Section 3 presents how the data used in
the empirical evaluation was extracted. Section 4 presents the empirical study itself, showing
the settings and analysis of results. Section 5 concludes and points out some future research
directions.

2 Multi-objective Module Clustering Formulation

Consider the system’s set of modules M = {m1,m2, . . . ,mA}, where A is the number of modules
in the system. The set of possible clusters is represented by C = {c1, c2, . . . , cB}, where B is the
number of clusters, and each cluster has its unique number 1, 2, . . . , B. A possible solution for the
module clustering problem is defined by the decision variables X = {x1, x2, . . . , xA}, where xi = c

indicates that module mi belongs to cluster c.

Cluster_1 Cluster_2

Cluster_3

M1

M5

M4

M2

M3

Figure 1: Modularization Example

A simple solution X = {1, 3, 3, 2, 1}, for example, de-
notes a modularization of five modules into three clusters.
Modules m1 and m5 are in cluster c1, m2 and m3 in c3, and
finally m4 in c2. The unweighted MDG for such example
can be seen in Figure 1.

This work considers two different multi-objective
module clustering approaches, named as Maximizing
Cluster Approach (MCA) and Equal-size Cluster Ap-
proach (ECA) [12]. The set of fitness functions con-
sidered by the two approaches are presented next:

• Maximizing Cluster Approach

– cohesion (max)

– coupling (min)

– number of clusters (max)

– MQ (max)

– number of isolated clusters (min)

• Equal-size Cluster Approach

– cohesion (max)

– coupling (min)

– number of clusters (max)

– MQ (max)

– cluster size difference (min)
The metrics of cohesion and coupling are related to the dependencies between modules.

Cohesion is the sum of the weights of all intra-edges, i.e., edges that start and finish in the same
cluster. On the other hand, coupling is the sum of weights of all inter-edges, i.e., edges that start

RN/15/02 2

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

in a cluster and finish in another cluster. MQ stands for Modularization Quality [9], which is
the metric used in the previous single objective works. An isolated cluster is the one that has
only one module inside it.

To illustrate each fitness function of both MCA and ECA, consider the modularization exam-
ple given in Figure 1. The set of metrics would be assigned as cohesion: 2, coupling: 2, number
of clusters: 3, MQ: 0.66, isolated clusters: 1, cluster size difference: 1.

3 Data Extraction

As stated earlier, this work adapts and applies the multi-objective module clustering formulation
showed in the previous section to Kate [5], a C/C++ editor for KDE platforms. This section
presents how Kate’s modularization data was extracted.

Kate’s source code is organized in only two folders, src and session, where each folder accom-
modates some classes. First, the call graph of each function of Kate was directly extracted from
the source code using Doxygen [4]. Then, Doxygen was also used to extract the inheritance graph
between classes. Finally, Kate’s unweighted and weighted MDGs were created from the call and
inheritance graphs, where each class is considered a module, and a function call or inheritance
from one class to another represents a dependency between the respective modules. The weight
of an edge in the weighted MDG is considered to be the number of functions calls from one class
to another. For the unweighted MDG, all edges have the same weight of 1. The clusters are
considered to be the folders the classes are in.

The original Kate’s unweighted and weighted MDGs can be seen in Figures 2 and 3, re-
spectively. Function calls are represented by black arrows and inheritance relationships are
represented by red arrows. For the weighted MDG, the weight of the edge is represented by its
thickness.

src

session

AbstractKateSaveModifiedDialogCheckListItem

GUIClient

MainWindow

KateApp

KateAppAdaptor

KateMainWindow KatePluginManager

KateViewManager

KateSessionManager

KateConfigDialog

KateDocManager

KateConfigPluginPage

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewSpace

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButton

Main
SideBar

ToolView

TmpToolViewSorterToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

Figure 2: Kate’s original unweighted modularization, where black arrows represent function calls
and red arrows represent inheritance

RN/15/02 3

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Cluster_src

Cluster_session

AbstractKateSaveModifiedDialogCheckListItem

GUIClient

MainWindow

KateApp

KateAppAdaptor

KateMainWindow KatePluginManager

KateViewManager

KateSessionManager

KateConfigDialog

KateDocManager

KateConfigPluginPage

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewSpace

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButton

Main
SideBar

ToolView

TmpToolViewSorterToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

Figure 3: Kate’s original weighted modularization, where black arrows represent function calls,
red arrows represent inheritance and the thickness of an edge represents its weight

As one can see from the figures, Kate has only two clusters. The session cluster seems to be
a cohesive one, where all modules are related to ‘Session’ functionalities. Furthermore, almost
all external dependencies are related to one single module, KateApp. On the other hand, the src
cluster presents a kind of ‘god-class’ structure, gathering all other modules. It is composed by
modules related to different functionalities, varying from ‘GUI’ to ‘Document Management’ and
‘Plugin Management’. Such organization suggests a not well modularized system as a whole,
presenting room for optimization and improvement. The details and results of the empirical
study are presented in the next section.

4 Empirical Study

The empirical study consisted in applying the multi-objective module clustering approach pre-
sented in Section 2 to Kate’s modularization data presented in Section 3. This section presents
the study settings and results.

4.1 Settings

The Two-Archive Genetic Algorithm [13] was employed. This algorithm presents good results
for multi-objective problems with more than three fitness functions, which was the case in this
work. The algorithm parameters were configured based both in [12] and the default algorithm
settings. Crossover probability is 0.8, and mutation probability is 0.004 log2(M), where M is the
number of modules. Population size is 10M , and the algorithm is executed for 10000 generations.

Both MCA and ECA optimization approaches were executed 30 times, where each execution
generates a set of non-dominated solutions. In order to compare the two approaches, one so-
lution has to be chosen as a representative of each execution. This ‘champion’ solution can be
selected in several ways, and for this work the solution with highest cohesion was selected. This
set of representative solutions was then used to compute the average and standard deviations

RN/15/02 4

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

of each quality metric, as well as statistical comparisons. Statistical tests and effect size mea-
surements were performed using the paired Wilcoxon and Vargha-Delaney tests, respectively, as
suggested in [1]. Such tests were carried out using Astraiea, the tool for systematic comparison
of metaheuristics described in [11].

Kate’s modularization data is available in the supporting webpage www0.cs.ucl.ac.uk/

staff/m.paixao/kateMod/. The tool implemented in this work for performing the multi-
objective software module clustering will be available in the near future.

4.2 Results and Analysis

4.2.1 RQ1: How much Kate’s modularization can be improved regarding quality
metrics previously used in the module clustering literature?

Table 1 presents the quality metrics results for both MCA and ECA approaches for the un-
weighted dataset in comparison to Kate’s original modularization. In case of statistical difference
between MCA and ECA, the value is highlighted and the effect size is presented.

As one can see, both multi-objective approaches were able to find solutions with better quality
metrics than the original modularization. Regarding cohesion, coupling and MQ, MCA could
improve such metrics in 16.3%, 83% and 7.88%, respectively. Considering ECA, these values are
similar, 16.4%, 83.7% and 1.65%, respectively.

Table 1: Quality metrics results for the unweighted dataset in comparison to Kate’s original
modularization

Fitness Original Modularization MCA ECA Effect Size
Cohesion 51 59.30 ± 1.10 59.37 ± 1.08 -
Coupling 10 1.70 ± 1.10 1.63 ± 1.08 -

Number of Clusters 2 2.57 ± 0.92 2.37 ± 0.87 -
MQ 1.308 1.42 ± 0.28 1.33 ± 0.36 -

Isolated Clusters 0 0.53 ± 0.76 - -
Difference Modules 11 - 14.03 ± 7.79 -

For the other quality metrics, both MCA and ECA presented similar results, which suggests
that these two different approaches did not find very different results for this case study. In fact,
none statistical difference was detected between MCA and ECA for all quality metrics.

Figure 4 presents the pareto fronts composed by all non-dominated solutions found in all 30
executions of both MCA and ECA for the unweighted dataset in the MQ × cohesion space. It is
clear from the figure that the solutions found by the approaches are similar. Therefore, Figure 4
emphasizes the statistical tests, indicating almost no difference between MCA and ECA for this
case study.

As an answer to the first research question RQ1, the multi-objective module clustering ap-
proach can improve Kate’s modularization for almost all considered quality metrics, reaching an
improvement of 83% in a particular case. However, differently from previous works [12], it was
not detected any statistical or solution location difference between MCA and ECA.

4.2.2 RQ2: What is the difference between the results for Kate’s unweighted and
weighted datasets?

Table 2 presents the quality metrics results for both MCA and ECA approaches for the weighted
dataset. Because of the weight in the dependencies edges, the value of the metrics tend to be

RN/15/02 5

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

Figure 4: Solutions location for the unweighted dataset in the MQ × cohesion space

bigger. For the MCA, cohesion was improved in 3.93%, coupling in 46.8% and MQ in 70.41%.
Regarding the ECA, the improvements were 3.49%, 41.57% and 60.35% for cohesion, coupling and
MQ, respectively. The only statistical difference between MCA and ECA for the weighted dataset
was regarding the number of clusters, but since the effect size is considerably small, the difference
is not significant.

Table 2: Quality metrics results for the weighted dataset in comparison to Kate’s original mod-
ularization

Fitness Original Solution MCA ECA Effect Size
Cohesion 250 259.83 ± 4.62 258.73 ± 5.23 -
Coupling 21 11.17 ± 4.62 12.27 ± 5.23 -

Number of Clusters 2 5.90 ± 1.04 6.97 ± 1.54 0.22
MQ 1.69 2.88 ± 0.46 2.71 ± 0.55 -

Isolated Clusters 0 2.27 ± 1.26 - -
Difference Modules 19 - 21.23 ± 2.03 -

Similarly to the unweighted results, the multi-objective approach is able to improve almost
all quality metrics for the weighted dataset. Furthermore, most of the results are not statisti-
cally different, as well as in the unweighted results. Although the quality metrics are generally
improved for both unweighted and weighted datasets, the magnitude of the improvement for
some metrics is different. Considering the unweighted dataset, cohesion had a big improvement
and MQ had a small improvement. In the other hand, the results were the opposite for the
weighted dataset, where cohesion had a small improvement and MQ had a big improvement.
The improvement in coupling was considerably big for both datasets.

Figure 5 presents the pareto front of each multi-objective approach for the weighted dataset.
Similarly to the unweighted pareto front, the solutions found by the two approaches are similar,
emphasizing the nearly absence of statistical difference. In the case of the weighted dataset, as
one can see from the figure, the number of solutions is bigger when compared to the unweighted

RN/15/02 6

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

dataset. This is due to the edges weighting, which creates a bigger search space, naturally
increasing the number of non-dominated solutions.

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

Figure 5: Solutions location for the weighted dataset in the MQ × cohesion space

As an answer to RQ2, the general behavior of the multi-objective clustering approach when
applied to both unweighted and weighted Kate’s datasets is similar. Both MCA and ECA ap-
proaches can improve almost all Kate’s original quality metrics for both unweighted and weighted
datasets, with few statistical difference between results. In addition, the location of the non-
dominated solutions found by the approaches are similar for both datasets. In contrast, the
improvement of some metrics in the unweighted dataset was bigger than in the weighted dataset,
and vice-versa. The weighted dataset also tends to present a bigger search space, leading to a
bigger number of solutions in the pareto front.

4.2.3 RQ3: What is the difference in the results when omnipresent modules are
considered?

As stated earlier, there are usually some modules that have more dependencies than the average.
Such modules are called omnipresent because they do not seem to belong to any particular
cluster, but to the system as whole. Based on previous works [8], the omnipresent modules
were identified using thresholds. By choosing an omnipresent threshold ot = 3, for example, all
modules that have 3 times more dependencies than the average are considered to be omnipresent.
As smaller the threshold, more modules will be identified as omnipresent.

Two different thresholds were used in this work, ot = 3 and ot = 2. A threshold ot = 4 did not
identified any omnipresent module. After identified, the omnipresent modules are then isolated
from the MDG, and the search algorithm will not consider them during the optimization process.
Figure 6 presents the original unweighted Kate’s modularization for the different thresholds and
Table 3 presents the results for such datasets.

RN/15/02 7

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Cluster_src

Cluster_session

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItem

GUIClient MainWindow

KateAppAdaptor

KateSessionManager

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen
KateViewManager

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar
KateTabButton

KateViewSpace

Main

SideBar ToolView

TmpToolViewSorter

ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow

(a) ot = 3

Cluster_src

Cluster_session

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItem

GUIClient MainWindow

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewManager

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButtonKateViewSpace

Main

SideBar ToolView

TmpToolViewSorter
ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

(b) ot = 2

Figure 6: Kate’s Original unweighted modularization with different thresholds

Table 3: Quality metrics results for the unweighted dataset and different thresholds for om-
nipresent modules

Fitness Original Solution MCA ECA Effect Size

ot = 3

Cohesion 34 35.60 ± 1.36 35.47 ± 1.54 -
Coupling 5 3.40 ± 1.36 3.53 ± 1.54 -

Number of Clusters 2 5.07 ± 1.44 4.77 ± 1.69 -
MQ 1.32 3.32 ± 1.02 3.11 ± 1.18 -

Isolated Clusters 0 0.27 ± 0.44 - -
Difference Modules 16 - 12.63 ± 4.03 -

ot = 2

Cohesion 29 27.20 ± 0.95 27.67 ± 0.91 -
Coupling 0 1.80 ± 0.95 1.33 ± 0.91 -

Number of Clusters 2 5.70 ± 1.04 4.17 ± 1.75 0.73
MQ 1.40 3.96 ± 0.69 2.93 ± 1.17 0.76

Isolated Clusters 0 0.00 ± 0.00 - -
Difference Modules 17 - 6.03 ± 2.99 -

RN/15/02 8

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

The number of overall dependencies is reduced when the omnipresent modules are isolated,
so the fitness values tend to decrease. For an omnipresent threshold of ot = 3, apart from the
MQ metric, which had a improvement of 151.5%, the improvement for the other metrics are
small. However, even cohesion having an improvement of only 4.7%, the number of clusters is
much bigger, which suggests a better modularization. Both approaches had almost the same
performance for this particular threshold, for no statistical difference was detected.

Considering the threshold ot = 2, the metrics of cohesion and coupling were slightly decreased
instead of improved, but since MQ had an improvement of 182.8% and the number of clusters
is much bigger, the overall modularization is improved. The MCA approach achieved some
statistically better results for some metrics with a considerable effect size.

Figure 7 presents the weighted Kate’s modularization for the different thresholds, and Table
4 presents the results. Similarly to the unweighted results, for ot = 3, almost all quality metrics
are improved, with a small improvement for cohesion and coupling and a big improvement for
MQ. The ECA approach found statistically different results for cohesion and coupling, however
the effect size is not significant.

Cluster_session

Omnipresent Modules

Cluster_src

AbstractKateSaveModifiedDialogCheckListItem

GUIClient MainWindow

KateAppAdaptor

KateSessionManager

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen
KateViewManager

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar
KateTabButton

KateViewSpace

Main

SideBar ToolView

TmpToolViewSorter

ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow

(a) ot = 3

Cluster_session

Omnipresent Modules

Cluster_src

AbstractKateSaveModifiedDialogCheckListItem

GUIClient MainWindow

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewManager

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButtonKateViewSpace

Main

SideBar ToolView

TmpToolViewSorter
ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

(b) ot = 2

Figure 7: Kate’s Original weighted modularization with different thresholds

RN/15/02 9

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Table 4: Quality metrics results for the weighted dataset and different thresholds for omnipresent
modules

Fitness Original Solution MCA ECA Effect Size

ot = 3

Cohesion 105 106.13 ± 1.73 107.07 ± 2.14 0.37
Coupling 7 5.87 ± 1.73 4.93 ± 2.14 0.62

Number of Clusters 2 5.37 ± 1.40 5.37 ± 1.62 -
MQ 1.88 4.08 ± 1.07 4.12 ± 1.22 -

Isolated Clusters 0 0.83 ± 0.82 - -
Difference Modules 16 - 11.93 ± 3.54 -

ot = 2

Cohesion 93 90.90 ± 1.08 91.33 ± 0.70 -
Coupling 0 2.10 ± 1.08 1.67 ± 0.70 -

Number of Clusters 2 5.93 ± 1.18 5.03 ± 1.52 0.66
MQ 2 5.51 ± 0.80 4.95 ± 1.44 -

Isolated Clusters 0 0.37 ± 0.60 - -
Difference Modules 17 - 6.83 ± 2.13 -

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(a) ot = 3

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(b) ot = 2

Figure 8: Solutions location for the unweighted dataset with different omnipresent thresholds

Regarding ot = 2, the weighted results are also similar to the unweighted results, where
cohesion and coupling metrics are slightly decreased. However, other metrics like MQ and number
of clusters are highly improved, which generates a better modularization. In addition, MCA also
found some statistically significant results when compared to ECA, and again with considerable
effect size.

Figure 8 presents the location of the solutions in the pareto front for the unweighted dataset
with different omnipresent thresholds. As one can see from the figure, the solutions found by
the two approaches for both thresholds are similar, as expected from the almost absence of
statistical difference in the results. The number of solutions when considering ot = 2 is smaller
than considering ot = 3, which is itself smaller than not considering any omnipresent module at
all. Such observation confirms the claim that isolating omnipresent modules can considerably
reduce the search space [8].

Figure 9 presents the solution location for the weighted dataset and different omnipresent
thresholds. For both thresholds, the solutions in the MCA and ECA pareto fronts are exactly

RN/15/02 10

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 2 3 4 5 6 7 8 9

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(a) ot = 3

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 1 2 3 4 5 6 7 8

C
o
h
e
s
io

n

Modularization Quality

MCA
ECA

(b) ot = 2

Figure 9: Solutions location for the weighted MDG with different omnipresent thresholds

the same, which accentuates even more the equality of the approaches for this particular system.
The number of solutions is bigger when compared to the unweighted results because of the
increase in the search space due to edges weighting, as previously stated.

As an answer to RQ3, the general behavior of the multi-objective approaches when considering
omnipresent modules is basically the same as not considering omnipresent modules. It tends to
improve all metrics, with both MCA and ECA presenting almost the same performance. The
difference is in the magnitude of the improvement, which decays as more omnipresent modules
are isolated. This might happen because the isolation of omnipresent modules reduces the search
space, making the original solution closer to the optimal. The location of solutions found by MCA
and ECA when considering omnipresent modules is similar, being even exactly the same for the
weighted dataset and ot = 2.

4.2.4 RQ4: Can the multi-objective optimization process provide useful advice to
the developer?

Although both MCA and ECA are able to improve Kate’s modularization for almost all consid-
ered quality metrics in almost all scenarios, one may wonder whether the generated solutions are
useful to the developer or not. In order to answer this question, examples of solutions found by
the multi-objective approaches will be presented.

Figure 10 presents examples of solutions found for the unweighted and weighted datasets
without considering omnipresent modules. In both cases, the solution does not appear good at
a first sight, but a closer inspection can reveal some interesting insights. The ‘session’ cluster
was kept almost the same in both examples, which suggests this cluster was already cohesive.
All classes related to ‘Tools’ and ‘Tabs’ were also clustered together. Although some classes are
correctly clustered, the presence of the omnipresent modules affects the optimization process,
creating a big cluster with classes that are not related to each other.

Figure 11 presents examples of solutions found when considering an omnipresent threshold of
ot = 3. When the omnipresent modules are isolated from the clustering process, the solutions are
much ‘cleaner’ than the previous ones. Several related classes were clustered together, both for
the unweighted and weighted datasets. One can notice that the modularization is not ‘optimal’
in the sense that some classes are wrongly clustered, but because the modularization is more
simple, the developer can easily identify these outliers and allocate them in the right cluster.

RN/15/02 11

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Cluster_12Cluster_9

Cluster_11

Cluster_2

Cluster_6

Cluster_5

Cluster_1
Cluster_4

Cluster_0

AbstractKateSaveModifiedDialogCheckListItemKateSaveModifiedDocumentCheckListItem

GUIClient MainWindow SideBar

ToolView

KateApp

KateAppAdaptor

KateMainWindow

KateViewManager

KatePluginManager

KateSessionManager

KateConfigDialog

KateDocManager

KateConfigPluginPage

KateSaveModifiedDialog

KateMwModOnHdDialog

KateQuickOpen

KateViewSpace

KatePluginInfo KateTabBar

KateRunningInstanceInfoMain

KateTabButton

TmpToolViewSorter

ToggleToolViewAction

KateSession
KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateSessionManageDialog

(a) Unweighted solution example and no omnipresent modules

Cluster_6

Cluster_0

Cluster_1

Cluster_7

Cluster_3

Cluster_4

Cluster_5

Cluster_15

Cluster_11

Cluster_12

AbstractKateSaveModifiedDialogCheckListItem

KateSaveModifiedDialog

KateSaveModifiedDocumentCheckListItem

GUIClient MainWindow

SideBar

ToolView

TmpToolViewSorter

ToggleToolViewAction

KateApp

KateAppAdaptor

KateMainWindow

KatePluginManager

KateViewManager

KateSessionManager

KateConfigDialog

KateDocManager

KateQuickOpen

KateViewSpace

KateMwModOnHdDialog

KatePluginInfo

KateTabBar

KateConfigPluginPage

KateRunningInstanceInfoMain

KateTabButton

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateSessionManageDialog

(b) Weighted solution example and no omnipresent modules

Figure 10: Example of solutions found for the unweighted and weighted datasets

RN/15/02 12

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Cluster_5

Cluster_1

Cluster_0

Cluster_12

Cluster_3

Cluster_6

Cluster_9

Cluster_13

Cluster_2

Cluster_11

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItemKateSaveModifiedDocumentCheckListItem

GUIClient MainWindow SideBar

ToolView

KateAppAdaptor

KateSessionManager

KateSession

KateSessionChooser

KateSessionManageDialog

KateDocManager

KateRunningInstanceInfo

KateSessionOpenDialog

KateSessionsAction

KateConfigDialog
KatePluginManager

ToggleToolViewAction

KateSaveModifiedDialogKateMwModOnHdDialog

KatePluginInfo

KateQuickOpen KateViewManager KateViewSpace

KateTabBar

Main

KateTabButton

TmpToolViewSorter

KateApp KateMainWindow

(a) Unweighted solution example and ot = 3

Cluster_7

Cluster_1

Cluster_2

Cluster_4

Cluster_0

Cluster_12

Cluster_8

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItem

KateSaveModifiedDialog

KateSaveModifiedDocumentCheckListItem

GUIClient MainWindow

SideBar

ToolView

TmpToolViewSorter

ToggleToolViewAction

KateAppAdaptor

KateSessionManager

KateSession

KateSessionChooser

KateSessionManageDialog

KateDocManager

KateRunningInstanceInfo

KateSessionOpenDialog

KateSessionsAction

KateConfigDialog KatePluginManager

KateMwModOnHdDialog
KateQuickOpen

KateViewManager

KateTabBar KateTabButtonKateViewSpace

KatePluginInfo

Main

KateApp KateMainWindow

(b) Weighted solution example and ot = 3

Figure 11: Example of solutions found when considering an omnipresent threshold of ot = 3

RN/15/02 13

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Figure 12 now presents the solutions found for the threshold ot = 2. Since more omnipresent
modules were identified, and consequently isolated, the generated clusters are even ‘cleaner’,
both for the unweighted and weighted datasets. For these particular solutions, the clusters were
almost completely independent. One should notice the ‘session’ cluster was kept almost the same
for all presented solutions, suggesting that the multi-objective clustering process tends to keep
cluster that are already cohesive. Once again the solutions are not perfect, but they are easily
adjustable by the developer.

Therefore, as an answer for RQ4, the multi-objective optimization approach is able to provide
useful advice to the developer. If the omnipresent modules are not isolated, the solutions will have
some insights, but they will be hard to identify. By isolating the omnipresent modules, the multi-
objective approach can cluster several related classes together, and as more omnipresent modules
are identified, more independent the clusters tend to become. Furthermore, the optimization
process tend to keep clusters that are already cohesive in the original solution.

5 Conclusion and Future Works

A good modularization of a software system throughout its whole life cycle is believed to make
the system easier to comprehend, maintain and evolve. Sadly, modularization quality tends
to degrade during systems’ evolution, which creates space for the application of search based
approaches to module clustering. Although single objective optimization approaches are able to
achieve good results, they fail in provide a wide range of different solutions to the developer.
Multi-objective approaches, by using pareto optimality, are able to present several different
solutions to the developer, enabling trade-off analysis between the different quality metrics.

This work applied a multi-objective module clustering approach to a C/C++ editor called
Kate. It’s original modularization did not look cohesive, with only two clusters, and several
classes with different purposes together in the same cluster. Different scenarios were consid-
ered, including unweighted and weighted datasets, as well as different thresholds for identifying
omnipresent modules.

The multi-objective optimization process was able to improve Kate’s modularization for al-
most all considered quality metrics and scenarios, including improvements of more than 200% in
some cases. The behavior of the clustering techinique of improving the original metrics remained
regular for all scenarios, but the magnitude of the improvements decreased as more omnipresent
modules were considered.

By looking at the solutios found by the search algorithm, it was possible to notice that several
related classes were put together in the same cluster, especially when the omnipresent modules
were identified and isolated. In addition, the optimization algorithm tends to keep in the final
solutions clusters that are already cohesive. Such solutions can provide insights to the developer,
helping him/her to refactor the system in order to improve its modularization.

As future research directions, it is expected to apply the same optimization approach to
other systems in order to assess for similarity in the results. Another future work is the usage
of different multi-objective evolutionary algorithms in order to see if a better search algorithm
would lead to better results.

RN/15/02 14

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

Cluster_4

Cluster_0

Cluster_7

Cluster_10

Cluster_6

Cluster_11Cluster_1

Cluster_2

Cluster_8

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItemKateSaveModifiedDocumentCheckListItem

GUIClient MainWindow SideBar

ToolView

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KateQuickOpen

KateViewManager

KatePluginInfo

KateRunningInstanceInfoMain

KateTabBar KateTabButtonKateViewSpace

TmpToolViewSorter

ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

(a) Unweighted solution example and ot = 2

Cluster_7

Cluster_0

Cluster_1

Cluster_8

Cluster_2

Cluster_5

Cluster_6

Cluster_3

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItem

KateSaveModifiedDialog

KateSaveModifiedDocumentCheckListItem

GUIClient MainWindow

SideBar

ToolView

TmpToolViewSorter

ToggleToolViewAction

KateConfigDialog

KateDocManager

KatePluginManager

KateQuickOpen

KateViewManager
KateTabBar

KateTabButton

KateViewSpace

KateMwModOnHdDialog

KatePluginInfo

KateRunningInstanceInfoMain

KateSessionKateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

(b) Weighted solution example and ot = 2

Figure 12: Example of solutions found when considering an omnipresent threshold of ot = 2

RN/15/02 15

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

References

[1] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Software Testing, Verification and Reliability,
24(3):219–250, 2014.

[2] Lionel C Briand, Sandro Morasca, and Victor R Basili. Property-based software engineering
measurement. Software Engineering, IEEE Transactions on, 22(1):68–86, 1996.

[3] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages 403–449.
Springer, 2014.

[4] Doxygen. http://www.stack.nl/~dimitri/doxygen/index.html, 2015. Accessed in April,
2015.

[5] Kate. http://kate-editor.org/, 2015. Accessed in April, 2015.

[6] Meir M Lehman. On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software, 1:213–221, 1980.

[7] Kiarash Mahdavi, Mark Harman, and Robert M Hierons. A multiple hill climbing approach
to software module clustering. In Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on, pages 315–324. IEEE, 2003.

[8] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R Gansner. Bunch: A
clustering tool for the recovery and maintenance of software system structures. In Software
Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on, pages 50–
59. IEEE, 1999.

[9] Spiros Mancoridis, Brian S Mitchell, Chris Rorres, Yih-Farn Chen, and Emden R Gansner.
Using automatic clustering to produce high-level system organizations of source code. In
IWPC, volume 98, pages 45–52. Citeseer, 1998.

[10] Brian S Mitchell and Spiros Mancoridis. On the automatic modularization of software
systems using the bunch tool. Software Engineering, IEEE Transactions on, 32(3):193–208,
2006.

[11] Geoffrey Neumann, Jerry Swan, Mark Harman, and John A Clark. The executable experi-
mental template pattern for the systematic comparison of metaheuristics. In Proceedings of
the 2014 conference companion on Genetic and evolutionary computation companion, pages
1427–1430. ACM, 2014.

[12] Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as a multi-
objective search problem. Software Engineering, IEEE Transactions on, 37(2):264–282,
2011.

[13] Kata Praditwong and Xin Yao. A new multi-objective evolutionary optimisation algorithm:
the two-archive algorithm. In Computational Intelligence and Security, 2006 International
Conference on, volume 1, pages 286–291. IEEE, 2006.

[14] Roger S Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan,
2005.

[15] I. Sommerville. Software Engineering. Addison Wesley, 2011.

RN/15/02 16

Improving the Clustering of a C/C++ Editor using a Multi-objective GA Paixao et al.

[16] Michel Wermelinger, Yijun Yu, Angela Lozano, and Andrea Capiluppi. Assessing architec-
tural evolution: a case study. Empirical Software Engineering, 16(5):623–666, 2011.

[17] Edward Yourdon and Larry L Constantine. Structured design: Fundamentals of a discipline
of computer program and systems design, volume 5. Prentice-Hall Englewood Cliffs, NJ,
1979.

RN/15/02 17

