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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Test suite prioritisation seeks a test case ordering that maximises the likelihood of early fault
revelation. Previous prioritisation techniques have tended to be single objective, for which the
additional greedy algorithm is the current state-of-the-art. We study multi objective test suite
prioritisation, evaluating it on multiple versions of five widely-used benchmark programs and
a much larger real world system of over 1MLoC. Our multi objective algorithms find faults
significantly faster and with large effect size for 20 of the 22 versions. We also introduce a non-
lossy coverage compact algorithm that dramatically scales the performance of all algorithms
studied by between 2 and 4 orders of magnitude, making prioritisation practical for even very
demanding problems.
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1 Introduction

Test case prioritisation seeks a test case ordering that favours early fault revelation [8]. Prioritisation is
useful when the tester is forced to terminate testing before all the test cases have been executed. Such
premature test termination can occur because of business imperatives, such as fixed release dates, or due
to budgetary constraints. Prioritisation is an attractive way to mitigate the reduction in test effectiveness
that would otherwise accompany premature test termination. Indeed, a recent survey revealed increasing
interest in prioritisation over other forms of regression test optimisation, such as selection and minimisa-
tion [32].

Of course, it is not known which tests will reveal which faults at test case prioritisation time, so some sur-
rogate has to be employed (as in other regression test optimisation approaches). Often structural coverage
is adopted as this surrogate [7, 20, 24, 37]. However, such a single objective ‘coverage only’ approach is
limited. In practice, the tester may have multiple technical and business imperatives driving their testing,
making it unrealistic to limit prioritisation to a single objective. Furthermore, even where the tester is solely
concerned with the single objective of fault revelation, there are likely to be multiple coverage-based sur-
rogates from which to choose, such as coverage of new functionality and coverage of previously revealed
faults.

These practical limitations of single objective regression test optimisation have led to an upsurge in interest
in multi objective regression testing [3, 14, 15, 19, 28, 31]. However, all but one of the previous studies of
multi objective regression test optimisation have been concerned with test case selection rather than test
case prioritisation. The only previous study to use a multi objective approach for prioritisation [19] was
primarily concerned with extending, to prioritisation, previous work on parallel computation speed-ups for
test case selection [34]. It therefore reports the reduction of optimisation time achieved by parallelisation,
but does not study multi objective test case prioritisation in its own right.

This paper studies multi objective test case prioritisation in detail. We consider three objectives: average
percentage of coverage achieved, average percentage of coverage of changed code, and average percent-
age of past fault coverage. The first objective is the previously widely-used surrogate for fault detection
capability. The second objective is included because we conjecture that prioritising differences between
versions is also an natural objective. Though considered in isolation, the trade-off between coverage of the
entire program and coverage of the differences has not previous been studied [32]. Finally, the third ob-
jective is included because previous work on test case selection [36] has noted that tests that have detected
faults in the past may tend to be more effective than those that have not.

We evaluated multi objective test case prioritisation on five SIR [5] programs (flex, grep, gzip, make
and sed), which contain seeded faults (as done in much of the previous literature [32]). Additionally, we
included a large real world system, mysql, which has not previously been studied in the literature and
for which we extracted information concerning its real faults. Multiple versions of the SIR programs are
available so, in total, we evaluated on 22 different versions.

We implemented two different multi objective test case prioritisation algorithms, one using the well-known
NSGA-II algorithm [4] and the other using the Two Archive multi objective algorithm [23] in addition to
the current state-of-the-art single-objective additional greedy algorithm. We used three standard solution
quality indicator metrics to compare the solutions found by the three algorithms. The results of our study
show that the multi objective test case prioritisation algorithms significantly outperform the state-of-the-art
with large effect sizes according to each of three quality metrics for 21 of the 22 versions studied.

Perhaps more importantly for practising testers, we also found that for 20 of the 22 versions studied, both
multi objective algorithms also outperformed the state-of-the-art in terms of test effectiveness; they find
faults significantly faster (and with large effect size in all 20 cases), according to the standard evaluation
metric, cost cognisant Average Percentage of Fault Detected (APFDc) [8].

We also introduce and evaluate coverage compaction, an algorithm for non-lossy coverage data com-
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paction. Coverage compaction algorithm is applicable to all regression testing problems as a pre-processing
phase. Our results indicate that it can dramatically improve performance: after compaction, the size of the
coverage data becomes smaller by a factor of between 7 and 488. With the largest studied program, mysql,
the compact size of the coverage data led to four orders of magnitude speed-up for multi objective evolu-
tionary algorithms, and two orders of magnitude speed-up for the additional greedy algorithm.

The technical contributions of this paper are as follows:

• We evaluate two multi objective evolutionary algorithms, as well as the state-of-the-art additional
greedy algorithm, in terms of their optimisation quality for the multi objective test case prioritisation
problem. The empirical study uses both standard benchmark programs and a large real world open
source software with over million lines of code and real faults: mysql.

• We also evaluate all three algorithms with respect to the rate of early fault detection, which is the
aim of test case prioritisation. The empirical study uses the widely studied cost cognisant Average
Percentage of Fault Detection (APFD) metric to evaluate the rate of fault detection.

• We introduce the coverage compaction algorithm, which can achieve up to 4 orders of magnitude
speed-up for MOEAs when applied to the coverage traces of a large system.

The rest of the paper is structured as follows. Section 2 describes the multi objective test case prioritisa-
tion problem and the coverage compaction. Section 3 outlines the research questions and how they are
answered. Section 4 describes the details of the experimental setup. Section 5 presents and analyses the
result of the empirical evaluation, and Section 6 discusses the threats to validity. Section 7 presents the
related work, and Section 8 concludes.

2 Multi Objective Test Case Prioritisation

2.1 Single Objective Formulation

The aim of test case prioritisation is to find the ordering of test cases that will help the tester to achieve
the maximum benefit, even if the testing procedure is prematurely halted. More formally, the Test Case
Prioritisation problem can be defined as follows [26]:

Definition 2.1. Test Case Prioritisation Problem: Given a test suite T, a set of orderings (permutations),
Π, of T, and a function f : Π→ R. The problem is to find a π′ ∈ Π such that:

(∀π′′)(π′′ ∈ Π)(π′′ 6= π′)[f(π′) ≥ f(π′′)].

The set Π represents the set of all possible orderings (permutations) of T, and the fitness (or objective)
function f maps each ordering to a real number, which should correspond to an award value for the ordering
under consideration. The ideal award value would represent how early faults are detected. However, this
is infeasible because at the time of prioritisation faults are not known. As a result, f is usually measured
using some surrogate for fault detection capability, such as structural coverage.

2.2 Multi Objective Formulation

Multi objective optimisation is based on the notion of Pareto optimality. With multiple objectives, an
ordering of test cases A is better than another ordering B, (or A dominates B), only when A excels B in at
least one objectives while not being worse of than B in all other objectives. More formally, let us assume
that we consider M different objectives (award functions), fi : Π → R, (1 ≤ i ≤ M). An ordering π1 is
said to dominate another ordering π2 if and only if the following is satisfied:

fi(π1) ≥ fi(π2), ∀i ∈ {1, 2, . . . ,M} and
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∃i ∈ {1, 2, . . . ,M} : fi(π1) > fi(π2)

When evolutionary algorithms are applied to single objective test case prioritisation, they produce a single
ordering with the maximum fitness value at the end. When applied to multi objective test case prioritisa-
tion, however, they will produce a set of orderings that are not dominated by any other orderings in the
population. This set of solutions are said to form a Pareto front.

2.3 Evaluating Test Orderings

The effectiveness of test case prioritisation is measured by the rate of fault detection achieved by the
produced ordering of test cases. Rothermel et al. first defined Average Percentage of Fault Detection
(APFD) evaluation metric for test case prioritisation [25], which, intuitively, measures how quickly faults
are detected by the given ordering.

Definition 2.2. Average Percentage of Fault Detection: Let T be a test suite containing n test cases, and
F be a set of m faults detected by T . Let TFi be the first test case in an ordering π of T that reveals fault
i. Given an ordering π of the test suite T , the Average Percentage of Fault Detection (APFD) metric is
defined as following:

APFD(π) = 1 +

∑m
i=1 TFi
nm

− 1

2n

Later, Elbaum et al. extended the metric to consider both fault severity and test case execution cost, and
defined the cost cognisant version, APFDc [9]. The APFD metric assumes that all faults have the same
severity (i.e. they have equal cost) and all test cases take the equal effort to execute. The cost cognisant
version, APFDc, incorporates weightings based on varying fault severities and execution costs.

Definition 2.3. Let t1, t2, . . . , tn be the costs of n test cases, and f1, f2, . . . , fm be the severities of m
detected faults. APFDc is defined as follows:

APFDc(π) =

∑m
i=1

(
fi ·
(∑n

j=TFi
tj − 1

2 tTFi

))
∑n

j=1 tj ·
∑m

i=1 fi

Due to the lack of robust fault severity models for the subject programs, we only use the test execution cost
weightings of APFDc and treat all faults as sharing the same severity (i.e. fi = 1 for 1 ≤ i ≤ m), which
yields the following:

APFDc(π) =

∑m
i=1

(∑n
j=TFi

tj − 1
2 tTFi

)
∑n

j=1 tj ·m

Since MOEAs will produce multiple solutions (i.e. orderings), we cannot evaluate MOEAs based on a
single APFDc value obtained from a single ordering. Instead, we calculate the average APFDc value from
all solutions a MOEA contributes to the reference Pareto front (please refer to Section 4.4 for the definition
of a reference Pareto front).

2.4 Objectives

In the current study, we consider a three-objective formulation of test case prioritisation. The objectives
used are common surrogates for fault detection capability and have been studied before in the literature,
but the trade-off between them under a multi objective formulation has not been considered before. Specif-
ically, we have used statement coverage, the difference of the statement coverage between two subsequent
versions (hereby referred to as ∆-coverage), and the historical fault information of the test suite. For all
three objectives, we measure the rate of their realisation, in a similar way to APFDc. To be cost cognisant,
we have also measured the execution cost of each test cases. We briefly describe the main characteristics
of each objective below.
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Statement Coverage: one well-known and widely-used surrogate for fault detection capability in regres-
sion testing literature is structural coverage [32], which is one of the necessary conditions to detect a fault
(i.e. one has to at least execute the faulty statement in order to detect it). Here, we use statement coverage
as the surrogate for fault detection capability.

∆-Coverage: the second objective used is the information about the difference of the statement coverage
between two consecutive versions (called ∆-coverage). In a regression testing scenario, one may expect
that new regression faults are likely to originate from the changed parts of the source code in the version
being tested. Therefore, the coverage of the changed parts only is a rational candidate for prioritisation
criterion.

Fault History Coverage: in a regression testing scenario, the tester may have information of the test
history regarding which test case detected faults in the past. When aggregated over all known faults,
this information can be represented in the form of coverage: a test case covers a known past fault if it
successfully detected the fault. The rational behind this objective is that, if a test case has revealed a fault
in the past, it has a better chance to reveal faults in the future. Fault history coverage has been used in
previous multi objective formulation of regression testing [31, 36] with successful results.

Execution Cost: one natural candidate for execution cost, the wall-clock time, is not only noisy but also
dependant on the underlying hardware environment and operating system, making it inaccurate and not
robust. To alleviate these issues, we use a widely used software profiling tool called valgrind [21].
Valgrind executes the given program in a virtual machine and can report the number of virtual in-
structions executed. This number provides a precise measurement of the computational effort required to
execute each test case. We profile the execution of each test case with Valgrind and use the number of
virtual instructions as a representative surrogate for execution cost.

Based on these measures, we form three objective functions for test case prioritisation as variations
of APFCc: Average Percentage of Statement Coverage (APSCc), Average Percentage of ∆-Coverage
(APDCc), and Average Percentage of Fault Coverage (APFCc). These are all defined by replacing TFi
(i.e. index of the test case that detects fault fi in the ordering) in Definition 2.3 with TSi, TDi, and THi.
They represent the index of the test case that covers the ith statement in the program, ith changed statement
in the program, and ith historical fault, respectively. As with the use of APFDc, we only use the execution
cost weighting with valgrind measurement and discard the fault severity weights. These three rate of
realisation objective metrics will be hereby collectively referred to as AP*Cc.

2.5 Algorithms

We use two different Multi Objective Evolutionary Algorithms (MOEAs) that have been previously applied
to software engineering problems. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4] is one
of the most widely studied multi objective optimisation algorithms and has been applied to various domain
ranging from Requirement Engineering [10] to regression testing [35]. The Two Archive Evolutionary
Algorithm (TAEA) [23] was specifically designed to overcome weaknesses of NSGA-II and has also been
applied to regression testing [35].

NSGA-II uses a crowding distance selection mechanism to promote diversity. Intuitively, given a set of
non-dominated solutions, crowding distance selection favours the solution farthest away from the rest of the
population, in order to promote diversity. It also adopts elitism to achieve fast convergence: the solutions
on the Pareto front in current generation are preserved into the next generation.

The Two-Archive algorithm is characterised by two separate archives that are used in addition to the pop-
ulation pool. The first archive is reserved for fast convergence, while the second is maintained to promote
diversity. During evolution, solutions of two different types are archived: non-dominated solutions that
dominate some other solutions are stored in the convergence archive, while those that do not dominate any
others are stored in the diversity archive. A pruning procedure is applied when the diversity archive reaches
a pre-specified size limit: the solution closest to the convergence archive will be discarded.
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We also implemented an additional greedy prioritisation algorithm [7]. This algorithm greedily selects test
cases, maximising coverage of statements that remain as yet uncovered by test cases that occur earlier in
the ordering. Specifically, the algorithm initially selects a test case that has the highest statement coverage.
Subsequently, it tries to find the next test case that will cover the largest number of statements that are yet
to be covered. This procedure is repeated until the highest possible coverage is reached, at which point the
algorithm is recursively applied to the remaining test cases until all test cases are ordered.

2.6 Compact Coverage

The biggest driver of computational cost for population based evolutionary algorithms is the large number
of fitness evaluations required to find a solution [35]. Whereas a constructive heuristic such as the addi-
tional greedy algorithm forms only a single solution, an evolutionary algorithm, with population size of p,
running for l generations is guaranteed to perform lp fitness evaluations. Moreover, when applied to the
optimisation of a regression test suite with n test cases covering m statements, a single fitness evaluation
has the complexity of O(nm): the fitness function iterates over n coverage traces of length m, either ag-
gregating them for selected test cases (for test suite minimisation) or tracing the achieved coverage (for
test case prioritisation). As a result, evolutionary algorithms applied to regression test suite optimisation
includes a fixed computational cost of O(lmnp).

We propose a novel algorithm called coverage compaction to reduce this cost. Given a test suite, n is
fixed; l and p may have to be tuned to achieve desirable outcome. However, the length of traces, m, can be
compacted without losing information. The compaction is based on the observation that coverage traces
data from structured programs often show highly repetitive patterns, because often some statements are
executed only by the same subset of test cases, regardless of their location.

2.6.1 Coverage Compaction Algorithm

Algorithm 1: Coverage Compaction Algorithm
Input: an n by m binary coverage matrix, M
Output: a compacted M
(1) i← 0
(2) while i < M.width
(3) cc←M(,i)

(4) for j = i+ 1 to M.width− 1
(5) if cc == M(,j)

(6) M(,i) ←M(,j) + cc
(7) delete M(,j) from M
(8) i← i+ 1
(9) return M

Algorithm 1 presents the compaction algorithm. It takes an n by m binary matrix that represents the
coverage of n test cases over m statements, and outputs a compact version of the same matrix. Intuitively,
each column in the compact matrix corresponds to a set of statements that are covered by the same subset
of test cases. For example, consider the example in Figure 1. If three statements are covered by all test
cases in the test suite, the compacted coverage matrix will contain a single column of all threes, instead of
three columns of all ones.

The coverage achieved by any subset of rows (i.e. test cases) can be calculated from the compact matrix.
Suppose we want to calculate the coverage of the subset of the second and the third test case in Figure 1.
With binary coverage matrix, the aggregation of rows is performed by bitwise OR; with the compact matrix,
the aggregation is performed by addition, but we only add the value of a column from a newly added row
when the corresponding column in the accumulated coverage row is still 0. For example, Aggregating
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1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 0

→
 3 1 2 0

3 0 0 0
3 0 2 0


Figure 1: Example of Coverage Compaction

the compact trace (3, 0, 0, 0) and (3, 0, 2, 0) therefore results in (3, 0, 2, 0), not (6, 0, 2, 0). The sum of all
numbers in the aggregated coverage vector, 5, is the number of statements covered by these two rows. The
statement coverage can be calculated using the number of statements, which is 8: 5

8 · 100 = 62.5%.

2.6.2 Calculating Objectives with Compact Coverage

Since compact coverage is lossless, the objective functions can be computed directly from it (and will be
considerably faster). In this section, we consider APSCc for an example. Let the original coverage trace
be a n by m matrix, containing coverage traces of n test cases for m statements. Let the compacted matrix
have m′ columns (m ≤ m after compaction). The compact version, CAPSCc, would then be defined as
follows:

CAPSCc(π) =

∑m′

i=1 ci ·
(∑n

j=TS′
i
tj − 1

2 tTS′
i

)
∑n

j=1 tj ·m

where TS′j(1 ≤ j ≤ n) is the index of the first test case that covers the ith column of the compacted
coverage matrix, and ci(1 ≤ i ≤ m′) is the non-zero entry in ith column. Essentially, whenever the
next test case covers a column in the compact coverage matrix, in fact ci statements are being covered in
the original program. APDCc and, if the number of historical faults is large enough, APFCc too, can be
calculated in a similar way.

3 Empirical Study

3.1 Research Questions

The empirical study compares the performance of the two multi objective evolutionary algorithms (NSGA-
II and TAEA), as well as the additional greedy algorithm, for the multi objective test case prioritisation
problem. The first research question, RQ1, concerns the quality of multi objective optimisation.

• RQ1. Optimisation Quality: Do MOEAs produce better quality solutions when compared to the
additional greedy algorithm? If so, how much better?

RQ1 is answered by calculating and comparing three widely used quality indicators for multi objective
optimisation for the result from each algorithm. These three quality indicators asses the quality of the
Pareto front produced by each algorithm, but they do not help the software engineer to determine which is
better at finding faults earlier. We therefore also ask RQ2:

• RQ2. Testing Effectiveness: How effective are the prioritized test suites in terms of early fault
detection?

RQ2 is answered by calculating and comparing the standard effectiveness measure for test case prioritisa-
tion, the APFDc metric. Our final research question, RQ3, concerns the efficiency of algorithms studied.
MOEAs used in this paper are population based algorithms, usually demanding longer execution time due
to the large number of fitness evaluation (i.e. calculations of AP*Cc values). RQ3 compares the execution
time of three algorithms, with and without coverage compaction.
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• RQ3. Effort requirement/Efficiency: How much effort is required to detect high quality test suite
prioritisations? How much difference does the coverage compaction make?

RQ3 is answered by comparing the average wall-clock execution time from repeated runs of all three
algorithms, both with and without coverage compaction.

4 Experimental Setup

4.1 Subjects

We evaluate multi objective test case prioritisation using six C/C++ open source programs as subjects. Five
subject programs are Unix utilities taken from the widely-used Software-artefact Infrastructure Repository
(SIR) [5]: flex, grep, gzip, make, and sed. The sixth subject program is mysql, one of the most
popular open source relational database management systems [22].

Table 1: Size of versions of subject programs in Lines of Code

Object V1 V2 V3 V4 V5 V6 V7

flex 9,484 10,217 10,243 11,401 10,332 N/A N/A
grep 9,400 9,977 10,066 10,107 10,102 N/A N/A
gzip 4,528 5,055 5,066 5,185 5,689 N/A N/A
make 14,357 28,988 30,316 35,564 N/A N/A N/A
sed 5,488 9,799 7,082 7,085 13,374 13,393 14,437

V0 V1 V2

mysql 1,282,282 1,283,361 1,283,504

Table 1 presents the size of the studied subject programs in Lines of Code (LOC), measured with the
cloc tool1. All subjects have multiple consecutive versions available. The versions of the Unix tools are
provided by the SIR. The three versions of mysql are obtained from the 5.5.X source tree: V0 corresponds
to 5.5.15, V1 and V2 to 5.5.16 and 5.5.17 respectively.

In total, 29 versions of six subject programs have been used to create the data required to evaluate the
proposed methodologies in 22 different test case prioritisation instances. The number of instances is 22
(not 29) because the data from the previous version is required for prioritisation (i.e. we cannot prioritise
V1s). In addition, mysql-v0 was used as the baseline to collect the regression faults in mysql-v1.

Table 2: Test suite size and the average number of faults per version

Subject: flex grep gzip make sed mysql

#Test Cases 567 809 214 1,043 360 2,005
#Faults 16.6 11.4 11.8 8.75 4.57 20

Table 2 reports the size of the test suites and the average number of faults per version. Subject programs
from SIR provide test suites described in Test suite Specification Language (TSL). SIR also provides ver-
sions of programs with seeded faults (a full description of the fault seeding is available from the SIR2).

The source code of mysql comes with a testing framework that provides a set of test cases and the in-
frastructure required for their execution. We use the test suite for V0 as the regression test suite for all

1http://cloc.sourceforge.net
2http://sir.unl.edu/
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subsequent versions3. We manually collected 20 real faults from the online bug-tracking system used by
mysql community4. The faults used in this paper are those with “closed” status and fix patches. These
faults were then seeded back to the source code of the corresponding version by inverting and applying the
fix patch.

4.2 MOEA Configuration

NSGA-II and TAEA share the same configuration to facilitate a fair comparison. The population size
is 250. We use widely used genetic operators for permutation type representation: Partially Matched
Crossover (PMX) and swap mutation, as well as binary tournament selection [11,12]. The crossover rate is
set to 0.9, and the mutation rate is set to 1

n where n is the number of test cases. The termination criterion for
both algorithms is based on the maximum available budget of fitness evaluations, which is fixed to 25, 000
for SIR subjects and 50, 000 for mysql. Finally, the archive size in TAEA is set to twice the size of the
population. To cater for the stochastic nature of algorithms, both MOEAs are executed 30 times.

4.3 Measurements & Environment

Statement coverage data is obtained using the GNU gcov profiling tool. The ∆-coverage is generated by
combining the statement coverage information with the results of Unix diff tool applied to two consec-
utive versions. The execution cost of each test case is measured using the valgrind profiling tool, as
discussed in Section 2.4.

For SIR objects, the execution time of the additional greedy algorithm as well as the MOEAs was measured
on a machine equipped with AMD Opteron CPU and 16 GB of RAM, running CentOS Linux 6.4. For
mysql, the same system could not execute neither greedy algorithm nor MOEAs due to insufficient amount
of memory; as a result, we measured the execution time of all algorithms on a cluster node equipped with
Intel Xeon X7500 CPU and 1024 GB of RAM, running CentOS Linux 6.5. Execution time was measured
using system clock.

4.4 MOEA Quality Indicators

The main goal of a MOEA is to find the true Pareto front of the given multi objective optimisation prob-
lem. However, it is usually infeasible to obtain the true Pareto front. The output of MOEAs are usually
approximations of the true Pareto front. There are two ways to evaluate such approximations. First, the
approximation should be as close as possible to the true Pareto front (convergence). Second, the acquired
solutions should be as diverse as possible (diversity). The proximity to the true Pareto front ensures high
quality of the found solutions, whereas the diversity indicates the search space has been explored as thor-
oughly as possible to present the decision maker with a variety of solutions.

However, the convergence to the true Pareto front cannot be measured, simply because the true front is not
known. In practice, we use a reference Pareto front as a surrogate. A reference Pareto front consists of the
best non-dominated solutions found by all evaluated algorithms. Formally, the reference Pareto front, Pref ,
can be defined as follows:

Definition 4.1. Reference Pareto Front: Let us assume that we have N different Pareto fronts, Pi(i =
1, 2, . . . , N), and the union of all Pi, PU. The reference Pareto front, Pref , is defined as: Pref ⊂ PU :
(∀p ∈ Pref)(@q ∈ PU)(q � p), where � is the Pareto dominance relation.

To answer RQ 1, we use three widely studied MOEA quality indicators: EPSILON, Inverted Generational
Distance (IGD), and Hyper Volume (HV). EPSILON and IGD are distance based indicators that measure
convergence, while HV measures diversity of a solution set. Given a Pareto front A and a reference Pareto
front:

3A detailed documentation of the mysql Test Framework and its components can be found in: http://dev.mysql.com/
doc/mysqltest/2.0/en/

4http://bugs.mysql.com/
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• EPSILON measures the shortest distance that is required to transform every solution in A so that it
dominates the reference Pareto front [18].

• IGD is the average distance from solutions in the reference Pareto front to the closest solution in
A [30].

• HV is the volume of objective space dominated by solutions in A [38].

With EPSILON and IGD, the lower the indicator value is, the closer A is to the reference Pareto front,
which adds confidence to its convergence to the true front. With HV, the higher the indicator value is, the
more diverse the solutions in A is (as they collectively dominate larger volume).

4.5 Statistical Tests

To assess the statistical significance of differences in performance, measured by the quality indicators, we
use non-parametric Wilcoxon-signed rank test [1,13] (the Shapiro-Wilk normality test [27] does not report
normality in the samples). The null hypothesis is that the median difference between two sets of quality
indicator values is zero; the alternative hypothesis is that one algorithm produces either lower (or higher,
in case of HV) median quality indicator values. We use 0.05 significance level. In addition, to address the
problem of the higher probability of Type I errors in multiple comparisons, we have applied the standard
Bonferroni adjustment [1] and report the adjusted p-value, pBonf . This is conservative, but safer in the
sense that it avoids Type I errors.

Furthermore, to assess the magnitude of an algorithm’s performance improvement, we use a non-parametric
effect size measure, called Vargha and Delaney’s Â12 statistic [29]. Intuitively, given a quality indicator
measure I and two algorithms A1 and A2 for comparison, the Â12 measures the probability that I(A1)
yields a higher value than I(A2). For example, Â12 = 0.8 suggests that algorithm A1 will outperform
A2 in 80% of the runs. If two algorithms are equivalent, then Â12 = 0.5. According to Vargha and
Delaney [29], differences between populations can be characterised as small, medium and large when Â12

is over 0.56, 0.64, and 0.71, respectively.

Table 3: Descriptive statistics and statistical significance analysis on the performance of
the optimization algorithms in terms of the EPSILON, HV and IGD indicators. For each
subject version, we present mean (µ) and standart deviation (σ) of the quality indicators
for the NSGA-II (N), the TAEA (T) and the additional greedy (G) algorithm. We statisti-
cally compare each pair of algorithms on each quality indicator and report p-values for the
Wilcoxon test (p-value) and the Bonferroni correction (pBonf ), as well as the Â12 effect
size. NSGA-II and TAEA outperform the additional greedy algorithm in the majority of
the subject versions.

EPSILON HV IGD EPSILON HV IGD

Alg. µ σ µ σ µ σ Alg. p-value pBonf Â12 p-value pBonf Â12 p-value pBonf Â12

flex-v2
N 0.005 0.001 0.768 0.051 0.006 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.004 0.002 0.857 0.049 0.005 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.225 0.000 0.000 0.000 3.290 0.000 T vs N 0.009 0.027 0.29 <0.001 <0.001 0.12 0.003 0.010 0.27

flex-v3
N 0.003 0.001 0.574 0.057 0.019 0.004 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.001 0.001 0.671 0.090 0.020 0.006 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.191 0.000 0.000 0.000 9.509 0.000 T vs N <0.001 <0.001 0.05 <0.001 <0.001 0.18 0.334 1.000 0.54

flex-v4
N 0.003 0.001 0.200 0.148 0.019 0.008 N vs G <0.001 <0.001 1.00 <0.001 <0.001 0.92 <0.001 <0.001 1.00
T 0.003 0.003 0.224 0.274 0.031 0.033 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.80 <0.001 <0.001 1.00
G 0.181 0.000 0.000 0.000 8.923 0.000 T vs N 0.128 0.384 0.39 0.846 1.000 0.55 0.324 0.971 0.48

flex-v5
N 0.001 0.001 0.526 0.158 0.022 0.006 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.003 0.002 0.246 0.243 0.040 0.021 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.85 <0.001 <0.001 1.00
G 0.189 0.000 0.000 0.000 46.182 0.000 T vs N <0.001 <0.001 0.85 <0.001 <0.001 0.82 <0.001 <0.001 0.84

gzip-v2
N 0.000 0.000 0.792 0.033 0.003 0.003 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.000 0.000 0.752 0.101 0.005 0.005 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.001 0.000 0.000 0.000 0.167 0.000 T vs N <0.001 <0.001 0.08 0.031 0.092 0.63 0.118 0.354 0.60

gzip-v3
N 0.000 0.000 0.144 0.145 0.029 0.010 N vs G <0.001 <0.001 1.00 <0.001 <0.001 0.95 <0.001 <0.001 1.00
T 0.000 0.000 0.602 0.171 0.010 0.006 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
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G 0.011 0.000 0.000 0.000 0.561 0.000 T vs N <0.001 <0.001 0.03 <0.001 <0.001 0.05 <0.001 <0.001 0.04

gzip-v4
N 0.000 0.000 0.533 0.120 0.015 0.004 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.000 0.000 0.705 0.174 0.009 0.009 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.98 <0.001 <0.001 1.00
G 0.032 0.000 0.000 0.000 2.665 0.000 T vs N <0.001 <0.001 0.16 <0.001 <0.001 0.14 <0.001 <0.001 0.12

gzip-v5
N 0.000 0.000 0.986 0.009 0.004 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.000 0.000 0.979 0.025 0.005 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.116 0.000 0.059 0.000 0.036 0.000 T vs N 0.773 1.000 0.35 0.258 0.774 0.56 <0.001 <0.001 0.82

grep-v2
N 0.004 0.001 0.702 0.051 0.009 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.003 0.001 0.773 0.122 0.010 0.002 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.096 0.000 0.000 0.000 0.041 0.000 T vs N <0.001 <0.001 0.05 0.014 0.041 0.24 0.002 0.007 0.68

grep-v3
N 0.005 0.001 0.590 0.038 0.014 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.004 0.001 0.698 0.042 0.014 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.043 0.000 0.000 0.000 0.060 0.000 T vs N <0.001 <0.001 0.04 <0.001 <0.001 0.02 0.934 1.000 0.51

grep-v4
N 0.005 0.001 0.714 0.033 0.005 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.004 0.001 0.778 0.029 0.005 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.027 0.000 0.000 0.000 0.035 0.000 T vs N <0.001 <0.001 0.10 <0.001 <0.001 0.06 0.696 1.000 0.51

grep-v5
N 0.003 0.001 0.015 0.035 0.026 0.005 N vs G <0.001 <0.001 1.00 0.004 0.012 0.68 <0.001 <0.001 1.00
T 0.003 0.001 0.118 0.158 0.022 0.010 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.85 <0.001 <0.001 1.00
G 0.007 0.000 0.000 0.000 2.489 0.000 T vs N 0.376 1.000 0.42 <0.001 <0.001 0.26 0.080 0.241 0.36

make-v2
N 0.003 0.001 0.727 0.042 0.009 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 0.90 <0.001 <0.001 1.00
T 0.003 0.001 0.783 0.057 0.010 0.002 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.97 <0.001 <0.001 1.00
G 0.015 0.000 0.672 0.000 0.022 0.000 T vs N <0.001 0.001 0.22 <0.001 <0.001 0.21 0.113 0.340 0.58

make-v3
N 0.003 0.001 0.458 0.098 0.037 0.006 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.002 0.001 0.526 0.235 0.040 0.017 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 0.93
G 0.016 0.000 0.000 0.000 0.073 0.000 T vs N 0.113 0.340 0.34 0.123 0.369 0.35 0.789 1.000 0.47

make-v4
N 0.000 0.000 0.059 0.125 0.359 0.220 N vs G <0.001 <0.001 1.00 <0.001 <0.001 0.00 <0.001 <0.001 0.00
T 0.002 0.001 0.000 0.000 4.745 2.470 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.00 <0.001 <0.001 0.00
G 0.008 0.000 0.000 0.000 0.097 0.000 T vs N <0.001 <0.001 0.99 <0.001 <0.001 0.00 <0.001 <0.001 0.99

sed-v2
N 0.002 0.000 0.656 0.071 0.021 0.005 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.002 0.001 0.792 0.068 0.012 0.005 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.028 0.000 0.000 0.000 0.093 0.000 T vs N 0.002 0.006 0.28 <0.001 <0.001 0.09 <0.001 <0.001 0.04

sed-v3
N 0.003 0.001 0.740 0.031 0.006 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.002 0.001 0.797 0.035 0.006 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.143 0.000 0.000 0.000 0.137 0.000 T vs N 0.004 0.012 0.29 <0.001 <0.001 0.11 0.681 1.000 0.54

sed-v4
N 0.001 0.000 0.492 0.105 0.030 0.008 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.001 0.001 0.568 0.265 0.028 0.022 T vs G <0.001 <0.001 1.00 <0.001 <0.001 0.97 <0.001 <0.001 1.00
G 0.007 0.000 0.000 0.000 0.151 0.000 T vs N 0.422 1.000 0.35 0.168 0.505 0.26 0.210 0.629 0.28

sed-v5
N 0.008 0.004 0.719 0.041 0.009 0.003 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.008 0.004 0.772 0.042 0.009 0.003 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.062 0.000 0.000 0.000 0.034 0.000 T vs N 1.000 1.000 0.51 <0.001 <0.001 0.18 0.651 1.000 0.54

sed-v6
N 0.002 0.000 0.684 0.067 0.010 0.003 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.001 0.000 0.839 0.063 0.005 0.002 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.018 0.000 0.000 0.000 0.285 0.000 T vs N <0.001 <0.001 0.04 <0.001 <0.001 0.05 <0.001 <0.001 0.10

sed-v7
N 0.002 0.000 0.833 0.025 0.004 0.001 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.002 0.000 0.859 0.031 0.003 0.001 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.036 0.000 0.000 0.000 0.046 0.000 T vs N <0.001 <0.001 0.16 0.005 0.015 0.27 0.100 0.300 0.35

mysql-v2
N 0.007 0.003 0.424 0.079 0.025 0.005 N vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
T 0.006 0.004 0.438 0.145 0.026 0.008 T vs G <0.001 <0.001 1.00 <0.001 <0.001 1.00 <0.001 <0.001 1.00
G 0.207 0.000 0.000 0.000 0.076 0.000 T vs N 0.821 1.000 0.46 0.294 0.883 0.39 0.472 1.000 0.55

5 Results & Discussion

5.1 Optimisation Quality
We first consider the quality of solutions produced by the multi objective and the additional greedy algorithm. Table 3 presents the complete
quantitative results from the NSGA-II (denoted ‘N’), the TAEA (‘T’) and the additional greedy algorithm (‘G’) applied to 22 versions of subject
programs. The left side of Table 3 shows the quality indicators (EPSILON, IGD, and HV) applied to three algorithms; the right side presents
the results of statistical hypothesis testing between three pairs of algorithms. To indicate the best performing cases, we highlight, in the left side,
the cases where an algorithm exhibits better performance values with boldface font5. On the right side, we highlight the cases with statistically
significant differences (for the α = 0.05 level of significance) with boldface font. In addition, for the Â12 effect size metric, we underline the
medium effect size (there is only one such case) and highlight the large effect size with boldface font.

5Note that lower values indicate better performance for EPSILON and the IGD, while the opposite holds for the HV.
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Table 4: APFDc values from all three algorithms: MOEAs outperform the additional
greedy in 20 out of 22 versions with statistical significance.

Alg. µ σ Alg. p-value pBonf Â12 Alg. µ σ Alg. p-value pBonf Â12

flex-v2
N 0.999 0.000 N vs G <0.001 <0.001 1.00

grep-v5
N 1.000 0.000 N vs G <0.001 <0.001 1.00

T 0.999 0.000 T vs G <0.001 <0.001 1.00 T 1.000 0.000 T vs G <0.001 <0.001 1.00
G 0.809 0.000 T vs N 0.014 0.043 0.32 G 0.999 0.000 T vs N 0.600 1.000 0.57

flex-v3
N 0.987 0.006 N vs G <0.001 <0.001 1.00

make-v2
N 0.993 0.002 N vs G <0.001 <0.001 1.00

T 0.993 0.003 T vs G <0.001 <0.001 1.00 T 0.994 0.003 T vs G <0.001 <0.001 1.00
G 0.818 0.000 T vs N <0.001 <0.001 0.18 G 0.982 0.000 T vs N 0.013 0.038 0.35

flex-v4
N 0.999 0.000 N vs G <0.001 <0.001 1.00

make-v3
N 0.996 0.002 N vs G <0.001 <0.001 0.97

T 0.999 0.000 T vs G <0.001 <0.001 1.00 T 0.997 0.002 T vs G <0.001 <0.001 1.00
G 0.810 0.000 T vs N 0.028 0.083 0.28 G 0.991 0.000 T vs N 0.006 0.018 0.28

flex-v5
N 1.000 0.000 N vs G <0.001 <0.001 1.00

make-v4
N 0.998 0.002 N vs G <0.001 <0.001 1.00

T 1.000 0.000 T vs G <0.001 <0.001 1.00 T 0.999 0.002 T vs G <0.001 <0.001 1.00
G 0.856 0.000 T vs N 0.015 0.046 0.70 G 0.989 0.000 T vs N 0.049 0.147 0.26

gzip-v2
N 1.000 0.001 N vs G <0.001 <0.001 0.97

sed-v2
N 0.890 0.026 N vs G <0.001 <0.001 0.93

T 1.000 0.000 T vs G <0.001 <0.001 1.00 T 0.886 0.045 T vs G 0.002 0.005 0.77
G 0.999 0.000 T vs N 0.118 0.354 0.36 G 0.854 0.000 T vs N 0.484 1.000 0.54

gzip-v3
N 1.000 0.000 N vs G <0.001 <0.001 1.00

sed-v3
N 0.975 0.004 N vs G 0.002 0.007 0.27

T 1.000 0.000 T vs G <0.001 <0.001 1.00 T 0.980 0.004 T vs G 0.005 0.014 0.73
G 1.000 0.000 T vs N 0.008 0.024 0.28 G 0.977 0.000 T vs N <0.001 <0.001 0.18

gzip-v4
N 1.000 0.000 N vs G <0.001 <0.001 1.00

sed-v4
N 0.996 0.004 N vs G 0.524 1.000 0.63

T 1.000 0.000 T vs G <0.001 <0.001 1.00 T 0.996 0.002 T vs G 0.217 0.651 0.67
G 0.999 0.000 T vs N <0.001 <0.001 0.13 G 0.988 0.046 T vs N 0.434 1.000 0.64

gzip-v5
N 0.992 0.005 N vs G <0.001 <0.001 1.00

sed-v5
N 0.965 0.006 N vs G <0.001 <0.001 0.01

T 0.992 0.008 T vs G <0.001 <0.001 1.00 T 0.974 0.006 T vs G <0.001 <0.001 0.17
G 0.857 0.000 T vs N 0.334 1.000 0.40 G 0.981 0.005 T vs N <0.001 <0.001 0.16

grep-v2
N 0.980 0.004 N vs G <0.001 <0.001 1.00

sed-v6
N 0.966 0.006 N vs G <0.001 <0.001 0.07

T 0.986 0.005 T vs G <0.001 <0.001 1.00 T 0.976 0.006 T vs G 0.013 0.038 0.73
G 0.932 0.000 T vs N <0.001 <0.001 0.17 G 0.973 0.000 T vs N <0.001 <0.001 0.11

grep-v3
N 0.982 0.004 N vs G <0.001 <0.001 1.00

sed-v7
N 0.859 0.018 N vs G <0.001 <0.001 1.00

T 0.982 0.004 T vs G <0.001 <0.001 1.00 T 0.855 0.019 T vs G <0.001 <0.001 1.00
G 0.968 0.000 T vs N 0.886 1.000 0.50 G 0.735 0.000 T vs N 0.742 1.000 0.54

grep-v4
N 0.994 0.001 N vs G <0.001 <0.001 0.83

mysql-v2
N 0.706 0.020 N vs G <0.001 <0.001 1.00

T 0.995 0.002 T vs G <0.001 <0.001 0.87 T 0.719 0.036 T vs G <0.001 <0.001 1.00
G 0.993 0.000 T vs N 0.042 0.125 0.35 G 0.534 0.000 T vs N 0.139 0.416 0.40

The results provide a positive answer to RQ1. Both NSGA-II and TAEA outperform the additional greedy algorithm, for all subject programs and
versions, with their quality indicator metrics. The additional greedy algorithm is unable to produce as many solutions on or close to the reference
front set as MOEAs: this is indicated by the high values of the EPSILON and IGD indicators. HV indicator values of the additional greedy
algorithm are mostly nearly zero, which is expected because, being a single objective algorithm, it does not try to optimise for all three objectives.

The performance difference between the additional greedy and the MOEAs is statistically significant with large effect size in all but one case.
that is, the observed p-values (both the Wilcoxon-signed rank test p-values and its adjusted pBonf ) are significant at the α = 0.05 significance
level, confirming the alternative hypothesis. Note that NSGA-II and TAEA significantly outperform the additional greedy algorithm in all cases
in EPSILON and IGD measures, while they exhibit significant improvement on only 21 out of 22 versions in the HV measure.

In terms of p-values, TAEA shows statistically significant improvements over NSGA-II in 14 out of 22 subject versions. However the effect
size in the majority of these cases is not substantial. Furthermore, in the largest subject mysql-v2, the difference between the two MOEAs is
inconclusive; TAEA contributes slightly more to the diversity of the reference front (indicated by the higher HV measure). Further study is needed
to make a conclusive comparison of TAEA and NSGA-II.

Figure 2 plots Pareto fronts for make-v2 and mysql-v2. In both cases, the additional greedy algorithm produces a single solution that is on
the reference Pareto front. However, the trade-offs between objectives identified by MOEAs suggests that there often exist other solutions that can
significantly outperform the solution produced by the additional greedy algorithm.

5.2 Effectiveness of Prioritisation

We thus turn to RQ2 to investigate the early fault detection capability. Table 4 reports the APFDc metric values achieved by all three algorithms
for 22 subject versions. It also presents the statistical hypothesis testing between three pairs of algorithms.

We observe that, in the majority of the subject versions, MOEAs outperform the additional greedy algorithm according to APFDc. That is, in 20
out of 22 versions, both NSGA-II and TAEA exhibit statistically significant improvement in APFDc over the additional greedy algorithm, with
large effect sizes according to the Â12 statistic. TAEA shows the best average performance in 19 out of the 22 versions, while NSGA-II does so
in 12 versions. The additional greedy algorithm only performs as well as MOEAs in two cases: gzip-v2 and gzip-v3. In sed-v2, NSGA-II
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Figure 2: 3D Plots of Pareto fronts for make-v2 and mysql-v2

outperforms the additional greedy algorithm with statistic significance, but the effect size is small. Between NSGA-II and TAEA, TAEA produces
better mean performance, with statistically significant improvements in 10 out of the 22 subject versions. However, note that the effect size is large
only in one case (flex-v5). With mysql-v2, both NSGA-II and TAEA outperform the additional greedy algorithm with statistical significance
and large effect sizes. While TAEA exhibits the best average performance for mysql-v2, the difference to NSGA-II is not significant.

To answer RQ2, both MOEAs can outperform the additional greedy algorithm in terms of APFDc: if the decision maker chooses a solution on
the reference Pareto front produced by an MOEA, there is a high chance that the ordering will produce a higher APFDc value than that of the
additional greedy algorithm.

5.3 Efficiency

Finally, we consider the efficiency of the studied algorithms. To answer RQ3, we measure the size of coverage trace data, as well as the execution
time of each algorithm. Table 5 shows the average size of coverage trace data across all versions of studied subject programs, both before (SO)
and after (SC ) the application of our coverage compaction algorithm. The reduction percentage of the coverage trace size, R%, is calculated as
100 · (SO−SC)/SO . Also the ratio SO/SC shows how many times smaller is the coverage trace size after compaction. In all subject programs,
the coverage compaction achieves close to or over 90% of size reduction. In particular, mysql experiences 99.9% size reduction.

Table 5: Average coverage trace size per subject program before (SO) and after (SC) compaction
Coverage Trace Size

flex grep gzip make sed mysql

SO 3822.83 3338.00 1887.33 5901.60 3360.62 447316.67
SC 354.67 457.33 93.00 123.60 223.88 916.00

R% 90.72 86.30 95.07 97.91 93.34 99.80

SO/SC 10.78 7.30 20.29 47.75 15.01 488.34

The size reduction leads to reduction in execution time. We have measured the wall clock execution time of all three algorithms for 30 times6,
using the same configuration described in Section 4.2. Table 6 shows the mean (µ) and the standard deviation (σ) of the average wall clock
execution time that each algorithm takes, with and without compact coverage, along with the speed-up.

Being a single objective heuristic, it is expected that the additional greedy algorithm will be the fastest algorithm on average. Without coverage
compaction, it takes less than 30 seconds for all SIR subjects, and less than 1.5 hours for mysql. On the other hand, both NSGA-II and TAEA
take from slightly over a minute (gzip) to over 35 minutes (make) with SIR subjects. The execution time of MOEAs for mysql becomes
pathological without coverage compaction, as they take almost 9 days.

Fortunately, the application of the coverage compaction algorithm makes a dramatic change to the performance of all three algorithms. For the
SIR subjects, the MOEAs terminate within 40 seconds, achieving speed-ups ranging from one to two orders of magnitude. However, the biggest
speed-up is observed in the largest subject, mysql: their execution times are reduced from about 8.7 days to slightly over a minute, achieving 4
orders of magnitude speed-up (about 10,000 times faster). The additional greedy algorithm can also prioritise mysql test cases under 7 seconds
after coverage compaction (a speed-up of 2 orders of magnitude).

It is clear that the application of the compaction algorithm can introduce critical efficiency improvement when employing meta-heuristic search
algorithms and, in particular, MOEAs, to regression testing optimisation that involves structural coverage. This may prove to be a pivotal contribu-
tion for future work. Without coverage compaction, a large real world systems such as mysql will not be able to take advantage of MOEA-based

6Note that the execution time of MOEAs for mysql could not be measured for 30 times, as each run took over a week. We
could only repeat it twice.

RN/14/01 Page 12



Pareto Efficient Multi-Objective Regression Test Suite Prioritisation Epitropakis et al.

Table 6: Average wall clock execution time in seconds without and with Compaction, along with Speed-up
No Compaction Compaction

Alg. µ σ µ σ Speed-up

flex
N 627.276 80.413 16.472 13.547 38.082
T 628.520 81.659 19.375 19.222 32.440
G 4.538 0.398 0.452 0.053 10.034

gzip
N 79.841 9.093 8.069 14.928 9.895
T 81.243 10.012 6.143 17.593 13.226
G 0.343 0.032 0.015 0.008 23.641

grep
N 926.386 145.629 34.479 13.754 26.868
T 905.816 157.088 38.903 35.802 23.284
G 8.693 0.641 1.256 2.021 6.921

make
N 2117.282 222.362 18.498 21.619 114.460
T 2100.426 220.702 22.290 28.970 94.232
G 27.062 1.781 0.398 0.206 68.064

sed
N 280.284 132.083 8.588 2.592 32.639
T 279.579 125.271 8.785 4.150 31.824
G 4.781 10.168 0.126 0.040 38.067

mysql
N 758170.247 562.460 73.624 4.411 10297.896
T 756153.493 982.511 72.253 5.533 10465.357
G 5013.982 66.392 6.899 0.386 726.790

regression testing optimisation. The reduced execution time also enables the use of MOEA-based techniques in time-limited testing scenarios,
such as smoke testing, for which GPGPU based speed-up has been introduced [35].

6 Threats to Validity

The main threat to internal validity derives from potential instrumentation inaccuracy. To alleviate this, we employed widely used and tested open
source tools, such as gcov, diff, and the valgrind profiling tool. To avoid any bias, we choose the majority of our subject programs from a
well-managed software repository [5], where not only the subject programs and their test suites, but also the fault seeding process is documented.
With mysql, we choose a mature source code branch (5.5.X) that available well-documented and tested; all artefacts and fault information used
are available from the mysql website and bug tracker system.

Another potential threat to internal validity lies on the selection of the optimisation algorithms. We choose two well-known MOEAs that have
been successfully applied to software engineering problems [10, 35]. However, only further studies with different algorithms can eliminate this
threat.

Threats to external validity are centred around the representativeness of the studied subjects, and how it affects the generalisation of the claims.
We choose not only the standard benchmark in the literature but also a large and complex real world system to avoid over-fitting our results to a
small set of programs. However, wider generalisation will require further empirical studies with a disjoint set of subject programs.

7 Related Work

Recent trend in the regression literature suggests that test case prioritisation is receiving increasing attention [32]: prioritisation does not exclude the
execution of any test case completely (it will eventually accomplish the “retest-all” strategy), yet promises the maximum benefit when testing may
have to terminate prematurely. Structural coverage has been widely used as the prioritisation criterion [6, 8, 16]. Coverage of differences between
two versions of program has been considered as an isolated single objective for prioritisation [7], but ours is the first paper to study the trade-off
between coverage of differences and coverage of the entire system. Evolutionary algorithms have been applied to test case prioritisation [20],
but only with single objective formation, apart from Li et al. [19], which is concerned with parallelisation speed-ups and not fault detection and
solution quality.

Other prioritisation criteria in the literature include time of last test execution [17], coverage augmented by human knowledge [33], and interaction
coverage [2]. The multi objective approach used in this paper is agnostic to the objective functions, and can be applied to any combination of these
objective in addition to structural coverage.

The size of coverage trace data from large systems can significantly increase the execution time of evolutionary algorithms, limiting the scalability
of the technique. Generic Purpose computation on Graphics Processing Units (GPGPU) has been suggested to parallelise and, therefore, improve
the scalability [19, 35]. This paper proposes compact coverage, which provides 2 to 5 orders of magnitude speed-up without any parallelism.
Moreover, the compact coverage is compatible with the existing GPGPU parallelism, so could provide further scalability over-and-above that
available through parallelisation.

8 Conclusions

In this paper we have introduced and empirically evaluated two multi objective test suite prioritisation techniques, based on the multi objective
evolutionary algorithms NSGA-II and TAEA. We evaluate them against the state-of-the-art on a set of five utility programs from the Software
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Infrastructure Repository (SIR), together with a larger program, mysql, from which we extracted fault data for 20 of its faults (all of which have
status “closed”).

Even when the tester has only a single objective in mind, it is useful to use a multi objective formulation to improve early fault revelation. Since
fault-revealing tests are unidentifiable at prioritisation time, the tester is forced to use a surrogate. We introduce a three-objective formulation of
the problem, in which all three objectives are coverage-related surrogates. Our results demonstrate that this approach is highly effective; we find
faults significantly faster than the state-of-the-art and with large effect size in 19 out of the 22 cases studied.

We also introduce coverage compaction algorithm which dramatically reduces coverage data size, and thereby algorithm execution time. On the
larger program, mysql, the additional greedy algorithm takes 1.4 hours to prioritise without compaction, but only 7 seconds after compaction.
The performance improvement is even more dramatic for the multi objective algorithms. Their performance is improved from over eight days
to a little over one minute. Since compaction can be applied to any and all regression testing approaches, we believe that these performance
improvements may make an important contribution to the practical application of repression test optimisation in future work.
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