

Research Note
RN/13/09

Efficiently Vectorized Code for Population Based

 Optimization Algorithms

2013-03-28

Oliver Rice

Rickard Nyman

Abstract

This article outlines efficient vector code commonly required for population based
optimization methods. Specifically, techniques for population generation, probabilistic
selection, recombination & mutation are introduced. These coding ’best practices’ emphasize
execution speed and concision over readability. As such, each snippet is initially coded in
verbose, readable form, and subsequently condensed to maximize efficiency gains. Examples
are provided in MATLAB code, though many port directly to other vector/matrix based
languages such as R and Octave with minor syntactic adjustments.

UCL DEPARTMENT OF
COMPUTER SCIENCE

1. Introduction

Population based optimization methods are most often associated with discrete opti-
mization problems too large or complex to be solved deterministically. We focus primarily
on the model of genetic algorithms though much of the proposed code is directly trans-
ferable to other algorithm candidates. These methods rely on generation of a randomly
seeded population of solution candidates which are probabilistically selected for recombina-
tion and subsequently mutated. As this article is intended for practitioners with a general
understanding of genetic algorithm structure, detailed theoretical explanations have been
omitted.

This document outlines the basic components of genetic algorithms with MATLAB code
samples. The code is initially presented using the typical C style approach within MATLAB,
and then be condensed to e�cient MATLAB code. Explanations are provided to detail
sources of e�ciency gains when possible.

General rules of thumb when writing in vector or matrix based programming languages
are to avoid loops, leverage vector overloaded functions and utilize indexing to the maximal
extent possible. While avoiding loops has become somewhat less crucial in recent years
due to implementation of MATLAB’s Just-In-Time (JIT) compiler replacing the previous
fully interpreted architecture, other vector languages such as R and Octave remain fully
constrained.

There are 5 sections in the most basic genetic algorithms. These sections are:

1. Initial Population

2. Fitness

3. Selection

4. Recombination

5. Mutation

With the exception of fitness, which is domain specific, each of these sections is presented
with corresponding options for common population types.

2. Initial Population

Initial populations are generally seeded randomly. There are several common population
types which are reviewed. Namely, random boolean, skewed boolean, random integer, user-
defined integer distribution, and random permutations. A constant notation to be used
throughout the document states that N describes the number of individuals in the population
and G, the genome length. The goal in the population construction phase is to return a
population (Pop) such that each row contains a genome. This implies Pop is an NxG matrix.

1 % Parameters
2 N = 100; % Individuals in Population
3 G = 30; % Genome Length

1

2.1. Random Boolean

Random boolean or logical populations are one of the most common and straight forward.

Example
0 0 1 0
1 0 0 1
1 1 0 1

with N = 3 and G = 4.

1 % C Code Equivalent: Random Boolean
2 for i = 1:N
3 for j = 1:G
4 if rand(1) � 0.5 % Split at midpoint
5 Pop(i,j) = 1;
6 else
7 Pop(i,j) = 0;
8 end
9 end

10 end

Lines 4-8 can be replace through employment the round() command which rounds inputs
the the nearest integer.

1 % Step 1: Random Boolean
2 for i = 1:N
3 for j = 1:G
4 Pop(i,j) = round(rand(1));
5 end
6 end

Since both round() and rand() are overloaded such that rand([N,G]) produces an N
by Gmatrix with pseudo-random doubles between 0 and 1(inclusive) and round(rand([N,G]))
performs element wise operations on either vectors or matrices, both for loops can be re-
moved.

1 % Efficient: Random Boolean
2 Pop = round(rand([N,G]));

2.2. Skewed Boolean

This population is identical to random boolean population except that the distribution
of genes is forced to a predefined percentage of 1’s and 0’s. Skewing the distribution within
a population can be useful for accelerating convergence when the user has knowledge of the
search space.

1 % C Code Equivalent: Skewed Boolean
2 PerOnes = 0.2 % Percentage of Ones
3 for i = 1:N
4 for j = 1:G
5 if rand(1) � (1�PerOnes)

2

6 Pop(i,j) = 1;
7 else
8 Pop(i,j) = 0;
9 end

10 end
11 end

As we know PerOnes is bound between 0 and 1 a simple transform can be applied
allowing the round() function to remain e↵ective.

1 % Efficient: Random Boolean
2 PerOnes = 0.2
3 Pop = round(rand(N,G)+(PerOnes�.5));

This operation adds the deviation from the default rounding limit of 0.5 to the random
matrix prior to rounding. Since PerOnes is always between 0 and 1 (exclusive), the maximum
of each element’s range in (rand(N,G)+(PerOnes�.5)) is between -0.5 and 1.5 (exclusive)
which remains within the desired boolean range when rounded.

2.3. Random Integers

At this point the combinatorial discrete boolean case is extended to positive integers. In
this purely random example, each integer receives a percentage allocation equal to 1/MaxVal.

1 % C Code Equivalent: Random Integers
2 MaxVal = 15; % Maximum Gene Value
3 for i = 1:N
4 for j = 1:G
5 randval = rand(1)*(MaxVal�1)+1;
6 Pop(i,j) = round(randval);
7 end
8 end

Array indexing in MATLAB begins at 1 instead of the more usual zero. For e�cient use
later on it is often beneficial to have genome integers match a separate array used in genome
fitness evaluation. By decrementing MaxVal by 1 and adding 1 to the entire random matrix
we enforce a minimum and maximum genome value between 1 and MaxVal (inclusive). This
is preferable as it avoids repetitive index adjustment in coming steps.

1 % Efficient: Random Integers
2 MaxVal = 15; % Maximum Gene Value
3 Pop = round(rand(N,G)*(MaxVal�1)+1);

As before, each loop can be compounded by applying overloaded functions.

2.4. Random Integers with Predefined Distribution

Welcome to the first non-trivial problem. In this example a population consists of index-
able (1 to MaxVal) integers with a user-defined distribution. The user-defined distribution D
is entered as a percentage of the population allocated to each integer, in order. To function
correctly D must sum to 1.

3

1 % C Code Equivalent: Random Integers � User Defined Distribution
2

3 D = [.1, .5, .08, .2, .12]; % User�Defined Distribution
4

5 for i = 1:length(D) % Begin: Compute Cumulative Distribution
6 if i ==1 %.
7 CD(i) = D(i); %...
8 else %.....
9 CD(i) = CD(i�1) + D(i); %...

10 end %.
11 end % End: Compute Cumulative Distribution
12

13 MaxVal= length(CD); % Maximum Integer Value
14 for i = 1:N
15 for j = 1:G
16 Pop(i,j) = rand(1);
17 for k = 1:MaxVal
18 if k == 1
19 if Pop(i,j) �0 & Pop(i,j)CD(k) % Bin rand vals to integers
20 Pop(i,j) = k;
21 end
22 else
23 if Pop(i,j)�CD(k�1) & Pop(i,j)CD(k) % Catch remaining
24 Pop(i,j) = k;
25 end
26 end
27 end
28 end
29 end

Lines 5 to 11 can be swapped for built in function cumsum(D) which computes the
row-wise cumulative sum of input vectors and matrices.

1 % Cummulative Sum
2 CD = horzcat(0,cumsum([.1, .5, .08, .2, .12]));

The next loops in Lines 14 to 28 ’bin’ the data between the values listed within the
cumulative sum variable CD. This procedure can not be fully vectorized without creating
as many copies of the population matrix as there are bins. When population size, genome
length, and/or number of bins are numerous, creating multiple copies of the population can
exhaust RAM resources and cause writing to the hard drive. If this occurs, the process is
likely to stop responding. That said, it is possible to eliminate 2 of the 3 for loops without
limiting hardware compatibility. Given the overhead associated with large loops we prefer
to leave the third, or comparison loop in code while vectorizing the other two.

1 % Step 1: Random Integers � User Defined Distribution
2 Pop = rand(N,G); % Random values
3 D = [.1, .5, .08, .2, .12]; % User Distribution
4 CD = cumsum(D); % Cumulative Sum of Distribution
5 MaxVal = size(D,2); % Max Value of Integers

4

6 Cat = ones(size(Pop)); % Categorization Variable
7 for i = 1:MaxVal�1
8 Cat = Cat + double(Pop>CD(i)); % Bin to Categories
9 end

10 Pop = Cat; % Set Pop equal to Categories

A new variable Cat the same size as Pop is created. At initialization, Line 6, all values are
set to 1. In other words, the default assumption states that all randomly generated values
fall within the first and second values in the cumulative sum. The remaining for loop
tests each element in the population matrix against the relevant position in the cumulative
distribution. By testing Pop>CD(i) at each stage of the loop and incrementing values when
true, the gene values increase within Pop until they match the correct location within CD.
Note that the comparison of Pop and CD in line 8 results with a logical, or index matrix.
To convert the logicals to a numeric matrix for use in addition to Cat, it is converted using
double().

Once the structure is apparent, a condensed version can be found below.

1 % Efficient Looped: Random Integers � User Defined Distribution
2 Pop = rand(N,G); % Random values
3 CD = horzcat(0,cumsum([.1, .5, .08, .2, .12])); % CumSum of Distribution
4 MaxVal = size(CD,2)�1; % Max Value of Integers
5 for i = MaxVal:�1:1
6 Pop(Pop�CD(i) & Pop1) = i; % Bin to Population
7 end

There are three main di↵erences with this approach. First is the cumulative distribution.
The distribution is computed directly from inputs rather than using a second variable. For
ease of reference a 0 is horizontally concatenated (horzcat()) to the cumulative variable.
Second, in order to avoid creating a new Cat variable the loop runs in descending order.
This is necessary as the second comparison on Line 6 (Pop1) is a requisite to preventing
re-categorization of random values which have already been binned, based on their bin index.
This condition could be omitted, thus allowing for the loop to run in ascending order but
it would not be robust to the possibility of the pseudo-random number generator yielding a
value of 1 anywhere in the population.

For users with su�cient RAM interested in performance gains, the entire process can be
vectorized as below.

1 % Step 1 Vectorized: Random Integers � User Defined Distribution
2 Pop = rand(N,G); % Random values
3 CD = cumsum([.1, .5, .08, .2, .12]); % CumSum of Distribution
4 MaxVal = size(CD,2); % Maximum Integer Value
5 CDa = reshape(CD,[1,1,MaxVal]); % Pre�process distribution
6 CDR = repmat(CDa,[N,G,1]); % Replicate distribution
7 PopR = repmat(Pop,[1,1,MaxVal]); % Replicate Population
8 idx = PopR>CDR; % Compare 3�D matricies
9 [¬,Pop]= min(idx,[],3); % Location of 1st 0 is Correct Bin

5

The first di↵erence encountered is in Line 5. By reshaping the vector it is projected
into 3-dimensional space. By then applying the function repmat() with inputs [N,G,1],
the cumulative distribution is copied N times in the first dimension and G times in the
second dimension. The resulting matrix is of size NxGxlength(CD). In order to apply
native indexing capabilities, Pop must then be replicated length(CD) times to be equal in
size to the cumulative distribution object. This activity is performed in Line 7. A direct >
comparison is then made in Line 8 which compares each random value in the population with
each value in the cumulative distribution. We next locate the index of the first occurrence
when the population value is not greater than the cumulative distribution. This index
corresponds to the correct ’bin’ for the given random number. The 3-D indexing approach
can also be represented in a more concise form.

1 % Efficient Vectorized: Random Integers � User Defined Distribution
2 CD = cumsum([.1, .5, .08, .2, .12]); % CumSum
3 MaxVal = size(CD,2); % Max Integer Value
4 [¬,Pop] = min(repmat(rand(N,G),[1,1,MaxVal])> ...

repmat(reshape(CD,[1,1,MaxVal]),[N,G,1]),[],3); % Binning

2.5. Random Permutations

Permutations are another example of a common genome type in population based opti-
mization algorithms. In this section a permutation set begins with 1 and ends with MaxVal.
Since genome length G is fixed, MaxVal = G.

Needless to say, there are many ways of producing permutations in C code. E�ciency
is largely dependent on size of G and none of the most e�cient means are easily readable.
Instead, we simply initialize each genome as an ordered list 1 to G. Once initialized, random
locations on the genome are swapped until the output is a randomized permutation.

1 % Pseudo � C Code Equivalent: Random Permutations
2

3 for i = 1:N
4 for j = 1:G
5 Pop(i,j) = j; % Random value
6 end
7 for j = 1:4*G % Arbitrarily large loop maximum
8 Loc1 = round(rand(1)*(G�1)+1); % Location of First Swap Point
9 Loc2 = round(rand(1)*(G�1)+1); % Location of Second Swap Point

10 Holder = Pop(i,Loc1); % Hold Value to be Replaced
11 Pop(i,Loc1) = Pop(i,Loc2); % First Half of Swap
12 Pop(i,Loc2) = Holder; % Second Half of Swap
13 end
14 end

Based on past examples, the obvious choice is to search for a built in function over-
loaded to produce N random samples of permutations with length G. The closest match is
randperm(). While randperm() does accept permutation length G, it does not allow for
multiple samples from a single function call. As such, the function must be called N times
to produce an entire population.

6

1 % Loop: Random Permutations with Loops
2 for i = 1:N
3 Pop(i,:) = randperm(G);
4 end

Depending on system architecture & software version it may be faster to issue the com-
mand in parallel using a parfor loop or arrayfun() with a function handle.

1 % Option 2,: Random Permutations with Function Handle
2 matlabpool % Creates MATLAB 'workers': 1 per CPU
3

4 parfor i = 1:N
5 Pop(i,:) = randperm(G);
6 end

The parfor or ’parallel for loop’ first creates a MATLAB worker process for each avail-
able CPU. Once the local ’cluster’ has been launched, the parfor tag dictates that each
iteration of the for loop is strictly independent. This allows each CPU in the cluster to dy-
namically process iterations in parallel and theoretically improve execution speed. Another
parallel approach employs arrayfun().

1 % Option 3, Step 1: Random Permutations with Function Handle
2 Pop = arrayfun(@(x) randperm(G), 1:N, 'UniformOutput', false);

The arrayfun() function eliminates the need to launch a cluster of worker processes
to execute code. Instead, this method launches each iteration of the function as a separate
event. One disadvantage to this approach is the ’cell array’ return type though this can
easily be converted to the previous matrix of doubles using cell2mat().

1 % Option 3: Random Permutations with Function Handle
2 Pop = cell2mat(arrayfun(@(x) randperm(G), 1:N, 'UniformOutput', false)');

Notice the ' signifying a transpose as the third to last character in Line 2. This addition
coerces the cell array to convert to a matrix as opposed to an appended vector. It is worth
reiterating that the speed of each methodology is highly dependent on the target system
architecture. Variations in execution time are likely to be orders of magnitude for each
approach on any given system architecture.

This tangent into parallelization may be useful when generating custom genome repre-
sentations but none of these are most e�cient for producing multiple samples of random
permutations. While the randperm() function is not capable of producing more than 1 per-
mutation at a time, we can apply a work around using the sort() function. The intended
use of sort() returns a sorted listed of input elements. However, it also produces a sec-
ond output containing the inputs’ original order index. When the input matrix is randomly
generated, this second output is equivalent to a random permutation.

1 % Efficient: Random Permutations

7

2 [¬,Pop] = sort(rand(N,G),2);

3. Selection

While e�ciently producing an initial random population is a best practice, the code is run
only once per execution of the algorithm. In contrast the fitness, selection, recombination,
and mutation procedures are executed once with every generation. E�ciently coding these
stages will have a much more significant impact on reducing total execution time than the
initial population.

By the selection stage the user is expected to have solved for a row vector of fitness
values F of size Nx1. The three types of selection to be demonstrated are Roulette Wheel,
Tournament, and 50% Truncation. Each function produces a 2*Nx1 output returning the
indices of each ’winning’ genome in row vector W.

3.1. Roulette Wheel

Roulette wheel selection draws each solution for recombination from the entire popula-
tion. The probability of each solution i being selected is defined as:

SelectionProbability = Fitness(i)
Sum(Fitness(:))

In MATLAB equivalent C code:

1 % C Code Equivalent: Roulette Wheel Selection
2 for i = 1:N % Begin: Compute Cumulative Distribution
3 if i ==1 %.
4 FCD(i) = F(i); %...
5 else %.....
6 FCD(i) = FCD(i�1) + F(i);%...
7 end %.
8 end % End: Compute Cumulative Distribution
9

10 for i = 1:N
11 FCD(i) = FCD(i)/FCD(end); %Normalize Cumulative Distribution
12 end
13

14 for i = 1:2*N
15 randval = rand(1);
16 for k = 1:N
17 if k == 1
18 if randval �0 && randvalFCD(k)
19 W(i) = k;
20 end
21 else
22 if randval�FCD(k�1) && randvalFCD(k)
23 W(i) = k;
24 end
25 end
26 end
27 end

8

Once again, the Lines 4 to 10 can be replaced with the cumsum() function.

1 %% Step 1: Roulette Wheel
2 FCD = cumsum(F); % Fitness Cumulative Distribution
3 FCD = FCD/FCD(end); % P(Selection) by Row
4 Fa = FCD*ones(1,2*N); % Replicating P(Selection) for Comparison)
5 R = rand(1,2*N); % Random Roulette Spins 0<X<1
6 Ra = ones(N,1)*R; % Replicate Random Values
7 idx = Ra>Fa; % Logical Index of Value
8 [¬,W] = min(idx,[],1); % First 0 Index is the Winner

Since there is no guarantee that the sum of all fitness values is 1, the cumulative dis-
tribution is divided through by its maximum element in Line 3. To enable simultaneous
comparison, the cumulative distribution is replicated 2*N times through multiplying by an
appropriately sized matrix of ones. Line 5 ’spins the roulette wheel’ 2*N times. The result is
then replicated across N rows. Given Ra and Fa are then equal in size, they can be directly
compared. The first instance of value 0 returns the index of the winning individual in the
population. In abridged form:

1 %% Efficient: Roulette Wheel
2 [¬,W] = min(ones(N,1)*(rand(1,2*N))>((cumsum(F)*ones(1,2*N)/sum(F))),[],1);

3.2. Tournament

Tournament selection is a widely popular methodology which probabilistically selects
genomes for recombination based on fitness. A key attribute of this type is that it maintains
genome diversity more robustly than competitors when a small percentage of the population
is significantly more fit than average. The algorithm randomly selects genomes to ’compete’
from the population in ’tournaments’ of user selected size size S. The genome yielding highest
fitness in of each tournament is selected for recombination. Some variants also select the
second best genome in each tournament for recombination to halve the number of necessary
cycles. The demonstrated approach provides a single winner per tournament.

1 %% C Code Equivalent: Tournament Selection
2 S = 6; % Tournament Size
3 for i = 1:2*N
4 for j = 1:S
5 T(i,j) = round(rand(1)*(N�1)+1); % Add Genome to Tournament
6 end
7 Mx = 0; % Max Fitness In Tournament
8 for j = 1:S
9 if F(T(i,j))>Mx % If Genome is Better than Current Best

10 Mx = F(T(i,j)); % Reset Current Best
11 W(i) = T(i,j); % Update Winner
12 end
13 end
14 end

9

Lines 4 to 6 can be replaced with the previously described method for producing random
integers to a maximum value. In this case the maximum value must be N.

1 %% Efficient: Tournament Selection
2 S = 6; % Tournament Size
3 T = round(rand(2*N,S)*(N�1)+1); % Tournaments
4 [¬,idx] = max(F(T),[],2); % Index to Determine Winners
5 W = T(sub2ind(size(T),(1:2*N)',idx)); % Winners

We then use each tournament’s genome indices to assemble the fitness of each tourna-
ment’s participants. By taking a row wise max() of the assembly, the row index of each
winner is given as secondary output. The function sub2ind() converts the row wise in-
dexes of each tournament winner to an index which retrieves the population row index of
each tournament’s winning genome.

3.3. 50% Truncation

During 50% truncation selection the best 50% of genomes are selected for recombination
and the lower half are eliminated from the pool of candidates. C code equivalent is omitted
in this case due to the straightforward nature of the problem and the complexity of a sorting
routine without use of functions.

1 %% Efficient: 50% Truncation
2 [¬,V] = sort(F); % Sort Fitness in Ascending Order
3 V = V(N/2+1:end); % Winner Pool
4 W = V(round(rand(2*N,1)*(N/2�1)+1))';% Winners

Line 2 sorts the fitness values F in ascending order and saves the original index output
in variable V. Half of the population with lowest fitness are eliminated from the pool of
possible winners in Line 3. From the remaining pool of possible winners 2*N samples are
chosen without bias.

4. Recombination

Recombination or crossover is domain specific by population type. That said, there
are several common recombination techniques for the population types we have defined.
Specifically, uniform, single point, and double point crossover for combinatorial problems,
and single point preservation for permutation problems. The target output of this phase
is a new population Pop2 containing elements of the vector of winners W. It is taken that
each unique adjacent pair of genome indices in W is are selected for recombination e.g. if
W = [11, 7, 13, 41, 2, 23] the resulting pairs are [11,7], [13,41], and [2,23].

4.1. Uniform

This crossover type is primality intended for problems where each element in the genome
is independent of the others. In other words, relative location of genes to each other the in
genome has no baring on fitness. Uniform crossover creates an solution in the t+1 generation
by randomly selecting genes from each of the selection winners corresponding to the relevant
position.

10

Figure 1: Uniform Crossover Example with Boolean Population

1 %% C Code Equivalent : Uniform Crossover
2 for i = 1:N
3 for j = 1:G
4 randval = round(rand(1)); % Parent 1 or Parent 2 (0 or 1)
5 idx = (i�1)*2+1+randval; % Build index from W vector
6 Pop2(i,j) = Pop(W(idx),j); % Add Gene to Genome
7 end
8 end

1 %% Efficient: Uniform Crossover
2 idx = logical(round(rand(size(Pop)))); % Index of Genome from Winner 2
3 Pop2 = Pop(W(1:2:end),:); % Set Pop2 = Pop Winners 1
4 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
5 Pop2(idx) = P2A(idx); % Combine Winners 1 and 2

First, an index is created with 50% 0s and 50% 1s in random order. Next Pop2 or, the
next population, is set equal to the genome values of all ’first’ selection winners. These
winners are defined by index 1:2:end which equates to [1, 3, 5, 7, ...]. Next, a
holder variable P2A is set equal to the second set of selection winners. Finally, the logical
index is used to replace elements in Pop2 with the equivalently located element of P2A in all
locations where idx == 1.

4.2. One-Point

Crossing selection winners or ’parent’ genomes at a single randomly selected location is
less destructive than uniform crossover for problems where adjacency of genes is at least
partially determinant of genome fitness.

11

Figure 2: One-Point Crossover Example with Boolean Population

1 %% C Code Equivalent : One�Point Crossover
2 for i = 1:N
3 CP = round(rand(1)*(N�1)+1); % Genome Crossover Point
4 for j = 1:G
5 if j<CP
6 idx = (i�1)*2+1; % Build index from W vector
7 else
8 idx = (i�1)*2+2; % Build index from W vector
9 end

10 Pop2(i,j) = Pop(W(idx),j); % Add Gene to Genome
11 end
12 end

The C equivalent code is relatively straight forward. In Line 3 a crossover point is selected.
A conditional statement then pulls all genes with index values less than the crossover point
from the relevant winner 1 and remaining genes from winner 2.

1 %% Efficient: One�Point Crossover
2 Pop2 = Pop(W(1:2:end),:); % Set Pop2 = Pop Winners 1
3 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
4 Ref = ones(N,1)*(1:G); % Reference Matrix
5 idx = (round(rand(N,1)*(G�1)+1)*ones(1,G))>Ref; % Logical Index
6 Pop2(idx) = P2A(idx); % Recombine Winners

To e�ciently vectorize the comparison each winner set is assembled into a population
matrix. A reference matrix is then built to contain repeated rows of column indices. By
comparing random integers between 1 and G to the column index matrix we receive a logical
index which is split randomly in one location between series of 0s and 1s. This logical matrix
can be used to index crossover in Line 6.

4.3. Two-Point

Two-point crossover operates much in the same fashion as one-point crossover. Practically
speaking, the primary di↵erence is that end points of the genome are not forced to be
the end points of crossover. This type of crossover is appropriate when horizontal genome
transcription is acceptable to the problem type.

12

Figure 3: Two-Point Crossover Example with Boolean Population

1 %% C Code Equivalent : Two�Point Crossover
2 for i = 1:N
3 CP1 = round(rand(1)*(G�1)+1); % Genome Crossover Point 1
4 CP2 = round(rand(1)*(G�1)+1); % Genome Crossover Point 1
5 Type = 0;
6 if CP1CP2
7 Type = 1;
8 end
9 for j = 1:G

10 if Type == 1
11 if ((jCP2) && (j�CP1))
12 idx = (i�1)*2+1; % Build index from W vector
13 else
14 idx = (i�1)*2+2; % Default Index
15 end
16 else
17 if ((jCP2) | | (j�CP1))
18 idx = (i�1)*2+1; % Build index from W vector
19 else
20 idx = (i�1)*2+2; % Default Index
21 end
22 end
23 Pop2(i,j) = Pop(W(idx),j); % Add Gene to Genome
24 end
25 end

The equivalent C is similar to single point crossover with the exception of some additional
condition handling. The same can be said of the e�cient approach to two-point crossover in
e�cient MATLAB code.

1 %% Efficient: Two�Point Crossover
2 Pop2 = Pop(W(1:2:end),:); % Set Pop2 = Pop Winners 1
3 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
4 Ref = ones(N,1)*(1:G); % Reference Matrix
5 CP = sort(round(rand(N,2)*(G�1)+1),2);% Crossover Points
6 idx = CP(:,1)*ones(1,G)<Ref & CP(:,2)*ones(1,G)>Ref; % Logical Index
7 Pop2(idx) = P2A(idx); % Recombine Winners

13

Indexing random integers representing genome locations against their column indexes
again proves an e�cient approach. In this example a second condition in Line 6 is applied
to upper bound the crossover. By sorting the randomly generated column indexes in Line 5,
additional conditional testing to determine the order of bounds is unnecessary.

4.4. Single-Point Preservation

Due to the recursive nature of more common permutation crossover technique such as
Partially Matched Crossover (PMX) and Order Crossover (OX), a single point recombination
technique for permutation problems demonstrated. Random permutations can not be crossed
unilaterally without potentially producing incomplete genomes. By performing a single
location swap, and then ’correcting’ any damage to the genome we ensure that it remains a
valid permutation.

Figure 4: SPP Crossover Example with Permutation Population

1 %% C Code Equivalent: Single�Point Preservation
2 for i = 1:N
3 CP = round(rand(1)*(G�1)+1); % Crossover Point
4 idx = (i�1)*2+1; % First Winner
5 OverWritten = Pop(W(idx), CP); % Value to Overwrite
6 OverWriter = Pop(W(idx+1),CP); % New Value
7 for j = 1:G
8 if j == CP
9 idx = (i�1)*2+2;

10 else
11 idx = (i�1)*2+1;
12 end
13 Pop2(i,j) = Pop(W(idx),j); % Write Value to Pop2
14 if idx�(i�1)*2 == 1 && Pop2(i,j) == OverWriter
15 Pop2(i,j) = OverWritten; % 'Fix' Genome Breaks
16 end
17 end
18 end

As described in figure 4, a single value is swapped from winner 2 to winner 1. Once the
swap is made, the location on winner 1 matching the value of winner 2 at the crossover point
is replaced with the original value of winner 1 at the crossover point.

14

1 %% Efficient Single�Point Preservation
2 Pop2 = Pop(W(1:2:end),:); % Assemble Pop2 Winners 1
3 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
4 Lidx = sub2ind(size(Pop),[1:N]',round(rand(N,1)*(G�1)+1)); % Select Point
5 vLidx = P2A(Lidx)*ones(1,G); % Value of Point in Winners 2
6 [r,c] = find(Pop2 == vLidx); % Location of Values in Winners 1
7 [¬,Ord] = sort(r); % Sort Linear Indices
8 r = r(Ord); c = c(Ord); % Re�order Linear Indices
9 Lidx2 = sub2ind(size(Pop),r,c); % Convert to Single Index

10 Pop2(Lidx2) = Pop2(Lidx); % Crossover Part 1
11 Pop2(Lidx) = P2A(Lidx); % Validate Genomes

This the first example which can not be dealt with using a single indexing matrix. In
Line 4 a point of crossover for each row is selected. Line 5 retrieves the value of each winner
2 at the crossover point from Line 4. In Line 6 the row and column indices for all crossover
points are given for locations in winners 1 with value equal to crossover values from winners
2. Since find() natively sorts outputs in column order, Line 7 re-sorts in row order. This
row order is used to sort the rows and columns appropriately. In Line 9 the row and column
indices are converted to single value indices for ease of use. Finally in Lines 10 to 11 crossover
is performed and genomes are repaired.

The demonstrated crossover technique was chosen because it can be implemented e�-
ciently without any iterators. While not widely verified, performing this operation multiple
times on adjacent genome locations should provide additional genome recombination e↵ec-
tively.

5. Mutation

To maintain diversity in the population’s genomes, a single example of a mutation oper-
ator for each of the following population types is presented:

1. Boolean
2. Integer
3. Permutation

5.1. Boolean

For a matrix of 1s and 0s, mutation is applied individually to each element. A user
defined ’probability of mutation’ per gene is converted to a logical index. The resulting
selected values are ’flipped’ such that 1s become 0s and 0s become 1s.

1 %% C Code Equivalent: Boolean Mutation
2 PerMut = 0.01; % Prob of Each Element Mutating
3 for i = 1:N
4 for j = 1:G
5 idx = rand(1)<PerMut; % Index for Mutation
6 if idx == 1
7 Pop2(i,j) = Pop2(i,j)*�1+1; % Flip Bit
8 end
9 end

15

10 end

1 %% Efficient: Boolean Mutation
2 PerMut = 0.01; % Prob of Each Element Mutating
3 idx = rand(size(Pop2))<PerMut; % Index of Mutations
4 Pop2(idx) = Pop2(idx)*�1+1; % Flip Bits

5.2. Integer

Integer mutation can also be applied in element or gene-wise fashion. Leading to the
indexing stage, integer mutation is identical to boolean mutation. When seeding new values
though, it is not possible to flip the bit as more than 2 possible values may be present.
Instead, a vector of new random integers is produced with length equal to the number of
mutation points and mapped to the mutation index.

1 %% C Code Equivalent: Integer Mutation
2 PerMut = 0.01; % Prob of Each Element Mutating
3 for i = 1:N
4 for j = 1:G
5 idx = rand(1)<PerMut; % Index for Mutation
6 if idx == 1
7 Pop2(i,j) = round(rand(1)*(MaxVal�1)+1); % New Value
8 end
9 end

10 end

1 %% Efficient: Integer Mutation
2 PerMut = 0.01; % Prob of Each Element Mutating
3 idx = rand(size(Pop2))<PerMut; % Index of Mutations
4 Pop2(idx) = round(rand([1,sum(sum(idx))])*(MaxVal�1)+1); % Mutated Value

Note the use of MaxVal to seed new genes. The maximum gene value can not be extracted
manually (e.g. max(max(Pop2))) in case gene diversity loss has eliminated the maximum
acceptable gene value. A such, MaxVal must be retained from the initial population con-
struction.

5.3. Permutation

Permutation mutations can not be described e�ciently on an gene basis with a single
index. The variable PerMut in this case is the probability of mutation for each genome, not
gene.

1 %% C Code Equivalent: Permutation Mutation
2 PerMut = 0.01; % Prob of Each Genome Mutating
3 for i = 1:N
4 idx = rand(1)<PerMut; % Index for Mutation
5 if idx == 1

16

6 Loc1 = round(rand(1)*(G�1)+1); % Swap Location 1
7 Loc2 = round(rand(1)*(G�1)+1); % Swap Location 2
8 Hold = Pop(i,Loc1); % Hold Value 1
9 Pop2(i,Loc1) = Pop2(i,Loc2); % Value 1 = Value 2

10 Pop2(i,Loc2) = Hold; % Value 2 = Holder
11 end
12 end

To vectorize this code, initially an array of length N is created according to PerMut to
determine which genomes will mutate. Following, a linear index of two locations to ’swap’
is created in Loc1 and Loc2. Last, the function deal() is used to make the swap in Loc1
and Loc2.

1 %% Efficient: Permutation Mutation
2 PerMut = 0.5; % Prob of Each Individual Mutating
3 idx = rand(N,1)<PerMut; % Individuals to Mutate
4 Loc1 = sub2ind(size(Pop2),1:N,round(rand(1,N)*(G�1)+1)); % Index Swap 1
5 Loc2 = sub2ind(size(Pop2),1:N,round(rand(1,N)*(G�1)+1)); % Index Swap 2
6 Loc2(idx == 0) = Loc1(idx==0); % Probabalistically Remove Swaps
7 [Pop2(Loc1),Pop2(Loc2)] = deal(Pop2(Loc2), Pop2(Loc1)); % Perform Exchange

6. Complete Examples

Here, two e�cient and complete genetic algorithm examples are shown using the above
code snippets. The first example will apply a random boolean population, tournament
selection, two point crossover, and boolean mutation. The fitness function to be optimized is
the abs(diff()) or, absolute value of di↵erences between each gene. The optimal solution
to this problem is known to be alternating 1s and 0s.

1 %% Genetic Algorithm: Boolean Example
2 %
3 % Solves optimization problem where fitness is equal to the
4 % summed absolute value of genome differences. The optimal genome contains
5 % alternating values.
6 %
7 % Optimal Genome : [0,1,0,1,.....,1,0] OR [1,0,1,0,.....,0,1]
8

9 %% Parameters
10 N = 1000; % Population Size
11 G = 30; % Genome Size
12 PerMut = .01; % Probability of Mutation
13 S = 2; % Tournament Size
14 Pop = round(rand(N,G)); % Create Initial Population
15

16 for Gen = 1:100 % Number of Generations
17 %% Fitness
18 F = sum(abs(diff(Pop,[],2)),2); % Measure Fitness
19

20 %% Print Stats

17

21 fprintf('Gen: %d Mean Fitness: %d Best Fitness: %d\n', Gen, ...
round(mean(F)), max(F))

22

23 %% Selection (Tournament)
24 T = round(rand(2*N,S)*(N�1)+1); % Tournaments
25 [¬,idx] = max(F(T),[],2); % Index to Determine Winners
26 W = T(sub2ind(size(T),(1:2*N)',idx)); % Winners
27

28 %% Crossover (2�Point)
29 Pop2 = Pop(W(1:2:end),:); % Set Pop2 = Pop Winners 1
30 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
31 Ref = ones(N,1)*(1:G); % Reference Matrix
32 CP = sort(round(rand(N,2)*(G�1)+1),2);% Crossover Points
33 idx = CP(:,1)*ones(1,G)<Ref & CP(:,2)*ones(1,G)>Ref; % Logical Index
34 Pop2(idx) = P2A(idx); % Recombine Winners
35

36 %% Mutation (Boolean)
37 idx = rand(size(Pop2))<PerMut; % Index of Mutations
38 Pop2(idx) = Pop2(idx)*�1+1; % Flip Bits
39

40 %% Reset
41 Pop = Pop2;
42 end
43 [¬,BN] = max(F);
44 disp('Best Genome: ')
45 disp(Pop(BN,:))

After completing the listed 100 generations the best genome is printed as output to the
console window. With current parameterization average execution time per generation is
0.0034 seconds on a quad-core 3.24GHz Intel Core i7 CPU running MATLAB 2012b for
Unix operating systems.

The second example is a permutation problem. This algorithm utilizes a permutation
population, tournament selection, single-preservation crossover, and permutation mutation.
Fitness in this case is defined as the variance of the di↵erences among adjacent genome
values. The optimal solution to this fitness function var(diff(Pop,[],2),[],2) is equal
to either [5,7,3,9,1,10,2,8,4,6] or [6,4,8,2,10,1,9,3,7,5], for genome length 10.

1 %% Genetic Algorithm: Permutation Example
2 %
3 % Solves optimization problem where fitness is equal to the
4 % variance of genome differences. The optimal genome contains
5 %
6 % Optimal Genome : [5,7,3,9,1,10,2,8,4,6] OR [6,4,8,2,10,1,9,3,7,5]
7

8 %% Parameters
9 N = 1000; % Population Size

10 G = 10; % Genome Size
11 PerMut = .5; % Probability of Mutation
12 S = 2; % Tournament Size
13 [¬,Pop] = sort(rand(N,G),2); % Create Initial Population
14

18

15 for Gen = 1:100 % Number of Generations
16

17 %% Fitness
18 F = var(diff(Pop,[],2),[],2); % Measure Fitness
19

20 %% Print Stats
21 fprintf('Gen: %d Mean Fitness: %d Best Fitness: %d\n', Gen, ...

round(mean(F)), round(max(F)))
22

23 %% Selection (Tournament)
24 T = round(rand(2*N,S)*(N�1)+1); % Tournaments
25 [¬,idx] = max(F(T),[],2); % Index to Determine Winners
26 W = T(sub2ind(size(T),(1:2*N)',idx)); % Winners
27

28 %% Crossover (Single�Point Preservation)
29 Pop2 = Pop(W(1:2:end),:); % Assemble Pop2 Winners 1
30 P2A = Pop(W(2:2:end),:); % Assemble Pop2 Winners 2
31 Lidx = sub2ind(size(Pop),[1:N]',round(rand(N,1)*(G�1)+1)); % ...

Select Point
32 vLidx = P2A(Lidx)*ones(1,G); % Value of Point in Winners 2
33 [r,c] = find(Pop2 == vLidx); % Location of Values in ...

Winners 1
34 [¬,Ord] = sort(r); % Sort Linear Indices
35 r = r(Ord); c = c(Ord); % Re�order Linear Indices
36 Lidx2 = sub2ind(size(Pop),r,c); % Convert to Single Index
37 Pop2(Lidx2) = Pop2(Lidx); % Crossover Part 1
38 Pop2(Lidx) = P2A(Lidx); % Validate Genomes
39

40 %% Mutation (Permutation)
41 idx = rand(N,1)<PerMut; % Individuals to Mutate
42 Loc1 = sub2ind(size(Pop2),1:N,round(rand(1,N)*(G�1)+1)); % Index ...

Swap 1
43 Loc2 = sub2ind(size(Pop2),1:N,round(rand(1,N)*(G�1)+1)); % Index ...

Swap 2
44 Loc2(idx == 0) = Loc1(idx==0); % Probabalistically Remove ...

Swaps
45 [Pop2(Loc1),Pop2(Loc2)] = deal(Pop2(Loc2), Pop2(Loc1)); % Perform ...

Exchange
46

47 %% Reset Population
48 Pop = Pop2;
49 end
50 [¬,BN] = max(F); % Find Best Genome
51 disp('Best Genome: ') % Write Text to Console
52 disp(Pop(BN,:)) % Display Best Genome

Using the same hardware configuration and new parameters, each generation of the per-
mutation example GA averages a run time of 0.0024 seconds. The speed increase relative to
the boolean example is due to the shorter genome. All else being equal, the recombination
and mutation procedures for combinatorial problem are less computationally intensive.

Either of these example genetic algorithms can be adapted by altering the fitness function
section. For population sizes up to fifty thousand the provided all provided code scales near
linearly. Beyond this mark scaling can become problematic. For extremely large population

19

sizes, additional scalability can be gained from converting index (idx) variables to utilize
linear indices as opposed to indexing matrices (e.g. optimize for sparse matrix operations).

7. References

[1] L. Davis. Applying adaptive algorithms to epistatic domains. In Proceedings of the
International Joint Conference on Articial Intelligence, volume 1, pages 161–163, 1985.

[2] D.E. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman problem. In
Proceedings of the First International Conference on Genetic Algorithms and Their Ap-
plications. Lawrence Erlbaum Associates, 1985.

[3] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[4] MATLAB. version 8.0.0 (R2012b). The MathWorks Inc., Natick, Massachusetts, 2012.

20

