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Abstract 
 
 
Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk 
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and 
ranking statements according to the predicted risk. Designing a risk evaluation formula is 
often an intuitive process done by human software engineer. This paper presents a Genetic 
Programming approach for evolving risk assessment formulæ. The empirical evaluation 
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations 
can consistently outperform many of the human-designed formulæ, such as Tarantula, 
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform 
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2 
(ITE2) structure, or even outperform it against other program structures. 

                                                
1 The program spectra data used in the paper, as well as the complete empirical results, are available from: 
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html. 
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Abstract

Genetic improvement can adapt numbers to create new functionality. Expanding prior work
in which Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES) converted
a GNU C library sqrt into cbrt, we show (with suitable objective function) the same GGGP
framework can find a double precision binary logarithm log2 for C by adjusting 512 floats
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1 Creating New Functionality with Data Changes

Previously [1] we applied Grow and Graft Genetic Programming [2] to one of the existing implementations
of the double precision square root function within the GNU C library and so converted sqrt into a double
precision cube root function. However most Genetic Improvement [3; 4; 5; 6] has applied evolution to
program code. Usually source code, but also byte code [7] assembler [8] and even machine code [9] have
been optimised. A suitable fitness function is essential for such directed evolution. The fitness function
may consider functionality (as here) and/or non-functional properties, such as run-time, energy [10; 11; 12;
13] or even memory [14] consumption. In [15] we considered the problems of using physical measurements
as part of the fitness measure for GI. As in [1], here we apply search based techniques [16] directly to data
values embedded inside the source code, with a view to create new functionality rather than to improve
existing functionality. See [1] for a quick survey of work on software maintenance related to maintaining
numbers within programs.

In [1] we claimed that the framework could support other double precision mathematical functions provided
there was a suitable objective function. In the case of sqrt and cbrt the inverse function (i.e. square and
cube) readily provide such an objective. Here we show log2 can be easily evolved from sqrt using exp2 as
the objective function. The framework could be adapted to the trigonometric mathematics functions again
by using the inverse function as the objective but to be useful the objective must either be computationally
cheap or readily available (ideally both).

Unlike the deep parameter tuning work by Wu et al. [14], our goal is not to improve existing functionality
by modifying existing functionality, but to use the framework to create new functionality. Also it is related
to data transplanting as almost all the changes are related to numbers rather than to code (c.f. program
transplanting [17; 18]) as data are transferred from the square root function to log2. However they are
heavily adapted by CMA-ES [19] once in their new home.

We have strayed a little from the original motivation with RNAfold [20]1. Instead of adapting existing
programs to new circumstances, new hardware, new users or new knowledge, by evolving empirical con-
stants within them, we show that there is an interesting class of programs that can be created from existing
programs primarily by automatically changing data embedded within them using search based optimisation
techniques. In the case of converting sqrt to cbrt and (here) sqrt to log2, we use evolutionary computation
in the form of CMA-ES.

We follow the structure of [1]: in the next section we describe the experiment which evolved log2 from the
GNU C library sqrt and then conclude in Section 3.

2 Automated Parameter Tuning for Evolving log2

For completeness, this section repeats some of the details of the framework already given in [1, Sect. 2].

In [1] we used an existing implementation of the square root function and used genetic improvement to
evolve a cube root function. This was achieved by mutating the constant values in the existing code. Here
we use the same approach and starting point. The current release of the GNU C library (glibc-2.27) was
downloaded from https://www.gnu.org/s/libc/. It contains multiple implementations of the
square root function. One (../powerpc/fpu) which uses table lookup [21] was selected for use as a model
for a table-based version of the logarithm to base 2 function (log2).

2.1 Manual changes

We are primarily concerned with adjusting data values. However, some changes to the existing powerPC
sqrt code were made by hand so that it could support log2: 1) Various powerPC optimisations were dis-

1The GI parameters have been distributed with the ViennaRNA package, which includes RNAfold, since version 2.4.7.
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abled. 2) For simplicity the trap for negative numbers is implemented by failing an assert2. 3) Division of
the exponent part of double precision numbers by two is replaced by simply adding its value to the final
result. 4) As with cbrt, the top nine bits of the fractional part are used as the table index. Thus numbers in
the range 1 to 2 are mapped onto the table’s 512 entries. See also Figure 1. 5) The Newton-Raphson ob-
jective function for sqrt (i.e. x2) is replaced by 2x. Since the derivative of log2(x) can be calculated exactly
from x (using the existing constant M LOG2El), it is not necessary to store it in the table or to estimate it or
update the current estimate. Hence the table need only contain 512 values (rather than 512 pairs of values)
and so the lines of code to maintain sy, sy2 and e can be removed. Similarly the constant almost half can
also be removed. 6) The infrequently used recursive code to deal with denormalised numbers (denorm:) is
similarly simplified to multiply by the existing constant two108 and subtract 108 from the result.

2.2 Automatic changes to data table using CMA-ES

The t sqrt table contains 512 pairs of floats. The top 256 correspond to numbers in the range 1 to 2. The
value estimates, rather than the estimates of the derivatives, i.e. the first of each pair, were used as start
points when evolving the 512 floats in the new table t log2.

The Covariance Matrix Adaptation Evolution Strategy algorithm (CMA-ES [19]) was downloaded from
https://github.com/cma-es/c-cmaes/archive/master.zip It was set up to fill the table
of floats one at a time. As with cbrt [1], each value is initially set to either the corresponding value in t sqrt
or the mean of two adjacent pairs. The initial mutation step size used by CMA-ES was set to 3.0 times the
standard deviation calculated from the first of each of the 512 pairs of numbers in t sqrt.

2.2.1 CMA-ES parameters

The CMA-ES defaults (cmaes initials.par) were used, except: the problem size (N 1), the initial values and
mutation sizes are loaded from t sqrt (see previous section) and various small values concerned with run
termination were set to zero (stopFitness, stopTolFun, stopTolFunHist, stopTolX). The initial seed used for
pseudo random numbers was also set externally.

2.2.2 Fitness function

Each time CMA-ES proposes a value (N=1), it is converted into a float and loaded into t log2 at the
location that CMA-ES is currently trying to optimise. The fitness function uses three fixed test double
values in the range 1.0 to 2.0. These are: the lowest value for the t log2 entry, the mid point and the
top most value. Our log2 function is called (using the updated t log2) for each and a sub-fitness value
calculated with each of the three returned doubles. The sub-fitnesses are combined by adding them.

Each sub-fitness takes the output of our log2, and takes the absolute difference between this and the GNU
log2 library function. If they are the same, the sub-fitness is 0, otherwise it is positive. Since when our log2
is working well, the differences are very small, they are re-scaled for CMA-ES. If the absolute difference
is less than one, its (natural) log is taken, otherwise the absolute value is used. However, in both cases, to
prevent the sub-fitness being negative, log of the smallest feasible (i.e. encountered) non-zero difference is
subtracted (i.e. 40.0 is added).

CMA-ES will stop when the difference on all three test points is zero.

2.2.3 Restart Strategy

Although a restart strategy was provided (as [1, Sect. 2.2]), in all 512 runs CMA-ES found a value for
which all three test cases passed. Again the first reported solution was used.

2The GNU C library provides a sophisticated but complicated mechanism for raising exception, which would have to be used
if the GI version of log2 were to be incorporated back into glibc, but it is not necessary at this stage, since we only wish to
demonstrate our approach.
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Figure 1: 512 (sg) numbers found by CMA-ES for use as start points for Newton-Raphson three step cal-
culation of the binary logarithm, i.e. the values in the float array t log2. Horizontal axis is the normalised
input to log2 corresponding to each sg value in t log2.

2.3 Testing the evolved log2 function

The float values found by CMA-ES, called sg in the system, are shown in Figure 1. Figure 1 makes
plain, that for a function as smooth as logarithm, no great care is needed in starting Newton-Raphson and
more-or-less any reasonable value would do. Nonetheless we will continue to show that our evolved table
driven version of the binary logarithm works as well as the GNU C library’s log2. The glibc-2.27 powerPC
IEEE754 table-based double sqrt function claims to produce answers within one bit of the correct solution.
On 1 536 tests of large integers (≈ 1016) designed to test each of the 512 bins 3 times (min, max and
a randomly chosen point) our GI log2 always came within DBL EPSILON (i.e. 5 10−12) of the correct
answer.

As well as the large positive integer tests mentioned in the previous paragraph, our log2 was tested with
5120 random numbers uniformly distributed between 1 and 2 (the largest deviation was in the least signif-
icant part of IEEE754 double precision corresponding to 4.44 10−16). It was also tested on 5120 random
scientific notation numbers and 5120 random 64 bit patterns. Half the random scientific notation numbers
were negative and half positive. Half were smaller than one and half larger. The exponent was chosen
uniformly at random from the range 0 to |308|. In one case a random 64 bit pattern corresponded to NAN
(Not-A-Number) and our log2 correctly returned NAN. In all other cases our log2 returned a double, which
when fed into the GNU C library exp2 function gave its input exactly or gave a number within one bit of
the closest value which could be inverted by exp2 to yield the original value.

3 Conclusions

Starting with a double precision implementation of sqrt from the GNU C library, we have used artificial
evolution to find data values which give an accurate double precision implementation of log2. Modifica-
tions to the sqrt source code are needed and were made in the traditional way, i.e. by hand, see Section 2.1.

The sqrt code uses a fast fixed three step Newton-Raphson approach. In addition to an estimate of the
derivative of the square root function, Newton-Raphson requires an objective measure, x2, to tell it how
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far it has overshot. Notice, although sqrt uses a table of values, it is not interpolating. Instead it is actually
calculating the true square root to double precision accuracy in a small number of steps. For speed, it uses
the table of starting values to limit the number of Newton-Raphson iterations needed before it converges
on the right answer.

We have shown it is possible to use the same approach with the binary logarithm, log2. However Newton-
Raphson still requires an objective function. We have chosen to use the GNU C library exp2. Naturally
this limits the usefulness of the Newton-Raphson approach for log2. However logarithm has the advantage
that its derivative can be easily calculated, whereas in sqrt and (our cbrt) Newton-Raphson had to maintain
and refine an estimate of the derivative at each step. Removing the code to do this greatly simplifies our
GI log2. Further Figure 1 suggests that CMA-ES had almost no work to do and any reasonable estimate
of log2, such as x− 1, would perhaps be sufficient. This would also allow the removal of the whole of the

t log2 table of start values and deleting even more of the sqrt source code.

There are potentially other mathematical functions where our approach might be beneficial. For example,
functions without direct hardware support, where there is a fast objective measure available to Newton-
Raphson and where the function is sufficiently non-linear to justify evolving a table of constants for a fixed
iteration Newton-Raphson approach. Perhaps 5

√, 7
√, 11
√ ... (with objective functions x5, x7, x11...). Also

the availability of small (e.g. 4K bytes) of fast memory, e.g. within core, might suit this approach.

Our previous work [20; 1] has shown it is not uncommon for programs to contain, sometimes large numbers
of, embedded constants. These may be critical to the software’s performance and although the problem has
been known for a long time [22]) there is as yet very little research on automatically maintaining them.

Code

Scripts, source code and the evolved implementation are available via anonymous FTP ftp.cs.ucl.ac.uk
genetic/gp-code/gi cbrt.tar.gz and from http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gi cbrt.tar.gz
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