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Abstract.

We present a substructural epistemic logic, based on Boolean BI, in which the epistemic
modalities are parametrized on agents’ local resources. The new modalities can be seen
as generalizations of the usual epistemic modalities. The logic combines Boolean BI’s
resource semantics with epistemic agency. We give a labelled tableaux calculus and
establish soundness and completeness with respect to the resource semantics. We illus-
trate the use of the logic by discussing an example of side-channels in access control
using resource tokens.
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1 Introduction

The concept of resource is important in many fields including, among others, computer
science, economics, and security. For example, in operating systems, processes access
system resources such as memory, files, processor time, and bandwidth, with correct
resource usage being essential for the robust function of the system. The internet can
be regarded as a giant, dynamic net of resources, in which Uniform Resource Locators
refer to located data and code. In recent years, the concept of resource has been studied
and analysed in computer science through the bunched logic, BI, [13] and its variants,
such as Boolean BI (BBI) [14] and applications, such as Separation Logic [14,20]. The
resource semantics — i.e., the interpretation of BI’s semantics in terms of resources —
that underpins these logics is mainly concerned sharing and separation, corresponding
to additive, such as ∧, and multiplicative connectives, such as ∗, respectively. These
logics are the logical kernels of the separating, or separation, logics, with resources
being interpreted in various ways, such as memory regions, [14,20] or elements of other
particular monoids of resources [3].

The logic BI of bunched implications — see, for example, [11,13,19] — freely
combines intuitionistic propositional additives with intuitionistic propositional multi-
plicatives. In Boolean BI (BBI) [14], the additives are classical. The key feature of BI
as a modelling tool, and hence of its specific model Separation Logic, is its control of
the representation and handling of resources provided by the resource semantics and
the associated proof systems. BI’s basic propositional connectives come in two groups.
The additives, which can be handled either classically or intuitionistically, are familiar
disjunction, conjunction, and implication. For example,

r |= φ∧ψ iff r |= φ and r |= ψ.

The key point here is that the resource r is shared between the two components of the
disjunction.

In contrast, the multiplicative conjunction, ∗, divides the resource between its propo-
sitional components, using a partial commutative monoidal operation, ◦,

r |= φ∗ψ iff there are s and t such that r = s◦ t and s |= φ and t |= ψ.

That is, the monoid specifies a separation of the resources between the components of
the conjunction. In Separation Logic, where the semantics is built out of sets of memory
locations, the two resource components are required to be disjoint. Details may be found
in the references given above.

BI’s sequent proof systems employ bunches, with two context-building operations:
one for the additives (characterized by ∧, which admits weakening and contraction)
and one for the multiplicatives (characterized by ∗, which admits neither weakening
nor contraction), leading to the following rules for the corresponding implications,→
and −∗:

Γ ; φ ` ψ

Γ ` φ→ ψ
and

Γ , φ ` ψ

Γ ` φ−∗ψ
.

Again, details may be found in the references given above.
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The soundness and completeness of BI for the semantics given above is established
in [19] and via labelled tableaux in [11], and the completeness of BBI for the partial
monoid semantics described above is established in [15].

Modal extensions of BI, such as MBI [1,3], DBI, and DMBI [6], have been proposed
to introduce dynamics into resource semantics. In recent work, the idea of introducing
agents, together with their knowledge, into the resource semantics has led to an Epis-
temic Separation Logic, called ESL, in which epistemic possible worlds are considered
as resources [7]. This logic corresponds to an extension of Boolean BI with a knowledge
modality, Ka, such that Kaφ means that the agent a knows that φ holds.

Various previous works on epistemic logics consider the concept of resource, using
a variety of approaches. They include [2,12,16]. Here we aim to explore more deeply
the idea of epistemic [9] reasoning in the context of resource semantics, and its as-
sociated logic, by taking the basic epistemic modality Ka and parametrizing it with a
resource s, with the associated introduction of relations not only between resources,
according to an agent, but also between composition of resources in different ways.
The parametrizing resource may be thought of as being associated with, or local to,
the agent. This approach leads to the definition of three new modalities Ls

a, Ms
a, and

Ns
a and, consequently, to a new logic in which, as a leading example, we can obtain an

account of access to resources and its control, whether they be pieces of knowledge,
locations, or other entities. We call this logic Epistemic Resource Logic or ERL. In Sec-
tion 2, we set up the logic ERL by a semantic definition and, in Section 3, we give
the key conservative extension properties of the logic. In Section 4, we explain, how
to use the logic to model and reason about the relationship between a security policy
— in the context of access control — and the system to which it is applied (cf. [21]).
Our application to systems security policy stands in contrast to other work (e.g., [18])
in which epistemic logic has been applied to the analysis of cryptographic protocols.
In Section 5, we set up a labelled tableaux calculus for ERL, and establish soundness
with respect to ERL’s semantic definition and also completeness from a countermodel
extraction method. Details of the arguments are provided in the appendices.

This UCL Research Note extends with appendices containing proofs and other de-
tails the paper ‘A Substructural Epistemic Resource Logic’, by the present authors,
which appears in the Proceedings of the Seventh Indian Conference on Logic and its
Applications (ICLA 2017), Indian Institute of Technology Kanpur, India, 5–7 January,
2017. This Research Note also updates RN 16/08. The proceedings of ICLA 2017 are
published in Springer’s FoLLI-LNCS series.

2 An Epistemic Resource Logic

The language L of the epistemic resource logic, or ERL, is obtained by adding two
new modal operators L and M to the BI language. In order to define the language
of ERL, we introduce the following structures: a finite set of agents A; a finite set of
resources Res, with a particular element, e; an internal composition operator · on Res
(· : Res×Res ⇀ Res); a countable set of propositional symbols Prop. The language L
of ERL is defined as follows:

φ ::= p | ⊥ | > | ¬φ | I | φ∨ψ | φ∧ψ | φ→ φ | φ∗φ | φ−∗φ | Ls
aφ |Ms

aφ
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where p ∈ Prop, a ∈ A and s ∈ Res. We also define the following operators: Ns
aφ ≡

Ls
a(Ms

aφ), M̃s
aφ≡ ¬Ms

a¬φ, L̃s
aφ≡ ¬Ls

a¬φ, Ñs
aφ≡ ¬Ns

a¬φ. The meanings of these con-
nectives are defined in the sequence of definitions that follow below. For simplicity, we
write rs instead of r · s and so write Lrs

a φ instead of Lr·s
a φ.

Note that we introduce modalities that depend on agents and resources, and com-
pare them with previous work on an epistemic extension of Boolean BI [7]. With a slight
abuse of notation, we have explicit resources in the language syntax: just as in [8], we
must assume that the resource elements present in the syntax of the modalities have
counterparts in the partial resource monoid semantics. This design choice has conse-
quences both for the expressivity of the logic and for the formulation of the tableaux
calculus.

Definition 1 (Partial resource monoid). A partial resource monoid (PRM) is a struc-
ture R = (R,•) such that

– R is a set of resources such that Res⊆ R (which notably means that e ∈ R), and
– • : R×R ⇀ R is an operator on R such that, for all r1,r2,r3 ∈ R,

- • is an extension of ·: if r1,r2,r3 ∈ Res, then r1 = r2 · r3 iff r1 = r2 • r3,
- e is a neutral element: r1 • e ↓ and r1 • e = r1,
- • is commutative: if r1 • r2 ↓, then r2 • r1 ↓ and r2 • r1 = r1 • r2, and
- • is associative: if r1 • (r2 • r3) ↓, then (r1 • r2)• r3 ↓ and
(r1 • r2•)r3 = r1 • (r2 • r3).

Here r • r′ ↓ means r • r′ is defined. We call e the unit resource and • the resource
composition. Henceforth, ℘(S) denotes the powerset of S.

Definition 2 (Model). A model is a triple M = (R ,{∼a}a∈A,V ) such that

– R = (R,•) is a PRM,
– for all a ∈ A, ∼a⊆ R×R is an equivalence relation, and
– V : Prop→℘(R) is a valuation function.

We can place this logic in the context of our previous work on modal [3,4] and
epistemic extensions of (Boolean) BI [6,7]. In [7], an epistemic extension of Boolean
BI, called ESL, is introduced. In this logic, there is just one epistemic modality, Ka,
which allows the knowledge of an agent a to be expressed. More formally, the semantics
of this modality is defined by r |=W Kaφ if and only if, for all r′ such that r ∼a r′,
r′ |=W φ, where r and r′ are semantic worlds (or resources) and∼a is a relation between
worlds that expresses that they are equivalent from the point of view of the agent a.
This parametrization of modality on resource derives from ideas that are conveniently
expressed in, for example, [3,4].

In this paper, we aim to develop the idea in order to consider a modality like Ka and
to parametrize it on a resource s, requiring the world relation to be of the form r•s∼a r′

or r∼a r′ •s or even r•s∼a r′ •s. Then, in the spirit of ESL, we define a new logic from
Boolean BI that allows us to model not only relations between resources according to
an agent, but also how those relations are restricted by resources. We can also consider
the resources upon which the agent’s relation are parametrized to be local to the agent.
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In this spirit, we define three new modalities Ls
aφ, Ms

aφ, and Ns
aφ, for which we have

the following semantics expressing the evident three forms of the agent’s contingency
for truth in the presence of composable resources:

1. Ls
aφ expresses that the agent, a, can establish the truth of φ using a given resource

whenever the ambient resource, r, can be combined with the agent’s local resource,
s, to yield a resource that a judges to be equivalent to that given resource:

r |=W Ls
aφ iff for all r′ such that r′ ∼a r • s, r′ |=W φ.

2. Ms
aφ expresses that the agent, a, can establish the truth of φ using a resource that

is the combination of its local resource, s, with any resource such that a judges the
combined resource to be equivalent to the ambient resource, r:

r |=W Ms
aφ iff for all r′ such that r′ • s∼a r, r′ • s |=W φ.

3. Ns
aφ expresses that the agent, a, can establish the truth of φ using any resource com-

bined with its local resource, s, provided a judges that combination to be equivalent
to the combination of that resource with the ambient resource, r:

r |=W Ns
aφ iff for all r′ such that r′ • s∼a r • s, r′ • s |=W φ.

ERL can thus be seen as a particular epistemic logic that provides new modalities
which model access to resources, whether they are interpreted as pieces of knowledge,
locations, or otherwise.

Definition 3 (Satisfaction and validity). Let M = (R ,{∼a}a∈A,V ) be a model. The
satisfaction relation |=W⊆ R×L is defined, for all r ∈ R, as follows:

r |=W p iff r ∈V (p)
r |=W ⊥ never
r |=W > always

r |=W ¬φ iff r 6|=W φ

r |=W φ∨ψ iff r |=W φ or r |=W ψ

r |=W φ∧ψ iff r |=W φ and r |=W ψ

r |=W φ→ ψ iff if r |=W φ, then r |=W ψ

r |=W I iff r = e
r |=W φ∗ψ iff there exist r1,r2 ∈ R s.t. r1 • r2 ↓, r1 • r2 = r, and r1 |=W φ and r2 |=W ψ

r |=W φ−∗ψ iff for all r′ ∈ R, if r • r′ ↓ and r′ |=W φ, then r • r′ |=W ψ

r |=W Ls
aφ iff for all r′ ∈ R, if r • s∼a r′, then r′ |=W φ

r |=W Ms
aφ iff for all r′ ∈ R, if r ∼a r′ • s, then r′ • s |=W φ

r |=W Ns
aφ iff for all r′ such that r′ • s∼a r • s, r′ • s |=W φ.

A formula φ is valid, denoted � φ, if and only if, for all M and all r, r |=W φ.

Note that Ns
aφ ≡ Ls

a(Ms
aφ). To see this, consider that r |=W Ls

a(Ms
aφ) iff, for all

r′ ∈ R, if r• s∼a r′, then r′ |=W Ms
aφ iff, for all r′ ∈ R, if r• s∼a r′, then, for all r′′ ∈ R,

if r′ ∼a r′′ • s, then r′′ • s |=W φ iff, for all r′,r′′ ∈ R, if r • s ∼a r′ and r′ ∼a r′′ • s, then
r′′•s |=W φ iff (by the transitivity of∼a), for all r′′ ∈R, if r•s∼a r′′•s, then r′′•s |=W φ

iff r |=W Ns
aφ.
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Proposition 1 (Satisfaction for the secondary modalities). Let M =(R ,{∼a}a∈A,V )
be a model, and let r ∈ R. The following statements hold:

1. r |=W L̃s
aφ iff there exists r′ ∈ R such that r • s∼a r′ and r′ |=W φ;

2. r |=W M̃s
aφ iff there exists r′ ∈ R such that r ∼a r′ • s and r′ • s |=W φ;

3. r |=W Ñs
aφ iff there exists r′ ∈ R such that r • s∼a r′ • s and r′ • s |=W φ.

Proof. For example, consider the first part. L̃s
aφ ≡ ¬Ls

a¬φ, so r |=W L̃s
aφ iff r |=W

¬Ls
a¬φ iff r 6|=W Ls

a¬φ iff there exists r′ ∈ R s.t. r • s ∼a r′ and r′ 6|=W ¬φ iff there
exists r′ ∈ R s.t. r • s∼a r′ and r′ |=W φ. Parts 2 and 3 are similar.

Note that the first point of the definition of •, in Definition 1, implies that the three
other definitions (neutral element, commutativity, and associativity) extend to ·, so that
the following are semantically equivalent (i.e., every valid formula in the one is valid
in the other) for any agent a and any resources r, s, and t: Lre

a φ ≡ Lr
aφ, Lrs

a ≡ Lsr
a , and

Lr(st)
a ≡ L(rs)t

a . Of course, these equivalences also hold for Mφ, Nφ, L̃φ, M̃φ, and Ñφ.

3 Some Properties of ERL

Consider two fragments of ERL. First, ERLBBI — corresponding to BBI [14] — with
A = /0 on the language L|BBI defined as L excluding the L, M, and N operators. Second,
ERLEL — corresponding to the epistemic logic EL consisting of classical propositional
additives and the basic epistemic operator Ka [9] — with Res = {e}, on the language
L|EL defined as L excluding I, ∗, and−∗ and with L, M, and N replaced by the operator
Ka, which is defined, for all agents a, by Kaφ = Le

aφ = Me
aφ.

Proposition 2 (ERL is a conservative extension of BBI and EL). If, in every model
of BBI, the neutral element of the composition is the element e of Res, then ERLBBI is
semantically equivalent to Boolean BI (BBI). If the agent sets are the same for the two
languages, ERLEL is semantically equivalent to the epistemic logic EL.

Definition 4. The logic ERL∗ is defined as ERL but with the addition of the two fol-
lowing properties to the partial resource monoid (Definition 1): 1. • has the right-
composition property, namely, if r1 = r2 and r1 • r3 ↓, then r2 • r3 ↓ and r2 • r3 = r1 • r3;
2. • has the right-cancellation property, namely, if r1 • r3 = r2 • r3, then r1 = r2.

Note that left-cancellation and left-composition also hold trivially, as • is commutative.

Lemma 1. Let a ∈ A be an agent, r,s ∈ Res be resources and φ be a formula of ERL∗.
We have the following properties:

1. Lt
a(Ls

aφ)≡ Lts
a φ

2. Ms
aφ→Mt

a(Ms
aφ)

3. Ls
aφ→Mt

a(Ls
aφ)

4. Nt
a(Ns

aφ)≡Lt
a(Ns

aφ)
5. Le

aφ≡Me
aφ≡ Ne

aφ

6. L̃t
a(L̃s

aφ)≡ L̃ts
a φ

7. M̃t
a(M̃s

aφ)→ M̃s
aφ

8. M̃t
a(L̃s

aφ)→ L̃s
aφ

9. Ñt
a(Ñs

aφ)≡ L̃t
a(Ñs

aφ).

Proof. Straightforward calculations using the semantic definitions of the modalities.
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4 Modelling with the Logic ERL

Using a very simple, well-known example, we illustrate how to use ERL, and its special
fragment ERL∗, in modelling access control situations. There is often a gap between
theory and practice when dealing with security matters. Specifically, when a particular
security policy is applied to a particular system, the behaviour of the system may not be
as intended.

Consider the example of Schneier’s gate, [21], wherein a security system is ineffec-
tive because of the existence of a side-channel that allows a control to be circumvented.
Here a facility that is intended to be secured is protected by a barrier that prevents cars
from entering into the facility. The barrier may be controlled by a token — such as a
card, a remote, or a code — the holding of which distinguishes authorized personnel
from intruders. If, however, the barrier itself is surrounded by ground that can be tra-
versed by a vehicle, without any kind of fence or wall, then any car can drive around
it (whether it’s with a malicious intent or just by laziness of getting through the secu-
rity procedure) and the access control policy, as implemented by the barrier and the
tokens, is undermined. So, the access control policy — that only authorized personnel,
in possession of a token, may take vehicles into the facility — is undermined by the
architecture of the system to which it is applied.

We show how ERL∗ can be used to model, and so reason about, the situation de-
scribed above (following [21]), illustrating how such situations can be identified by
logical analysis. Related analyses, employing logical models of layered graphs, can be
found in [5]. We start with a simple model, depicted in Figure 1, and gradually refine it.
We model just a facility protected by an access barrier. A vehicle having the appropriate
access token should be able to get inside. Here we use resources to represent various en-
tities in the model and the atomic formulae characterize properties on those entities. A
substantive explanation of systems modelling using locations, resources, processes, and
associated substructural modal logics may be found in [1,3]. We consider the following
sets of resources, agents, and properties: Res = {e, t,b}, A = {a}, Prop = {O,J}. O
and J respectively express being outside and inside the facility (we use J instead of I
to avoid confusion with I, the unit operator). If a resource c ∈ R represents a vehicle,
c |=W O means that c is outside the facility, and c |=W J means it is inside. The agent
a is a generic one that represents a user of the system. The resources b and t represent
tokens that stand respectively for the barrier and the access token of the users.

From the modelling perspective, the resources we have exposed here are diverse in
nature: t is a material token (key or card for instance), c represents a car, while b seems
to be just a marker for the presence or well-functioning of the barrier. This diversity
raises the question of the meaning and value of the neutral resource e. We elide that
problem by accepting that resources encompass a variety of different objects, but we
can also employ the epistemic nature of our logic and consider that resources represent
not objects as such but rather the knowledge that a given object is in our system. For
example, c can be viewed as an abstract token marking the presence of a car, and t the
presence of the required access device in this car. Thus resources act as an abstraction
layer of our system. In that view, it’s easy to see e as the absence of information (we
know nothing of our system).

RN/18/03 6
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b

c, tO

J

Fig. 1. Barrier problem, base case

b

c, taO

J

Fig. 2. Barrier problem with agents

We have the following property: O→ Lbt
a J. According to the semantics, based on

a resource monoid R, c |=W O→ Lbt
a J just in case if c |=W O, then, for every c′ ∈ R

such that c•b• t ∼a c′, c′ |=W J. Thus the combination of the two tokens grants access
to the inside. The use of the token b for the presence of the barrier helps in modelling
a situation in which the barrier is completely shut or is broken (in which case entering
wouldn’t be possible). Note that the formulae O→ Lt

aJ, O→ Lb
aJ, and O→ Le

aJ are
not valid because we cannot enter if the barrier is shut, if we have no access token, or
both.

The use of the operator L in this situation is illustrative. First, consider what dif-
ferences the use of one of the other two operators would make. If we were to state
O→Mbt

a J, then it would mean that anyone outside can get (without condition) inside
and acquire the two access tokens. This is of course not what we expect. On the other
hand, using N has an interesting effect. O→ Nbt

a J requires not only that an entering
agent have the expected tokens, but also that those tokens remain active once they are
inside. This is slightly different from our first approach: we don’t know if the tokens are
still active once the agent is inside.

We can also consider which of the additive implication,→, and the multiplicative,
−∗, would be the better modelling choice in this example. For a first approach,→ seems
quite sufficient. Indeed, if we assert O→ Lbt

a J as valid, then any resource satisfies it.
So, if we have a car c such that c |=W O, we also have c |=W O→ Lbt

a J, and then we
get the expected c |=W Lbt

a J.
However, if we consider more complex properties, the situation is different. Imag-

ine, for example, an environment that is composed not only of the car c, but also other
information o. Our epistemic world is thus o•c. So, even if we have c |=W O, we cannot
use the property O→Lbt

a J as we don’t have o•c |=W O. On the contrary, if we state the
property O−∗Lbt

a J as valid instead, then we have, in particular, o |=W O−∗Lbt
a J and,

together with c |=W O, this gives o • c |=W Lbt
a J, as desired. So, the use of −∗ instead

of→ is much more useful in more complex systems, as it allows us to set aside, as with
Separation Logic’s Frame Rule, some of the entities of our system and still apply the
property.

Now we introduce agents to the model (see Figure 2). The first model may seem
crude, because a single resource is used to model the access of any agent. So, we seek
to benefit from the logic that allows us to take agents into account. We change the
model by defining a detailed set of agents, A = {α,β,γ} and now take three users, α,
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b

c, ta

β

O

J

Fig. 3. Barrier problem with a shortcut

b

c, taO

J

F

Fig. 4. Barrier problem with a fence

β, and γ. Each user should have its own access token, and the resource set is modified
accordingly: Res= {e,b, tα, tβ, tγ}. Now the slightly different formula O→Lbta

a J is valid
for any agent a ∈ A. So, for example, O→ Lbtα

α J is valid, which means that α can get
inside with his own token, but O→ L

btβ
α J is not, which means α cannot use β’s token.

Now consider that the access is controlled and the agents are supposed to cross the
barrier only if they have the appropriate access device. We want to capture the fact
that the system can actually be flawed (as mentioned in the problem presentation). It
is actually quite easy to do, because being able to circumvent the barrier just means
being able to access inside of the complex without any token. We could be a little more
specific by imagining that some agents know the shortcut (or dare to use it) and others
don’t (See Figure 3). In the previous setting, suppose that the agent β is aware of the
shortcut and is disposed to use it. Our new set of properties should now be the following:{

O→ Lbta
a J (for every a ∈ A), O→ Le

β
J
}

The unit resource e expresses a direct access (with no resource needed). Note how the
use of agents can help us to express different security policies in the same model.

We can reasonably suppose that such a flawed system would be quickly dealt with;
for example, by installing a fence that would prevent going around the barrier (See
Figure 4). We could, of course, just model that by removing our last addition and get
back to the intended policy, but it is more interesting to encode it by a formula. For
example, we might then also describe a fault in the fence (or its removal). To do so, we
can simply add a propositional formula F that is valid for any resource provided there
is a fence preventing the passage of ‘rogue’ agents. Our system then becomes{

O→ Lbta
a J (for every a ∈ A), O∧¬F → Le

β
J
}

Having established a system of formulae that describes our modelling situation quite
clearly, we can seek to some properties of the model. The idea is to establish a property
of the system that goes beyond its basic definition. For example, we may want to check
that every agent inside the facility has passed the barrier and has in its possession its
access token. This means that we must prove that, for every agent a ∈ A, J→ M̃bta

a J.
Indeed, if c |=W J→ M̃bta

a J, this means that if c |=W J, then there exists c′ ∈ R such
that c∼a c′ •b•ta and c′ •b•ta |=W J, which expresses that every resource representing
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a car that is inside must in fact be equivalent, for a certain agent a ∈ A, to a resource
that is inside and is composed with both the appropriate token ta and the barrier token
b. This is exactly what we wanted to capture. Notice that this particular property is not
verified by the system we stated in the last paragraph. Indeed, as we noticed before,
specifying entrance with r |=W O→ Lbta

a J makes J being satisfied by any resource r′

such that r •b• ta ∼a r′. We see that r′ does not contain b and ta. The use of N instead
solves this problem: we then have r•b• ta ∼a r′ •b• ta and r′ •b• ta |=W J, as required.

So far, we have consider only simple situations, mainly one car crossing the barrier
in various situations. Of course, we may wish to consider more complex models and
establish similar properties. For example, we may want to see what happen if several
cars are modelled together in the system. We have the sets of properties in the form
of implications stated before. To state there is a car in the system, we just assert that
the formula O is valid. Then, by looking at the semantics of our formulae, we create a
resource c to satisfy that formula. In order to have several cars, we are first tempted to
state something like O∧O∧O (for three cars). However, given our semantics, we have
trivially that O∧O∧O ≡ O, which is annoying for our modelling. It is better to state
O ∗O ∗O, using the multiplicative conjunction, instead. Then, to satisfy this formula,
we need indeed three resources c1,c2,c3 and we have c1 • c2 • c3 |=W O ∗O ∗O. The,
using −∗ as described above, we can see the system evolve as cars are allowed inside.
Thus, the use of ∗ is particularly relevant to model several instances of a same object.

Although we have shown how ERL is sufficiently expressive to describe a secu-
rity problem and check some of its behavioural properties, the modelling approach de-
scribed so far quite limited to capturing specific situations in a more-or-less ad hoc
manner. One approach to analysing the relationship between policy and system archi-
tecture is to reason in terms of layers, as developed in [4,5,10], using logics that are
similar to, but weaker than, BI. In this set-up, a policy architecture is layered over a
system architecture. Another way to think of this that we design first a general model
with very few details, and then to design several others that refine one another by inher-
iting the last model’s designs while adding some new and more precise details.

5 A Tableaux Calculus for ERL

We define a labelled tableaux calculus for ERL in the spirit of previous work for BI:
[11], BBI [15], ESL [7], and ILGL [10]. First, we introduce labels and constraints that
correspond, respectively, to resources and to the equality and equivalence relations on
resources and agents. We consider a finite set of constants Λr such that |Λr|= |Res|−1.
On it we build an infinite countable set of (resource) constants γr such that Λr ⊂ γr, and
then γr = Λr∪{c1,c2, . . .}. Concatenation of lists is denoted by⊕; JK denotes the empty
list. A resource label is a word built on γr, where the order of letters is not taken into
account; that is, a finite multiset γr and by ε the empty word. For example, xy is the
composition of the resource labels x and y. We say that x is a resource sublabel of y if
and only if there exists z such that xz = y. The set of resource sublabels of x is denoted
E(x).
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Rules for resource constraints:

〈ε〉
ε' ε

x' y
〈sr〉y' x

xy' xy
〈dr〉x' x

x' y y' z
〈tr〉x' z

x' y yk ' yk
〈cr〉

xk ' yk
xPu y

〈kr〉x' x

Rules for agent constraints:

x' x 〈ra〉
xPv x

xPu y
〈sa〉

yPu x
xPu y yPu z

〈ta〉
xPu z

xPu y x' k
〈ka〉

k Pu y

Fig. 5. Rules for constraint closure (for any u ∈ A)

We define a function λ : Res 7→ Lr such that: 1. λ(e) = ε; 2. for all r ∈ Res\{e},
λ(r)∈Λr; 3. λ is injective (if λ(r)= λ(r′), then r = r′). Note that λ is trivially a bijection
between Res and Λr ∪{ε}.

Definition 5 (Constraints). A resource constraint is an expression of the form x ' y,
where x and y are resource labels. An agent constraint is an expression of the form
xPu y, where x and y are resource labels and u belongs to the set of agents A.

A set of constraints is any set C that contains resource constraints and agent constraints.
Let C be a set of constraints. The (resource) domain of C is the set of all resource
sublabels that appear in C ; that is,

Dr(C ) =
⋃

x'y∈C
(E(x)∪E(y)) ∪

⋃
xPuy∈C

(E(x)∪E(y)).

Let C be a set of constraints. The (resource) alphabet Ar(C ) of C is the set of re-
source constants that appear in C . In particular, Ar(C ) = γr∩Dr(C ). Now we introduce,
in Figure 5, the rules for constraint closure that allow us to capture the properties of the
models into the calculus.

Definition 6 (Closure of constraints). Let C be a set of constraints. The closure of C ,
denoted C , is the least relation closed under the rules of Figure 5 such that C ⊆ C .

There are six rules (〈ε〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉, and 〈kr〉) that produce resource con-
straints and four rules (〈ra〉, 〈sa〉, 〈ta〉, and 〈ka〉) that produce agent constraints. We note
that v, introduced in the rule 〈ra〉, must belong to the set of agents A.

Proposition 3. The following rules can be derived from the rules of constraint closure:

xk ' y
〈pl〉x' x

x' yk
〈pr〉y' y

xk Pu y
〈ql〉x' x

xPu yk
〈qr〉y' y

xPu y x' x′ y' y′
〈wa〉

x′ Pu y′

Corollary 1. Let C be a set of constraints and u ∈ A be an agent.
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1. x ∈Dr(C ) iff x' x ∈ C iff xPu x ∈ C .
2. If xy ∈Dr(C ), x′ ' x ∈ C , and y′ ' y ∈ C , then xy' x′y′ ∈ C .

Proposition 4. Let C be a set of constraints. We have Ar(C ) = Ar(C ).

Lemma 2 (Compactness). Let C be a (possibly infinite) set of constraints.

1. If x' y ∈ C , then there is a finite set C f such that C f ⊆ C and x' y ∈ C f .
2. If xPu y ∈ C , then there is a finite set C f such that C f ⊆ C and xPu y ∈ C f .

We define a labelled tableaux calculus for ERL in the spirit of previous work for
BI [11], BBI [15], ESL [7], and ILGL [10] by using similar definitions and results.

Definition 7. A labelled formula is a 3-tuple of the form (Sφ : x) such that S ∈ {T,F},
φ ∈ L is a formula and x ∈ Lr is a resource label. A constrained set of statements (CSS)
is a pair 〈F ,C 〉, where F is a set of labelled formulae and C is a set of constraints,
satisfying the property: if (Sφ : x) ∈ F , then x ' x ∈ C (call this property Pcss). A CSS
〈F ,C 〉 is finite if F and C are finite. The relation 4 is defined by 〈F ,C 〉4 〈F ′,C ′〉 iff
F ⊆ F ′ and C ⊆ C ′. We write 〈F f ,C f 〉 4 f 〈F ,C 〉 when 〈F f ,C f 〉 4 〈F ,C 〉 holds and
〈F f ,C f 〉 is finite, meaning that F f and C f are both finite.

Proposition 5. For any CSS 〈F f ,C 〉, where F f is finite, there exists C f ⊆ C such that
C f is finite and 〈F f ,C f 〉 is a CSS.

Proof. By induction on the number of labelled formulae of F f and by Lemma 2.

Figure 6 presents the rules of tableaux calculus for ERL. Note that ‘ci and c j are new
label constants’ means ci 6= c j ∈ γr \ (Ar(C )∪Λr).

Definition 8 (Tableau). Let 〈F0,C0〉 be a finite CSS. A tableau for 〈F0,C0〉 is a list of
CSS, called branches, inductively built according the following rules:

1. The one branch list [〈F0,C0〉] is a tableau for 〈F0,C0〉;
2. If the list Tm⊕ [〈F ,C 〉]⊕Tn is a tableau for 〈F0,C0〉 and

cond〈F ,C 〉
〈F1,C1〉 | . . . | 〈Fk,Ck〉

is an instance of a rule of Figure 6 for which cond〈F ,C 〉 is fulfilled, then the list
Tm⊕ [〈F ∪F1,C ∪C1〉; . . . ;〈F ∪Fk,C ∪Ck〉]⊕Tn is a tableau for 〈F0,C0〉.

A tableau for the formula φ is a tableau for 〈{(Fφ : c1)},{c1 ' c1}〉.

We remark that a tableau for a formula φ verifies the property (Pcss) of Definition 7 (by
the rule 〈ra〉) and any application of a rule of Figure 6 provide also a tableau that verifies
the property (Pcss) (in particular by Corollary 2).

In this calculus, we have two particular set of rules. The first set is composed by
the rules 〈TI〉, 〈T∗〉, 〈F−∗〉, 〈FL〉, 〈FM〉, 〈FN〉, 〈TL̃〉, 〈TM̃〉, and 〈TÑ〉, that introduce
new label constants (ci and c j) and new constraints, except for 〈TI〉 that only introduces
a new constraint. The second set is composed of the rules 〈F∗〉, 〈T−∗〉, 〈TL〉, 〈TM〉,
〈TN〉, 〈FL̃〉, 〈FM̃〉, and〈FÑ〉, that have a condition on the closure of constraints. To
apply one of these rules we choose a label which satisfies the condition and then apply
the corresponding rule. Otherwise, we cannot apply the rule.
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(TI : x) ∈ F
〈TI〉

〈 /0,{x' ε}〉

(T¬φ : x) ∈ F
〈T¬〉

〈{(Fφ : x)}, /0〉
(F¬φ : x) ∈ F

〈F¬〉
〈{(Tφ : x)}, /0〉

(Tφ∧ψ : x) ∈ F
〈T∧〉

〈{(Tφ : x),(Tψ : x)}, /0〉
(Fφ∧ψ : x) ∈ F

〈F∧〉
〈{(Fφ : x)}, /0〉 | 〈{(Fψ : x)}, /0〉

(Tφ∨ψ : x) ∈ F
〈T∨〉

〈{(Tφ : x)}, /0〉 | 〈{(Tψ : x)}, /0〉
(Fφ∨ψ : x) ∈ F

〈F∨〉
〈{(Fφ : x),(Fψ : x)}, /0〉

(Tφ→ ψ : x) ∈ F
〈T→〉

〈{(Fφ : x)}, /0〉 | 〈{(Tψ : x)}, /0〉
(Fφ→ ψ : x) ∈ F

〈F→〉
〈{(Tφ : x),(Fψ : x)}, /0〉

(Tφ∗ψ : x) ∈ F
〈T∗〉

〈{(Tφ : ci),(Tψ : c j)},{x' cic j}〉
(Fφ∗ψ : x) ∈ F and x' yz ∈ C

〈F∗〉
〈{(Fφ : y)}, /0〉 | 〈{(Fψ : z)}, /0〉

(Tφ−∗ψ : x) ∈ F and xy' xy ∈ C
〈T−∗〉

〈{(Fφ : y)}, /0〉 | 〈{(Tψ : xy)}, /0〉
(Fφ−∗ψ : x) ∈ F

〈F−∗〉
〈{(Tφ : ci),(Fψ : xci)},{xci ' xci}〉

(TLr
uφ : x) ∈ F and xλ(r)Pu y ∈ C

〈TL〉
〈{(Tφ : y)}, /0〉

(FLr
uφ : x) ∈ F

〈FL〉
〈{(Fφ : ci)},{xλ(r)Pu ci}〉

(TMr
uφ : x) ∈ F and xPu yλ(r) ∈ C

〈TM〉
〈{(Tφ : yλ(r))}, /0〉

(FMr
uφ : x) ∈ F

〈FM〉
〈{(Fφ : ciλ(r))},{xPu ciλ(r)}〉

(TNr
uφ : x) ∈ F and xλ(r)Pu yλ(r) ∈ C

〈TN〉
〈{(Tφ : yλ(r))}, /0〉

(FNr
uφ : x) ∈ F

〈FN〉
〈{(Fφ : ciλ(r))},{xλ(r)Pu ciλ(r)}〉

(TL̃r
uφ : x) ∈ F

〈TL̃〉
〈{(Tφ : ci)},{xλ(r)Pu ci}〉

(FL̃r
uφ : x) ∈ F and xλ(r)Pu y ∈ C

〈FL̃〉
〈{(Fφ : y)}, /0〉

(TM̃r
uφ : x) ∈ F

〈TM̃〉
〈{(Tφ : ciλ(r))},{xPu ciλ(r)}〉

(FM̃r
uφ : x) ∈ F and xPu yλ(r) ∈ C

〈FM̃〉
〈{(Fφ : yλ(r))}, /0〉

(TÑr
uφ : x) ∈ F

〈TÑ〉
〈{(Tφ : ciλ(r))},{xλ(r)Pu ciλ(r)}〉

(FÑr
uφ : x) ∈ F and xλ(r)Pu yλ(r) ∈ C

〈FÑ〉
〈{(Fφ : yλ(r))}, /0〉

Note: ci and c j are new label constants, with ci,c j /∈ Λr.

Fig. 6. Rules of the tableaux calculus for ERL. An example of a tableaux proof, for the formula
Ms

aφ→Mr
a(Ms

aφ), is given in Appendix ??.
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Definition 9 (Closure condition). A CSS 〈F ,C 〉 is closed if one of the following con-
ditions holds, where φ∈ L: 1. (Tφ : x)∈ F , (Fφ : y)∈ F and x' y∈ C ; 2. (FI : x)∈ F
and x' ε ∈ C ; 3. (F> : x) ∈ F ; and 4. (T⊥ : x) ∈ F . A CSS is open if it is not closed.
A tableau for φ is closed if all its branches are closed and a tableaux proof for φ is a
closed tableau for φ.

To illustrate the construction of tableaux, we consider the formula Ms
aφ→Mr

a(Ms
aφ).

To build the corresponding tableau, we start with the CCS 〈{(FMs
aφ→ Mr

a(Ms
aφ) :

c1)},{c1 ' c1}〉 and with the following representation of the formula set F and the
constraints set C :

[F ] [C ]√
1(FMs

aφ→Mr
a(Ms

aφ) : c1) c1 ' c1

We then apply the rules of our tableaux method, respecting the priority order, and we
obtain the tableau of Figure 7. We omit the λ and write r for λ(r), for any resource.

[F ]

√
1 (FMs

aφ→Mr
a(Ms

aφ) : c1)

√
4 (TMs

aφ : c1)√
2 (FMr

a(Ms
aφ) : c1)

√
3 (FMs

aφ : c2r)

(Fφ : c3s)

(Tφ : c3s)

×

[C ]

c1 ' c1

c1 Pa c2r

c2r Pa c3s

Fig. 7. Tableau for Ms
aφ→Mr

a(Ms
aφ)

Note that we mark with
√

the steps of the tableau construction. The main steps are
the following: first apply the rule 〈F→〉 and then obtain two formulae both with M as
operator. According to the priority rules, first apply the 〈FM〉 rule, which generates a
new formula, a new resource label c2, and the constraint c1Pa c2r. Then apply the 〈FM〉
rule again, which generates a new formula, a new resource label c3, and the constraint
c2r Pa c3s. We must now apply the 〈TM〉 rule and then we need a resource label z
such that c1 Pa zs ∈ C . Now, having closure by rule 〈ta〉 with agent a, we generate the
constraint c1 Pa c3s, and thus apply the rule with z = c1 and generate (Tφ : c3s). As we
also have (Fφ : c3s), we have a closed branch and thus a closed tableau.

Theorem 1 (Soundness). Let φ be a formula of ERL. If there exists a tableaux proof
for φ, then φ is valid.
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Proof. The proof is similar to the soundness proof of BI tableaux [11] and its recent ex-
tensions [6,7,10]. The main point is the notion of realizability of a CSS 〈F ,C 〉, meaning
that there exists a model M and an embedding (|.|) from the resource labels to the re-
source set of M such that if (Tφ : x) ∈ F , then |x| �M φ ,and if (Fφ : x) ∈ F , then
|x| 6�M φ. More details are given in Appendix A.

We propose a countermodel extraction method, adapted from [15], that transforms
the sets of resource and agent constraints of a branch 〈F ,C 〉 into a model M such
that if (Tφ : x) ∈ F , then ρx �M φ, and if (Fφ : x) ∈ F , then ρx 6�M φ, where ρx is the
representative of the equivalence class of x.

More details are given in Appendix B and examples of countermodels with a similar
method are given in [6–8,10,11].

Theorem 2 (Completeness). Let φ be an ERL formula. If φ is valid, then there exists a
tableaux proof for φ.

Proof. The proof consists in building, using a fair strategy, a Hintikka CSS from a
formula for which there is no tableaux proof that is a sequence of labelled formulae
in which all labelled formulae occur infinitely many times, and an oracle that is a set
of non-closed CSS with some specific properties. Then, assuming there is no tableaux
proof for φ, we build a Hintikka CSS, and deduce from it that φ is not valid. More details
are given in Appendix C.

6 Conclusions

We have presented a substructural epistemic logic, based on Boolean BI, in which the
epistemic modalities, which extend the usual epistemic modalities, are parametrized on
the agent’s local resource. The logic represents a first step in developing an epistemic
resource semantics. This step is illustrated through an example that explores the gap
between policy and implementation in access control. We have provided a system of
labelled tableaux for the logic, and established soundness and completeness.

Much further work is suggested. First, the theory, pragmatics, and interpretation of
the epistemic modalities with resource semantics, including aspects of local reasoning
for resource-carrying agents [14,20], concurrency [17]. Second, logical theory, includ-
ing proof systems, model-theoretic properties, and complexity. Connections with other
approaches to modelling the relationship between policy and implementation in sys-
tem management, such as those discussed in [22] and approaches involving logics for
layered graphs [1,4], should be explored.
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A Proof of Soundness

Definition 10 (Realization). Let 〈F ,C 〉 be a CSS. A realization of it is a pair (M , |.|)
where M = (R ,{∼a}a∈A,V ) is a model and |.| : Dr(C )→ R such that

– For any r ∈ Res, we have |λ(r)|= r
– |ε|= e
– |.| is a total function (for all x ∈Dr(C ), |x| is defined)
– If xy ∈Dr(C ), then |x| • |y| ↓ and |x| • |y|= |xy|
– If (Tφ : x) ∈ F , then |x| |=W φ

– If (Fφ : x) ∈ F , then |x| 6|=W φ

– If x' y ∈ C , then |x|= |y|
– If xPu y ∈ C , then |x| ∼u |y|.

We say that a CSS is realizable if there exists a realization of this CSS. We say that
a tableau is realizable if at least one of its branches is realizable.

Proposition 6. Let 〈F ,C 〉 be a CSS and R = (M , |.|) be a realization of it. R is also
a realization of 〈F ,C 〉, and then

1. For all x ∈Dr(C ), |x| is defined
2. If x' y ∈ C then |x|= |y|
3. If xPu y ∈ C then |x| ∼u |y|.

Lemma 3. The rules of the tableaux method for ERL preserve realizability.

Proof. By induction on the structure of realizable tableaux. See [8] for a similar ar-
gument. Let T be a realizable tableau. By definition, T has a realizable branch B =
〈F ,C 〉. Let R= (M , |.|) be a realization of the branch B , where M = (R ,{∼a}a∈A,V )
and |.| : Dr(C )→ R. If we apply a rule on a labelled formula of a branch thai is not B
then B is not modified, and then T is realizable. Else, we consider each kind of formula
on which the rule is applied.

– (TI : x) ∈ F .
We have, by definition of realization, |x| |=W I. Then |x|= e. As |ε|= e then |x|= |ε|
and we remark that R is a realization of the new branch 〈F ,C ∪{x' ε}〉.

– (Tφ1 ∗φ2 : x) ∈ F .
By realization, we have |x| |=W φ1 ∗ φ2. Then, by definition, there exist r1,r2 ∈ R
such that r1 • r2 ↓, |x| = r1 • r2, r1 |=W φ1 and r2 |=W φ2. As ci and c j are new
resource label constants, |ci| and |c j| are not defined. Moreover as ci 6= c j, we can
extend R by setting |ci|= r1 and |c j|= r2. As we have |ci| • |c j| ↓ and, by implicit
extension, |x| = |ci| • |c j| = |cic j|, we obtain a realization of 〈F ,C ∪{x ' cic j}〉,
that is a realization of the branch 〈F ∪{(Tci :,)(Tφ2 : c j)},C ∪{x' cic j}〉.

– (Fφ1 ∗φ2 : x) ∈ F .
We have |x| 6|=W φ1 ∗ φ2. By definition, for all r1,r2 ∈ R such that r1 • r2 ↓ and
|x| = r1 • r2, we have r1 6|=W φ or r2 6|=W ψ. The branch is expanded into two
branches that are 〈F ∪{(Fφ : y)},C 〉 and 〈F ∪{(Fψ : z)},C 〉, where x ' yz ∈ C .
By Proposition 6, |x| = |yz|. By definition of realization, |.| is total, then |y| • |z| ↓
and |yz| = |y| • |z|. Thus |y| 6|=W φ or |z| 6|=W ψ. Therefore R is a realization of at
least one of the two new branches 〈F ∪{(Fφ : y)},C 〉 or 〈F ∪{(Fψ : z)},C 〉.
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– (TLr
uφ : x) ∈ F and xλ(r)Pu y ∈ C .

We have |x| |=W Lr
uφ. By definition, for all r′ ∈ R such that |x| • r ∼u r′, we have

r′ |=W φ. Moreover, as xλ(r)Pu y ∈ C , by Proposition 6 we have |xλ(r)| ∼u |y|. By
definition, |xλ(r)|= |x| • |λ(r)|= |x| • r. Thus, |x| • r ∼u |y|. Finally, this means we
have |y| |=W φ, thus R is a realisation of the branch 〈F ∪{(Tφ : y)},C 〉.

– (FLr
uφ : x) ∈ F .

We have |x| 6|=W Lr
uφ. By definition, there exist r′ ∈ R such that |x| • r ∼u r′ and

r′ 6|=W φ. As ci is a new constraint, |ci| is not defined and we can choose |ci| = r′

and we have |ci| 6|=W φ and |x|•r∼u |ci|. By definition, |xλ(r)|= |x|•|λ(r)|= |x|•r.
Thus |xλ(r)| ∼u |ci| and we have a realization of the branch 〈F ∪{(Fφ : ci)},C ∪
{xλ(r)Pu ci}〉.

Other cases are proved similarly.

Lemma 4. Closed branches are not realizable.

Proof. By a case analysis of closed branches that are realizable. See [8] for a similar
argument.

Let 〈F ,C 〉 a closed branch. We suppose that this branch is realizable. Let R =
(M , |.|) a realization of it. There are four cases.

– (Tφ : x) ∈ F , (Fφ : y) ∈ F and x ' y ∈ C . By Proposition 6, as the branch is
realizable, we must have |x| |=W φ, |y| 6|=W φ and |x|= |y|, which is absurd.

– (FI : x) ∈ F and x ' ε ∈ C . By Proposition 6, as the branch is realizable, we must
have |x| 6|=W I and |x|= |ε|. By Definition 3, we have e 6= |x| and by Definition 10
we have |x|= e, which is absurd.

– (F> : x)∈F . By Proposition 6, as the branch is realizable, we must have |x| 6|=W >,
which is absurd by Definition 3.

– (T⊥ : x)∈F . By Proposition 6, as the branch is realizable, we must have |x| |=W ⊥,
which is absurd by Definition 3.

As all cases are absurd, we conclude that 〈F ,C 〉 is not realizable.

Theorem 3 (Soundness). If there exists a proof for a formula φ then φ is valid.

Proof. We suppose that there exists a proof for φ. Then there is a closed tableau Tφ

for the CSS C = 〈{(Fφ : c1)},{c1 ' c1}〉. Now suppose that φ is not valid. Then there
is a countermodel M = (R ,{∼a}a∈A,V ) and a resource r ∈ R such that r 6|=W φ. Let
R= (M , |.|) such that |c1|= r. As R is a realization of C, by Lemma 3, Tφ is realizable.
Moreover by Lemma 4, Tφ cannot be closed, which is absurd because Tφ is a proof and
then is closed.by definition. Therefore φ is valid.

B Countermodel Extraction Method

We propose a countermodel extraction method, adapted from [15], that consists in trans-
forming the sets of resource and agent constraint of a branch 〈F ,C 〉 into a model M
such that if (Tφ : x) ∈ F then ρx �M φ and if (Fφ : x) ∈ F then ρx 6�M φ, where ρx is
the representative of the equivalence class of x. First, we define when a CSS 〈F ,C 〉 is
a Hintikka CSS.
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Definition 11 (Hintikka CSS). A CSS 〈F ,C 〉 is a Hintikka CSS iff, for any formula
φ,ψ ∈ L , any resource r ∈ Res, any resource label x,y,z ∈ Lr, and any agent u ∈ A:

1. (Tφ : x) /∈ F or (Fφ : y) /∈ F or x' y /∈ C
2. (FI : x) /∈ F or x' ε /∈ C
3. (F> : x) /∈ F
4. (T⊥ : x) /∈ F
5. If (TI : x) ∈ F , then x' ε ∈ C
6. If (T¬φ : x) ∈ F , then (Fφ : x) ∈ F
7. If (F¬φ : x) ∈ F , then (Tφ : x) ∈ F
8. If (Tφ∧ψ : x) ∈ F , then (Tφ : x) ∈ F and (Tψ : x) ∈ F
9. If (Fφ∧ψ : x) ∈ F , then (Fφ : x) ∈ F or (Fψ : x) ∈ F

10. If (Tφ∨ψ : x) ∈ F , then (Tφ : x) ∈ F or (Tψ : x) ∈ F
11. If (Fφ∨ψ : x) ∈ F , then (Fφ : x) ∈ F and (Fψ : x) ∈ F
12. If (Tφ→ ψ : x) ∈ F , then (Fφ : x) ∈ F or (Tψ : x) ∈ F
13. If (Fφ→ ψ : x) ∈ F , then (Tφ : x) ∈ F and (Fψ : x) ∈ F
14. If (Tφ∗ψ : x) ∈ F , then ∃y,z ∈ Lr, x' yz ∈ C and (Tφ : y) ∈ F and (Tψ : z) ∈ F
15. If (Fφ∗ψ : x) ∈ F , then ∀y,z ∈ Lr, x' yz ∈ C implies (Fφ : y) ∈ F or (Fψ : z) ∈ F
16. If (Tφ−∗ψ : x) ∈ F , then ∀y ∈ Lr, xy ∈Dr implies (Fφ : y) ∈ F or (Tψ : xy) ∈ F
17. If (Fφ−∗ψ : x) ∈ F , then ∃y ∈ Lr, xy ∈Dr and (Tφ : y) ∈ F and (Fψ : xy) ∈ F
18. If (TLr

uφ : x) ∈ F , then ∀y ∈ Lr, xλ(r)Pu y ∈ C implies (Tφ : y) ∈ F
19. If (FLr

uφ : x) ∈ F , then ∃y ∈ Lr, xλ(r)Pu y ∈ C and (Fφ : y) ∈ F
20. If (TMr

uφ : x) ∈ F , then ∀y ∈ Lr, xPu yλ(r) ∈ C implies (Tφ : yλ(r)) ∈ F
21. If (FMr

uφ : x) ∈ F , then ∃y ∈ Lr, xPu yλ(r) ∈ C and (Fφ : yλ(r)) ∈ F
22. If (TNr

uφ : x) ∈ F , then for all y ∈ Lr, xλ(r)Pu yλ(r) ∈ C implies (Tφ : yλ(r)) ∈ F
23. If (FNr

uφ : x) ∈ F , then there exists y ∈ Lr, xλ(r)Pu yλ(r) ∈ C and (Fφ : yλ(r)) ∈ F
24. If (TL̃r

uφ : x) ∈ F , then there exists y ∈ Lr, xλ(r)Pu y ∈ C and (Tφ : y) ∈ F
25. If (FL̃r

uφ : x) ∈ F , then for all y ∈ Lr, xλ(r)Pu y ∈ C implies (Fφ : y) ∈ F
26. If (TM̃r

uφ : x) ∈ F , then there exists y ∈ Lr, xPu yλ(r) ∈ C and (Tφ : yλ(r)) ∈ F
27. If (FM̃r

uφ : x) ∈ F , then for all y ∈ Lr, xPu yλ(r) ∈ C implies (Fφ : yλ(r)) ∈ F
28. If (TÑr

uφ : x) ∈ F , then there exists y ∈ Lr, xλ(r)Pu yλ(r) ∈ C and (Tφ : yλ(r)) ∈ F
29. If (FÑr

uφ : x) ∈ F , then for all y ∈ Lr, xλ(r)Pu yλ(r) ∈ C implies (Fφ : yλ(r)) ∈ F .

Conditions 1 to 4 ensure that a Hintikka CSS is not closed and conditions 5 to 29
ensure that it is saturated (no new tableaux rule can be applied).

To extract countermodels, we need to manipulate equivalent classes. The equiva-
lence class of x ∈ Dr(C ), denoted [x], is the set [x] = {y ∈ Lr | x ' y ∈ C}. Moreover
the function ρ that extracts a representative from a class is defined for any class [x] by
ρ([x]) = r if ∃r ∈ Res/λ(r) ∈ [x] and by ρ([x]) = y with y an arbitrary element of [x]
otherwise. We note ρx = ρ([x]) and Rep(Dr(C )) the set of all representatives of Dr(C ),
namely Rep(Dr(C )) = {ρx | x ∈Dr(C )}.

Lemma 5. For any set of constraints C , we have e ∈ Rep(Dr(C )) and ρε = e.

Definition 12 (Function Ω). Let 〈F ,C 〉 be a Hintikka CSS. The function Ω associates
to 〈F ,C 〉 a 3-tuple Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ), where R = (R,•), such that

– R = Rep(Dr(C ))∪ Res,

RN/18/03 18



A Substructural Epistemic Resource Logic (Extended Version)
(Updating RN 16/08) Didier Galmiche Pierre Kimmel David Pym

– if α /∈ Rep(Dr(C )) or β /∈ Rep(Dr(C )), then α•β =↑, else, α = ρx and β = ρy, and
we have

ρx •ρy =

{
↑ if xy 6∈Dr(C )
ρxy otherwise,

– for all a ∈ A, α∼a β iff α = ρx and β = ρy and xPa y ∈ C , and
– α ∈V (p) iff α = ρx and there exists y ∈ Lr such that y' x ∈ C and (Tp : y) ∈ F .

Lemma 6. Let 〈F ,C 〉 be a Hintikka CSS. Ω(〈F ,C 〉) is a model.

Lemma 7. Let 〈F ,C 〉 be a Hintikka CSS and M = Ω(〈F ,C 〉) = (R ,{∼a}a∈A,V ),
where R = (R,•). For all formulae φ ∈ L , all agents a ∈ A and all x,y ∈ Dr(C ), we
have: (1) If (Fφ : x) ∈ F , then ρx 6|=W φ; (2) If (Tφ : x) ∈ F , then ρx |=W φ.

Lemma 8. Let 〈F ,C 〉 be a Hintikka CSS such that (Fφ : x) ∈ F . The formula φ is not
valid and Ω(〈F ,C 〉) is a countermodel of φ.

Proof. Let 〈F ,C 〉 be a Hintikka CSS such that (Fφ : x) ∈ F . Let K = Ω(〈F ,C 〉). By
Lemma 6, K is a model. As 〈F ,C 〉 is a CSS, then by (Pcss) and Corollary 2, x∈Dr(C ).
Thus, by Lemma 7, we have ρx 6|=W φ. Therefore, K is a countermodel of the formula
φ and we can conclude that φ is not valid.

We give an example of countermodel extraction, by considering A = {a} and Res =
{e,r} and the formula Ls

aφ→ Lr
aLs

aφ that is not valid. By application of the tableau
rules we obtain the tableau of Fig 8.

[F ]

√
1 (FLs

aφ→ Ls
a(Lr

aφ) : c1)

√
4 (TLs

aφ : c1)
√

2 (FLs
a(Lr

aφ) : c1)

√
3 (FLr

aφ : c2)

(Fφ : c3)

(Tφ : c2)

#

[C ]

c1 ' c1

c1sPa c2

c2r Pa c3

Fig. 8. Tableau for Ls
aφ→ Ls

a(Lr
aφ)
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We see that, in step 4, we can only find c2 as suitable label for c1sPa x and thus the
tableau is not closed. The only branch of this tableau is a Hintikka CSS and we extract
this countermodel using Definition 12. We have M = (R ,{∼a}a∈A,V ), where

– R = Rep(Dr(C ))∪Res = {e,r,s,ρc1 ,ρc2 ,ρc3 ,ρc1λ(s),ρc2λ(r)}
– The resource composition:

• e r s ρc1 ρc2 ρc3 ρc1λ(s) ρc2λ(r)

e e r s ρc1 ρc2 ρc3 ρc1λ(s) ρc2λ(r)
r r ↑ ↑ ↑ ρc2λ(r) ↑ ↑ ↑
s s ↑ ↑ ρc1λ(s) ↑ ↑ ↑ ↑

ρc1 ρc1 ↑ ρc1λ(s) ↑ ↑ ↑ ↑ ↑
ρc2 ρc2 ρc2λ(r) ↑ ↑ ↑ ↑ ↑ ↑
ρc3 ρc3 ↑ ↑ ↑ ↑ ↑ ↑ ↑

ρc1λ(s) ρc1λ(s) ↑ ↑ ↑ ↑ ↑ ↑ ↑
ρc2λ(r) ρc2λ(r) ↑ ↑ ↑ ↑ ↑ ↑ ↑

– The equivalence relation, where the reflexivity is not represented:

e

r

s

ρc1λ(s) ρc2
a

ρc2λ(r) ρc3
a

ρc1

– V (φ) = {ρc2}

We can verify that it is a countermodel of Ls
aφ→ Ls

a(Lr
aφ).

C Proof of Completeness

This proof is an extension of the proof for BBI [15] to the epistemic connectives of
our logic. It consists in building a Hintikka CSS from a formula for which there is
no tableaux proof, by using a fair strategy, that is a sequence of labelled formulae in
which all labelled formulae occur infinitely many times, and an oracle, that is a set of
non-closed CSS with some specific properties.

Definition 13 (Fair strategy). A fair strategy is a sequence of labelled formulae and
agent constraints (Si)i∈N in ({T,F}×L × Lr)∪ (Lr ×A× Lr) such that all labelled
formulae and all agent constraints occur infinitely many times in this sequence, that is
{i ∈ N | Si ≡ (SF : x)} and {i ∈ N | Si ≡ xλ(r) Pu y} are infinite for any (SF : x) ∈
{T,F}×L×Lr and any xλ(r)Pu y ∈ Lr×A×Lr.

Proposition 7. There exists a fair strategy.
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Proof. Let X = ({T,F}×L×Lr)∪(Lr×A×Lr). As Prop is countable then L is count-
able. Moreover, Lr is countable (remember that γr is countable). Therefore, X is count-
able. So N×X is countable and there exists a surjective function ϕ : N−→ N×X . Let
p : N×X −→ X defined by p(i,x) = x and u = p◦ϕ. We show that u is a fair strategy by
showing that for any x∈ X , u−1({x}) is infinite. Let x∈ X . u−1({x}) = ϕ−1(p−1({x})).
But p−1({x}) = {(i,x)|i ∈N} so p−1(x) is infinite. As ϕ is surjective ϕ−1(p−1({x})) is
also infinite.

Definition 14. Let ℘be a set of CSS.

1. ℘ is 4-closed if 〈F ,C 〉 ∈℘ holds whenever 〈F ,C 〉 4 〈F ′,C ′〉 and 〈F ′,C ′〉 ∈℘

holds.
2. ℘ is of finite character if 〈F ,C 〉 ∈℘holds whenever 〈F f ,C f 〉 ∈℘holds for every
〈F f ,C f 〉4 f 〈F ,C 〉.

3. ℘ is saturated if for any 〈F ,C 〉 ∈℘and any instance

cond(F ,C )

〈F1,C1〉 | . . . | 〈Fk,Ck〉

of a rule of Figure 6, if cond(F ,C ) is fulfilled then 〈F ∪Fi,C ∪Ci〉 ∈℘for at least
one i ∈ {1, . . . ,k}.

Definition 15 (Oracle). An oracle is a set of non closed CSS which is4-closed, of finite
character and saturated.

Lemma 9. There exists an oracle which contains every finite CSS for which there exists
no closed tableau.

Proof. The proof is an adaptation for our epistemic modalities of the corresponding
proof in [6,15]. The proof given in [6] provides the necessary notions to develop this
proof in detail.

To prove the completeness we consider a formula ϕ for which there exists no proof
and we show that there exists a countermodel for this formula. The proof depends on
finding a way to obtain a Hintikka CSS. By Lemma 9, there exists an oracle which
contains every finite CSS for which there exists no closed tableau. We denote ℘ this
oracle. By Proposition 7, there exists a fair strategy. We denote S this strategy and
Si the ith formula or agent constraint of S . As T0 can not be closed then its unique
branch belongs to the oracle, that is 〈{(Fϕ : c1)},{c1 ' c1}〉 ∈℘. We build a sequence
〈Fi,Ci〉i>0 whose limit is a Hintikka CSS.

We denote T0 the initial tableau for ϕ. Then, we have T0 = [〈{(Fϕ : c1)},{c1' c1}〉]
and T0 cannot be closed.

Now, we present a way to obtain a Hintikka CSS. By Lemma 9, there exists an
oracle which contains every finite CSS for which there exists no closed tableau. We
denote ℘ this oracle. By Proposition 7, there exists a fair strategy. We denote S this
strategy and Si the ith formula or agent constraint of S . As T0 can not be closed then its
unique branch belongs to the oracle, that is 〈{(Fϕ : c1)},{c1 ' c1}〉 ∈℘.
We build a sequence 〈Fi,Ci〉i>0 as follows:
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– 〈F0,C0〉= 〈{(Fϕ : c1)},{c1 ' c1}〉
– Si is a labelled formula of the form (SF : x):

- If 〈Fi∪{(SF : x)},Ci〉 6∈℘ then 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
- If 〈Fi ∪{(SF : x)},Ci〉 ∈℘ then 〈Fi+1,Ci+1〉 = 〈Fi ∪{(SF : x)}∪Fe,Ci ∪Ce〉

such that Fe and Ce are given by

Si Fi Fe Ce

T I /0 {x' ε}

T φ∗ψ {(Tφ : a),(Tψ : b)} {x' ab}

F φ−∗ψ {(Tφ : a),(Fψ : xa)} {xa' xa}

F Lr
uφ {(Fφ : a)} {xλ(r)Pu a}

F Mr
uφ {(Fφ : aλ(r))} {xPu aλ(r)}

F Nr
uφ {(Fφ : aλ(r))} {xλ(r)Pu aλ(r)}

T L̃r
uφ {(Tφ : a)} R {xλ(r)Pu a}

T M̃r
uφ {(Tφ : aλ(r))} {xPu aλ(r)}

T Ñr
uφ {(Tφ : aλ(r))} {xλ(r)Pu aλ(r)}

Otherwise /0 /0

with a= c2i+2 and b= c2i+3.
– Si is an agent constraint of the form xλ(r)Pu y:

- If γr ∩ (E(x)∪E(y)) 6⊆ {c1, ...,c2i+1}, then 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
- If 〈Fi,Ci∪{xλ(r),Pu y}〉 6∈℘ then 〈Fi+1,Ci+1〉= 〈Fi,Ci〉
- If 〈Fi,Ci∪{xλ(r)Pu y}〉 ∈℘, then 〈Fi+1,Ci+1〉= 〈Fi,Ci∪{xλ(r)Pu y}〉

Proposition 8. For any i ∈ N, the following properties hold:

1. (Fϕ : c1) ∈ Fi and c1 ' c1 ∈ Ci
2. Fi ⊆ Fi+1 and Ci ⊆ Ci+1
3. 〈Fi,Ci〉i>0 ∈℘

4. Ar(Ci)⊆ {c1,c2, . . . ,c2i+1}

The limit CSS 〈F∞,C∞〉 of 〈Fi,Ci〉i>0 is defined by F∞ =
⋃

i>0 Fi, C∞ =
⋃

i>0 Ci.

Proposition 9. The following properties hold:

1. 〈F∞,C∞〉 ∈℘;
2. For any labelled formula (Sφ : x), if 〈F∞∪{(Sφ : x)},C∞〉 ∈℘ then (Sφ : x) ∈ F∞;
3. For any agent constraint xλ(r)Pu y, if 〈F∞,C∞∪{xλ(r)Pu y}〉 ∈℘ then xλ(r)Pu

y ∈ C∞.

Lemma 10. The limit CSS is an Hintikka CSS.

Proof. By Proposition 9, 〈F∞,C∞〉 ∈ P . We have to verify that all conditions of Defini-
tion 11 hold.
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Theorem 4 (Completeness). Let ϕ be a formula. If ϕ is valid then there exits a proof
for ϕ.

Proof. Similar to the proof of the corresponding result in [8]. We suppose that there is
no proof for the formula ϕ. We show that ϕ is not valid. The method, that we present
here, allows us to build a limit CSS 〈F∞,C∞〉 that is a Hintikka CSS, by Lemma 10. By
property 1 of Proposition 8, (Fϕ : c1) ∈ Fi for any i > 0. By definition of limit CSS,
(Fϕ : c1) ∈ F∞. By Lemma 8, ϕ is not valid.
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