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Abstract.

Models of complex systems are widely used in the physical and social sciences, and
the concept of layering, typically building upon graph-theoretic structure, is a common
feature. We describe an intuitionistic substructural logic that gives an account of lay-
ering. As in bunched systems, the logic includes the usual intuitionistic connectives,
together with a non-commutative, non-associative conjunction (used to capture layer-
ing) and its associated implications. We give soundness and completeness theorems
for labelled tableaux and Hilbert-type systems with respect to a Kripke semantics on
graphs. To demonstrate the utility of the logic, we show how to represent a range of
systems and security examples, illuminating the relationship between services/policies
and the infrastructures/architectures to which they are applied.
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1 Introduction

Complex systems can be defined as the field of science that studies, on the one hand,
how it is that the behaviour of a system, be it natural or synthetic, derives from the
behaviours of its constituent parts and, on the other, how the system interacts with its
environment. A commonly employed and highly effective concept that helps to manage
the difficulty in conceptualizing and reasoning about complex systems is that of lay-
ering: the system is considered to consist of a collection of interconnected layers each
of which has a distinct, identifiable role in the system’s operations. Layers can be in-
formational or physical and both kinds may be present in a specific system. In [3, 12],
multiple layers are given by multiple relations over a single set of nodes.

We employ three illustrative examples. First, a transport network that uses buses
to move people. It has an infrastructure layer (i.e., roads, together with their markings,
traffic signals, etc., and buses running to a timetable), and a social layer (i.e., the group-
ings and movements of people enabled by the bus services). Second, a simple example
of the relationship between a security policy and its underlying system architecture. Fi-
nally, we consider the security architecture of an organization that operates high- and
low-security internal systems as well as providing access to its systems from external
mobile devices. These examples illustrate the interplay between services/policies and
the architectures/infrastructures to which they are intended to apply.

We give a graph-theoretic definition of layering and provide an associated logic for
reasoning about layers. There is very little work in the literature on layering in graphs.
Notable exceptions are [9, 18, 17]. Layered graphs are an instance of a general algebraic
semantics for the logic. Our approach stands in contrast to our previous work in this
area [6,7] in that the additive component of the bunched logic [16, 11] we employ is
intuitionistic, with the consequence that we are able to obtain a tableaux system for
the logic together with a completeness theorem for the layered graph semantics. In
Section 2, we introduce layered graph semantics and ILGL, the associated intuitionistic
layered graph logic. In Section 3, we establish its basic metatheory — the soundness
and completeness of ILGL’s tableaux system with respect to layered graph semantics —
and, in Section 4, we give an algebraic semantics and a (sound and complete) Hilbert-
type proof system for ILGL. In Section 5, we sketch a modal extension of ILGL that is
convenient for practical modelling, explaining its theoretical status and developing the
three examples mentioned above.

2 Intuitionistic layered graph logic

Layered graph semantics. We begin with a formal, graph-theoretic account of the
notion of layering that, we claim, captures the concept as used in complex systems. In
this notion, two layers in a directed graph are connected by a specified set of edges,
each element of which starts in the upper layer and ends in the lower layer.

Given a directed graph, G, we refer to its vertex set and its edge set by V(G) and
E(G) respectively, while its set of subgraphs is denoted Sg(G) with H C Gift H €
Sg(G). For a distinguished edge set & C E(G), the reachability relation ~» g on subgraphs
of Gis H ~»¢ K iff a vertex of K can be reached from a vertex of H by an E-edge.
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Fig. 1. A graph for which G @g H is de-
fined, and the resulting composition Fig. 2. Preordered scaffold

We then have a composition @g on subgraphs where G @g H | iff V(G) N V(H) =
0,G ~g H and H /5¢ G (where | denotes definedness) with output given by the graph
union of the two subgraphs and the E-edges between them. For a graph G, we say it is
layered (with respect to &) if there exist H, K such that H @g K | and G = H @g K
(see Figure 1). Layering is evidently neither commutative nor associative.

Within a given ambient graph, G, we can identify a specific form of layered struc-
ture, called a preordered scaffold, that will facilitate our definition of a model of intu-
itionistic layered graph logic. Properties of graphs that are inherited by their subgraphs
are naturally captured in an intuitionistic logic. This idea is generalized by the structure
carried by a preordered scaffold. To set this up, we begin by defining an admissible
subgraph set is a subset X C Sg(&) such that, for all G, H € Sg(G), if G @g H |, then
G,H € X iff G @gH € X. Then, a preordered scaffold (see Figure 2) is a structure
X = (G, &, X, <) such that G is a graph, & C E(G), X an admissible subgraph set, < a
preorder on X. Layers are present if G @g H| for at least one pair G, H € X.

Note that the scaffold is preordered and we choose a subset of the subgraph set.
There are several reasons for these choices. From a modelling perspective, we can look
closely at the precise layering structure of the graph that is of interest. In particular, we
can avoid degenerate cases of layering. (Note that this is a more general definition of
scaffold than that taken in [6, 7], where the structure was less tightly defined.) Technical
considerations also come into play. When we restrict to interpreting ILGL on the full
subgraph set, it is impossible to perform any composition of models without the worlds
(states) proliferating wildly. A similar issue arises during the construction of counter-
models from the tableaux system of Section 3, a procedure that is impossible when we
are forced to take the full subgraph set as the set of worlds.

Having established the basic semantic structures that are required, we can now set
up ILGL. Let Prop be a set of atomic propositions, ranged over by p. The set Form of
all propositional formulae is generated by the following grammar:

Pu=plTILIGAG|dVIIG= Do P ¢>d|pr¢

The familiar connectives will be interpreted intuitionistically. The non-commutative,
non-associative conjunction, », which will be used to capture layering, is interpreted
intuitionistically, as in BI [16, 11], and has associated right (») and left () implica-
tions. We define intuitionistic negation in terms of the connectives: —¢ ::= ¢ — L.
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Definition 1 (Layered graph model). A layered graph model, M, of ILGL is a pair
(X, V), where X is a preordered scaffold and V : Prop — 9(X) is a persistent valua-
tion; that is, G < H and G € V(p) implies H € V(p). a

Satisfaction in layered graph models is then defined in a familiar way.

Definition 2 (Satisfaction in layered graph models). Given a layered graph model
M = (X,V), we generate the satisfaction relation =xC X X Form as follows:

G Em T always G Epm L never GEMpiff G e V(p)

GEMmeAYiTGEypandGEMY  GEMeVYITGEM@orGEMY
G Epm ¢ — Y iff, for all G" such that G < G', G’ = ¢ implies G’ Epq ¥

G Epm @ > iff there exist H, K such that H @g K|, H @s K < G,and H Epypand K Ep ¢
G Em ¢» ¢ iff forall G < H and all K such that H @g K|, K |Fp ¢ implies H @g K E=p ¢
G Emer»yiff forall G < H and all K such that K @g H|, K Fp ¢ implies K @s H Epp O

Definition 3 (Validity). A formula ¢ is valid in a layered graph model M ( Em @) iff,
forall G € X, G Epm ¢. A formula ¢ is valid (= @) iff, for all layered graph models M,
Em o 0

Lemma 1 (Persistence). Persistence extends to all formulae with respect to the layered
graph semantics. That is, for all ¢ € Form, G < H and G |Epq ¢ implies H Epq .

Proof. By induction on the complexity of formulae. The additive fragment, correspond-
ing to intuitionistic propositional logic (IPL), is standard and we restrict attention to two
examples of the multiplicative connectives.

Suppose G Epr @ » Y and G < H.Thereare K, K’ s.t. K @g K’ | and K @g K’ < G,
with K Ep ¢ and K’ =pq . By transitivity of <, K @g K’ < H, 50 H =p ¢ » .

Suppose G Epr ¢ . Then, for all K such that G < K and all K’ s.t. K @g K’ ],
if K" Epm o, then K @g K’ Ep . Let G < H and suppose H < K and K’ are s.t.
K@gK’'| and K’ Ep ¢. So, since G < H < K, it follows that K @g K’ Ep ¢. So
HEme»y. o

bl

Note that, unlike in BI, we require the restriction ‘for all H, G < H...” in the
semantic clauses for the multiplicative implications. Without this we cannot prove per-
sistence because we cannot proceed with the inductive step in those cases. The reason
for this is that we put no restriction on the interaction between < and @ in the definition
of preordered scaffold. This is unlike the analogous case for BI, where the monoidal
composition is required to be bifunctorial with respect to the ordering. One might re-
solve this issue with the following addendum to the definition of preordered scaffold: if
G<Hand H@gK |,thenG@gK |and G @g K < H @gK.

Two natural examples of subgraph preorderings show that this would be undesir-
able. First, consider the layering preorder. Let < be the reflexive, transitive closure of
the relation R(G, H) iff H @g G |, restricted to the admissible subgraph set X. Fig-
ure 3 shows a subgraph H with G < H and H @gK | but G @gK T (we write
T for undefinedness). Second, consider the subgraph relation. In Figure 4, we have
G CHand H@gK | but G @g K 7. It is, however, the case that, with this ordering, if
GCHH@gKandG@gK |,thenG @g K C H @gK.
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Fig. 3. The &-reachability preorder Fig. 4. The subgraph order

Labelled tableaux. We define a labelled tableaux system for ILGL, utilising a method
first showcased on tableaux systems for BBI and DMBI [15, 8] and in the spirit of
previous work for BI [11].

Definition 4 (Graph labels). Let X' = {c; | i € N} be a countable set of atomic labels.
We define the set L = {x € 2* | 0 < |x| £ 2} \ {cic;i | ¢; € X} to be the set of graph
labels. A sub-label y of a label x is a non-empty sub-word of x, and we denote the set of
sub-labels of x by S(x). O

The graph labels are a syntactic representation of the subgraphs of a model, with
labels of length 2 representing a graph that can be decomposed into two layers. We
exclude the possibility c;c; as layering is anti-reflexive. In much the same way we give
a syntactic representation of preorder.

Definition 5 (Constraints). A constraint is an expression of the form x <y, where x
and y are graph labels. |

Let C be a set of constraints. The domain of C is the set of all non-empty sub-labels
appearing in C. In particular, D(C) = U <yec(S(x) U S()) The alphabet of C is the set
of atomic labels appearing in C. In particular, we have A(C) = 2 N D(C).

X < x < x<yz X <)yZ
=Y Ry Y Ry REATS Y Ry
X< X y<Yy y<Yy 72
xXy<z Xy<z x < <z
4 (Rs) Y22 Ry Bl AN S L0
X< X y<Yy X<2Z

Fig. 5. Rules for closure of constraints

Definition 6 (Closure of constraints). Let C be a set of constraints. The closure of C,
denoted C, is the least relation closed under the rules of Figure 5 such that C C C. 0O
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This closure yields a preorder on D(C), with (R;) — (Rg) generating reflexivity
and (Tr) yielding transitivity. Crucially, taking the closure of the constraint set does
not cause labels to proliferate and the generation of any particular constraint from an
arbitrary constraint set C is fundamentally a finite process.

Proposition 1. Let C be a set of constraints. (1) x € D(C) iff x<xe C. (2) D) =
D(C) and A(C) = A(C). O

Lemma 2 (Compactness). Let C be a (possibly countably infinite) set of constraints.
If x <y € C, then there is a finite set of constraints Cy C C such that x <y € Cy. O

Definition 7. A labelled formula is a triple (S, ¢, x) € {T, F} Xx Form X L, written S¢ : x.
A constrained set of statements (CSS) is a pair (F,C), where F is a set of labelled
formulce and C is a set of constraints, satisfying the following properties: for all x € L
and distinct ¢;,cj,cx € 2, (1) (Ref ) if Sp : x € F, thenx < x € C, (2) (Contra) ifcicj €
D(C), then cjc; ¢ D(C), and (3) (Freshness) if cic; € D(C), then cicy, cici, CjCr, CkCj &
D(C). A CSS (F,C) is finite if F and C are finite. The relation C is defined on CSSs
by (F,C) S(F",C"Yiff ¥ € F' and C C C'. We denote by (F;,Cys) C¢ (F,C) when
(F7,Cr) C{F,C) holds and {F;,Cy) is finite. O

The CSS properties ensure models can be built from the labels: (Ref) ensures we
have enough data for the closure rules to generate a preorder, (Contra) ensures the
contra-commutativity of graph layering is respected, and (Freshness) ensures the lay-
ering structure of the models we construct is exactly that specified by the labels and
constraints in the CSS. As with constraint closure, CSSs have a finite character.

Proposition 2. For any CSS (F;,C) in which ¥y is finite, there exists Cy C C such that
Cy is finite and (F;,Cy) is a CSS. |

Figure 6 presents the rules of the tableaux system for ILGL. That ‘c; and c; are fresh
atomic labels’ means ¢; # ¢; € 2"\ A(C). We denote by @ the concatenation of lists.

Definition 8 (Tableaux). Let (¥, Co) be a finite CSS. A tableau for this CSS is a list of
CSS, called branches, built inductively according the following rules:

1. The one branch list [{Fo, Co)] is a tableau for (Fy, Co);
2. Ifthe list T,, ® [{(F,C)] ® T, is a tableau for {Fy, Cy) and

cond{¥,C)
F1.C ... | Fi, Ci)

is an instance of a rule of Figure 6 for which cond{F ,C) is fulfilled, then the list
Tm®KF UF1,CUC);...;{F UF, CUCK]® T, is a tableau for (Fy, Co).

A tableau for the formula ¢ is a tableau for ({Fy : co}, {co < co})- a

It is a simple but tedious exercise to show that the rules of Figure 6 preserve the CSS
properties of Definition 7. We now give the notion of proof for our labelled tableaux.
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ToAy:xeF FoAy:xeF
(TA) (EA)
{Te: x, Ty : x},0) ({Fep : x},0) | ({Fy : x},0)
TeoVy:xeF FoVvy:xeF
(Tv) (Rv)
{Te : x3,0) | Ty : x1,0) {Fep : x,Fy : x}, 0)
To—>y:xeFandx<yeC . Fo—oy:xeF o
({Fp :y},0) | ({Ty : y}, 0 (T : ci, By : i {ix <)
Tew» y:xeF Fowy:xeFandyz<xeC
(T») (F»)
(T e, Ty 2 cjh {eic; < x}) ({Fe : y),0) | ({Fy : z},0)
Te»y:xeFandx<y,yz<yz€C Fo»y:xeF
(T») (F»)
{Fp : 21, 0) | Ty : yz},0) {Ty : c;, By : cicj} {x < ¢ cicj < cicj})
Tery:xeFandx<y,zy<zy€C T Fowsiy: x€F >
{Fyp : 2},0) | ({Ty : zy},0) {Ty : c;, By : cjeil, {x < ci,cjei < cjeit)

with ¢; and ¢; being fresh atomic labels

Fig. 6. Tableaux rules for ILGL

Definition 9 (Closed tableau/proof). A CSS (F,C) is closed if one of the following
conditions holds: (1) To : x€e F,Fp:yeFandx<y¢€ C;(2)FT :x€F;and(3)
TL:xeF.ACSSisopeniff it is not closed. A tableau is closed iff all its branches are
closed. A proof for a formula ¢ is a closed tableau for . O

CSSs are related back to the graph semantics via the notion of realization.

Definition 10 (Realization). Let (F,C) be a CSS. A realization of (F,C) is a triple
R = (X, V,|.]) where M = (X,V) is a layered graph model and |.] : D(C) — X
is such that (1) |.] is total: for all x € D(C), x] |, (2) for all x € D(C), if x = cicj,
then |c;] @glc;] | and |x] = |ci] @glc;l), (3) if x <y € C, then |x] <m Lyl (4) if
Ty : x € F, then | x] Em ¢, and (5) if Fo : x € F, then | x] Fm ¢. O

We say that a CSS is realizable is there exists a realization of it. We say that a tableau is
realizable if at least one of its branches is realizable. We can also show that the relevant
clauses of the definition extend to the closure of the constraint set automatically.

Proposition 3. Let (¥,C) be a CSS and R = (X,V,|.]) a realization of it. Then: (1)
forall x € D(C), | x] is defined; (2) if x <y € C, then | x] <m Lyl m]

3 Metatheory

We now establish the soundness and, via countermodel extraction, the completeness of
ILGL’s tableaux system with respect to layered graph semantics. The proof of sound-
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ness is straightforward (cf. [8, 10, 11, 15]). We begin with two key lemmas about real-
izability and closure. Their proofs proceed by simple case analysis.

Lemma 3. The tableaux rules for ILGL preserve realizability. |
Lemma 4. Closed branches are not realizable. |

Theorem 1 (Soundness). If there exists a closed tableau for the formula ¢, then ¢ is
valid in layered graph models.

Proof. Suppose that there exists a proof for ¢. Then there is a closed tableau 7, for
the CSS € = ({Fo : co},{co < co}). Now suppose that ¢ is not valid. Then there is
a countermodel M = (X, V) and a subgraph G € X such that G [£pq ¢. Define R =
(M, V,|.]) with [co] = G. Note that R is a realization of €, hence by Lemma 3, 7, is
realizable. By Lemma 4, 7, cannot be closed. But, this contradicts the fact that 7, is a
proof and therefore a closed tableau. It follows that ¢ is valid. O

We now proceed to establish the completeness of the labelled tableaux with respect
to layered graph semantics. We begin with the notion of a Hintikka CSS, which will
facilitate the construction of countermodels.

Definition 11 (Hintikka CSS). A CSS (¥, C) is a Hintikka CSS iff, for any formulas
@, € Form and any graph labels x,y € L, we have the following:

.T¢:x€T0rF¢:y¢Torx<y¢E 2FT:x¢F 3. TL:x¢F

LAfTo Ay :xeF,thenTyp:xeF and Ty : x € F

CifFoAy :xeF, thenFp:xe ForFy:xeF
LAfTevy:xeF,thenTo:xeF orTy:xeF
.ifFopviy:xeF,thenFyp:xeF andFy: x € F

Jif T - ¢ : x € F, then, forally e L,if x<ye C,thenFp:ye ForTy : ye F
.if Fp — ¢ : x € ¥, then there exists y € L such that x < y € C

andTo:yeF andFy:yeF

10. if T » ¢ : x € ¥, then there are ¢;, ¢; € 2 such that c,-cj<x€5and
Te:cieFandTy:c; e F

O 00 NN N B~ =

11.if Fo» ¢ : x € F, then, for all ¢;,c; € X, if cic; < x € C, then
Fo:cieForFy:c;eF

12. if To» ¢ : x € F, then, for all ¢;,c; € 2, if x < ¢; € C and ¢;c; € D(C), then
Fo:cijeF orTy : cic;eF

13. if Fo» ¢ : x € F, then there are ¢;,¢; € X such that x < ¢; € C and cicj € D(E‘) and
Te:c;eF andFy : cic; € F

14. if To»yy : x € F, then, forall ¢;,c; € 2, if x < ¢; € C and cjci € D(C), then
Fo:cjeF or Ty : cjc;eF

15. if Fo» ¢ : x € F, then there are ¢;,¢; € X such that x < ¢; € C and cjci € D(E‘) and
Te:c;eF and By :cjc; € F. O

We now give the definition of a function Q that extracts a countermodel from a
Hintikka CSS. A Hintikka CSS can thus be seen as the labelled tableaux counterpart of
Hintikka sets, which are maximally consistent sets satisfying a subformula property.
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Definition 12 (Function Q). Let (F,C) be a Hintikka CSS. The function Q associates
to (F,C) a tuple QKF,C)) = (G,E,X,<,V), such that (1) V(G) = AC), (2) E(G) =
{(ci,cj) | cicj € DO} =& X = (x? | x € D(C)}, where V(cf.)) = {c¢}, E(clg) =0,
V((cic))?) = {cic;}, and E((cic))?) = {(ciocp)}, (3) x2 < y? iff x < y € C and (4)
x? € V(p) iff there exists y € D(C) such thaty < x e Cand Tp : y € F. |

The next lemma shows that there is a precise correspondence between the structure
that the Hintikka CSS properties impose on the labels and the layered structure specified
by the construction of the model.

Lemma 5. Let (¥, C) be a Hintikka CSS and Q(F,C)) = (G,E, X, <, V). (I)If ci,cj €
A(C), then cicj € D(C) iffcl.g @ ci? L. (2) If cicj € D(C), then (cicj)Q = cf? @g c?. 3.
x2 @gy? | iff there exist c;, c; € AC) s.t. x=c;, y=cjand cic; € D(C). m|

Proof. 1. Let cic; € D(C). Then by CSS property (Contra) we have cjc; ¢ D(C).
Hence by definition of £ we have (¢;,¢;) € & and (c¢j,¢;) ¢ E. Thus ¢; @gc; | as
required. The other direction is trivial.

2. Immediate from 1. and the definition of Q.

3. The right-to-left direction is trivial, so assume x? @g y® |. There are three possible
cases for x and y other than x = ¢; and y = c;: we attend to one as the others are
similar. Suppose x = c;c; and y = ¢. Then x? @gy? | must hold because of either
(ci,cx) € Eor(cj,cr) € & Thatis, cicy € D(C) or cjcr € D(C). In both cases the
CS' S property (Freshness) is contradicted so neither can hold. It follows that only
the case x = ¢; and y = ¢; is non-contradictory, and so by 1. c;c; € D(C). O

Lemma 6. Let (F,C) be a Hintikka CSS. Q(F,C)) is a layered graph model. a

Proof. G is clearly a graph and < being a preorder on X can be read off of the rules for
the closure of constraint sets. Thus the only non-trivial aspects of the proof are that X
is admissible and that YV is persistent.

- X is an admissible subgraph set.

Let G, H € Sg(G) with G @g H |. First we assume G, H € X. Then G = x? and
H = y¥ for labels x, y. By the previous lemma it follows that x = ¢; and y = ¢; and
cicj € D(C). Thus G @g H = ¥ @¢ c? = (cic;)? € X. Now suppose G @g H € X.
Then G @g H = x9 for some x € D(C). The case x = ¢; is clearly impossible as
E(cig) = () so necessarily x = ¢;c;. Then we have c¢;, c; € D(C) as sub-labels of c;c;
and cig @g cj? 1 with cl.Q @g cf the only possible composition equal to (c;c;)®. It
follows that G = ciQ €Xand H = C? € X as required.

- Vis a persistent valuation.
Let G € V(p) with G < H. Then G = x? and H = y? for some x,y € D(C) with
x<yeC. By definition of V there exists z € D(C) withz < x € CandTp:ze¥F.
By closure rule (T'r) we have z < y € C so H = y? € ‘V(p). i

Lemma 7. Let {(¥,C) be a Hintikka CSS and M = QUF,C)) = (G,&E,X,<L,V). For
all formulas ¢ € Form, and all x € D(C). we have (1) if Fp : x € F, then x°% ¥ @,
and (2) if To : x € F, then x2 [=p @. Hence, if Fo : x € F, then ¢ is not valid and
QT ,C)) is a countermodel of . a
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Proof. We proceed by a simultaneous structural induction on ¢.

- Base cases.

e CaseFp : x € ¥. We suppose that x? |=5( p. Then x? € V(p). By the definition
of V, there is a label y such that y < x € C and Tp : y € . Then by condition
(1) of Definition 11, (¥, C) is not a Hintikka CSS, a contradiction. It follows
that x? ¥ p.

e Case Tp : x € ¥. By property (Ref), x < x € C. Thus, by definition of V we
have x? € V(p). Thus x? E p.

e CasesFL:xeF,TL:xeF,FT : xand TT : x are straightforward conse-
quences of the definition of Hintikka CSS and the layered graph semantics.

- Inductive step. We now suppose that (1) and (2) hold for formula ¢ and ¥ (IH). We
attend only to the cases (T —), (T ») and (T ) as the others are similar.

e Case Tp — ¢ : x € . Suppose x? < y°. Then x < y € C and by Definition 11
property (8) it follows that Fe : y € ¥ or Ty : y € 7. By (IH) it follows that if
2 Em ¢ then y? = pq ¢ as required.

e Case To » ¢ : x € ¥. By Definition 11 property (10) there exist labels ¢;,c; €
D(C) such that cicj; < x € C and Te :c; € Fand Ty : ¢; € F. By (IH)
we have cl.Q Em ¢ and cf Em . Further, by definition of 2 we have that
(c,'cj)Q = cf? @gc? < x50 X7 Eum o> Y.

e Case To»y : x € F. Suppose x? < y? with y¥? @gz? | and z° Ep ¢.
By Lemma 5 we know y = ¢;,z = ¢; € A(C) with ¢;c; € D(C). Hence by
Definition 11 property 12, either Fo : ¢; € ¥ or Ty : ¢ic; € F. By (IH) it
follows either c? Em @ or (cic j)Q = ciQ @g c? Em ¥. As we know the former
cannot be true, it must be the latter. Hence x? =5 ¢ ¢ as required. O

This construction of a countermodel would fail in a labelled tableaux system for
LGL (i.e., the layered graph logic with classical additives [6]). This is because it is im-
possible to construct the internal structure of each subgraph in the model systematically,
as the classical semantics for » demands strict equality between the graph under inter-
pretation and the decomposition into layers. This issue is sidestepped for ILGL since
each time the tableaux rules require a decomposition of a subgraph into layers we can
move to a ‘fresh’ layered subgraph further down the ordering. Thus we can safely turn
each graph label into the simplest instantiation of the kind of graph it represents: either
a single vertex (indecomposable) or two vertices and an edge (layered).

We now show how to construct such a CSS. We first require a listing of all labelled
formulae that may need to be added to the CSS in order to satisfy properties 4—15. We
require a particularly strong condition on the listing to make this procedure work: that
every labelled formula appears infinitely often to be tested.

Definition 13 (Fair strategy). A fair strategy for a language L is a labelled sequence
of formulee (S;X; : (x;))ien in {T,F} X Form X L such that {i e N | S;X; : (x;) = SX : x} is

infinite for any SX : x € {T,F} X Form x L. |
Proposition 4. There exists a fair strategy for the language of ILGL. |
Proof. See [8]. a
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Next we need the concept of an oracle. Here an oracle allows Hintikka sets to be con-
structed inductively, testing the required consistency properties at each stage.

Definition 14. Let P be a set of CSSs. (1) P is C-closed if (F,C) € P holds whenever
(F,C) C(F',C"y and {(F',C’)y € P holds. (2) P is of finite character if (F,C) € P
holds whenever (Fr,Cy) € P holds for every (F;,Cs) Sy (F,C). (3) P is saturated if,
for any (F,C) € P and any instance

cond(¥,C)
(F1.C0 | oo | {(Fi. Ci)
of a rule of Figure 6 if cond(F ,C) is fulfilled, then (F UF;,CUC;) € P, for at least one
iefl,... k. O

Definition 15 (Oracle). An oracle is a set of open CSSs which is C-closed, of finite
character, and saturated. a

Definition 16 (Consistency/finite consistency). Let (F,C) be a CSS. We say (¥, C) is
consistent if it is finite and has no closed tableau. We say (¥, C) is finitely consistent if

every finite sub-CSS (¥, Cy) is consistent. m|
Proposition 5. (1) Consistency is C-closed. (2) A finite CSS is consistent iff it is finitely
consistent. i
Proof. See [8]. m]
Lemma 8. The set of finitely consistent CSS, P, is an oracle. i

Proof. For C-closure and finite character see [8]. We show the cases (T ») and (T-»)
for saturation: the rest are similar. Let (¥,C) € P

- Tow» ¢ : x € F. We show (F U{Ty : ¢;,Ty : ¢;C},C U {cic; < x}) € P. Let
(Fr.Cr) Sy (F U{Tp : ¢;, Ty 1 ¢;CHL,C U {cic; < x}) € P. Since, To » Y : x € F,
by compactness, there exists Cy ¢ C such that x < x € Cp. Now define

Ff = (F7 \{Tg : i, T ¢;) U{T » o - )
C} =CrUCy
Then (T;,C}) is a CSS and (7—“]2,C}) Cr (F,C) so it is consistent. We have that
[(Tf’ U{Te : ¢;, Ty : cj},C’f U {cic; < x})] is a tableau for (T;,C}). Thus if it
is possible for (T]ﬁ U{Ty : ¢;, Ty : cj},C'f U {cic; < x}) to be closed then so too
is it for (¥7,C’,): a contradiction. Hence it is consistent. We have that (¥7,Cy) C
(TJZ U{Te : ¢c;, T : cj},C} U {cic; < x}) so (F¢,Cy) is consistent by Proposition 5.

- Te»y : x € F and x < y,yz < yz € C. Suppose neither (F U {Fyp : z},C) € P
nor (F U {Ty : yz},C) € P. Then there exist (TA,C?) Cr (F U{Fgp : z},C) and
(FB, C?) Cr (F U{Ty : yz},C) that are inconsistent. By compactness, there exist
Co,C1 € Csuchthat z <z € Cpand yz < yz € C;. Thus we define 5‘}1 = (?'fA \ {Fep :

ZH U (7’;3 \ Ty : y2) U (Tp» ¢ : xand C, = C‘}‘ U Cl; U Co U Cy. Then (F/,C))
is a finite CSS and [(7‘7 U {Fy : z},C}); (Tjﬁ U Ty : yz},C})] is a tableau for it.
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We have <7’A,C?) Cy(F; U{Fp:2},C)) and (TB,C?) Cp (F} U{TY : y2),C)) so
by C-closure of consistency <7—“;‘,C?) and (??,C?) are inconsistent: respectively
let 74 and 73 be closed tableaux for them. Then 74 @ 73 is a closed tableau for
(f ’.,C_'f) and the CSS is inconsistent: contradicting (f ‘s C}) Cr(F.C)eP. O

We can now show completeness of our tableaux system. Consider a formula ¢ for which
there exists no closed tableau. We show there is a countermodel to ¢. We start with the
initial tableau 7 for ¢. Then, we have (1) 7o = [{{Fe : co},{co < co)})] and (2) T
cannot be closed. Let  be as in Lemma 8. By Proposition 4, there exists a fair strategy,
which we denote by S, with S;x; : (x;) the i formula of S. As T cannot be closed,
{Fop : co}, {co < co}) € P. We build a sequence (F;, Ci)iso as follows:

- (F0,Co) = ({Fe : co}, {co < col)s

- i (F USX: - (x)},Ci) € P, then we have (Fi,1,Cir1) = (Fi,C;); and

- if (FU{SiX; : (x)}, Ci) € P, then we have (Fir1,Cir1) = (FiU{SKX; : (x))}UF,,C;U

C.) such that F, and C, are determined by

S x| F, l C |
Flo >y {Te: ey, B : ey} {xi < c341}

Tl o>y || {Te:cyer, TY @ cyi0} {cas1C340 < X3}

F| o> [[{To : cxi, B : cxpicanl[ixi < cai1, G132 < Cap1C342})
F| o> [{To : capo, Bt cxpaca}|[{xi < 341, C342C341 < C342C341)
Otherwise 0 0

with 3 = max{j | ¢; € A(C;) U S(xp}.

Proposition 6. For any i € N, the following properties hold: (1) ¥; € Fir1 and C; C
Cir15 (2)(Fi,Ci) € P. m

Proof. Only 2 is non-trivial. and we prove it by induction on i. The base case i = 0
is given by our initial assumption. Now for the inductive hypothesis (IH) we have that
(Fi,Ci) € P. Then the inductive step is an immediate consequence of Lemma 8 for the
non-trivial cases. O

We now define the limit (Foo, Coo) = (U0 Fi» Uiz0 Ci of the sequence (F;, Ci)izo.

Proposition 7. The following properties hold: (1) (Feo,Coo) € P; (2) For all labelled
SJormulee Sg : x, if (Foo U{S¢ : x},Co) € P, then S¢ : x € Feo. O

Proof. 1. First note that (¥, Cs) is a CSS since each stage of construction satis-
fies (Ref) and by our choice of constants throughout the construction (Contra) and
(Freshness) are satisfied. Further, it is open since otherwise there would be some
stage (¥, Cr) at which the offending closure condition is satisfied, which would
contradict that each (F;,C;) is consistent. Now let (F;,Cf) S5 (Fe,Co0). Then
there exists k € N such that (¥, Cy) Sr (F«, Cr). By Proposition (¥, Ci) € P so it
follows (F7,Cy) € P. As P is of finite character, we thus have (Fe, Coo) € P.

2. First note that (Fo U{S¢p : x}, Cs) is a CSS so (Contra) and (Freshness) are satisfied
when the label x is introduced. By compactness, there exists finite Cy € Cs such
that x < x € Cy. As it is finite, there exists k € N such that Cy C Cx and by fairness
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there exists [ > k such that SyX; : (x;) = S¢ : x. Since (Freshness) and (Contra) are
fufilled with respect to ¥, they are also fulfilled with respect to #; U {S¢ : x} so
(Fre1,Crr1) = (F1U{S¢ : x},Cp) € P and (Fi11,Cri1) = (F1U{Sy : x}UF,, CUC,).
Hence S¢ : x € Fo. |

Lemma 9. The limit CSS is a Hintikka CSS. a

Proof. For properties (1) — (3) we have that (¥, C) is open,. For the other conditions,
the saturation property of the oracle # and 2. of Proposition 7 suffice. |

Theorem 2 (Completeness). If ¢ is valid, then there exists a closed tableau for ¢. 10O

Proof. Suppose there exists no proof for the formula ¢. Then by Lemma 9 we can
construct the Hintikka CSS (¥, Co) from 7o = [({Fe : co},{co < co)})] as outlined
above, with Fp : ¢y € F. Then by Lemma 7, Q((F«,Cw)) is a countermodel for ¢.
That is, ¢ is not valid.

4 A Hilbert system and an algebraic semantics

We give a Hilbert-type proof system, ILGLy, for ILGL in Figure 7. The additive frag-
ment, corresponding to intuitionistic propositional logic, is standard (e.g., [2]). The pre-
sentation of the multiplicative fragment is similar to that for BI's multiplicatives [19],
but for the non-commutative and non-associative (following from the absence of a mul-
tiplicative counterpart to A;) conjunction, », together with its associated left and right
implications (cf. [13, 14]).

I pry Yy
oF@ (Ax) —%rx (Cut) oFT M ) L)

pry prx — (N ————— (V) PrX Yrx
- = 2 (A - 2 - 1 — @~ (V
cruny M eihere QeI Ve iy W)

pry —x vEY PAY XY pry Xru
=) ————— () e —
YAVEY prY - x e xYrYy»uU

>

pry>x vy AL AP4 p Y-y vkyY ALAP4
o> UF 1) oF Uy 2) e or X () U ory (™)

Fig. 7. Rules of the Hilbert system, ILGLy, for ILGL

This section concludes with equivalence of ILGLy and ILGL’s tableaux system.

Definition 17 (Layered Heyting algebra). A layered Heyting algebra is a structure
A=(ANAV,—, L T,» ») suchthat (A, \,V,—, L, T) is a Heyting algebra, », »,
and »-are binary operations on A satisfying a < a’ and b < b' impliesaw» b <a’ » b’
andaw b<ciffa<b»ciffb<arc. |
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We interpret ILGL on layered Heyting algebras. Let V : Prop — A be a valuation
on the layered Heyting algebra (A, Aa, Va, =4, La, T4, »a,>4,»4). We maintain the
subscripts to distinguish the operations of the algebra from the connectives of ILGL.
We uniquely define an interpretation function [-] : Form — A by extending with
respect to the connectives in the usual fashion: [T] = T4, [L] = La, [pl = V(p), and
[ oyl = ¢l ca [¥] for o € {A,V,—, >, >}

Proposition 8 (Soundness). For any layered Heyting algebra A and any interpreta-
tion [-] : Form — A: if o + ¢ then [[¢] < [y].

Proof. By induction on the derivation rules of ILGLy. The cases for the additive frag-
ment are standard. For rule (»), we use the property a <4 a’ and b <4 b’ implies
aws b <4 d », b and for the remaining rules pertaining to the multiplicative implica-
tions we use the adjointness property a 4 b <4 ciff a <p b»,ciff b <4 avyc. a

Lemma 10. There is a layered Heyting algebra T and an interpretation [l : Prop —
T such that if ¢ ¥ y then [¢lls £ W17

Proof. We give a Lindenbaum term-algebra construction on the syntax of ILGL with
the equivalence relation ¢ = ¢ iff ¢ + Y and ¥ + ¢. The set of all such equivalence
classes [¢] gives the underlying set of the layered Heyting algebra, 7: T4 := [T],
Lg :=[L], and [¢] o7 [¥] := [p o y] for o € {A,V,—, >, >},

The fragment (7, Aq, V-, T4, Lg) forms a bounded distributive lattice with order
[¢] <7 [y]iff [¢] A [¥] = [¢]. It is straightforward to use rules (Ax), (A1) and (A;) to
show that the right hand condition holds iff ¢ + . We then obtain adjointness of A4~ and
—q from rules (—) and (—;), monotonicity of »+ from rule (») and the adjointness
of »¢,4¢ and » from rules (), ), (»7), and (»»). Thus 7 is a layered Heyting
algebra with an interpretation given by [¢]] = [¢]. By the definition of the ordering,
o ¥ implies [¢] £+ [¥], as required. m|

We now standardly obtain completeness.

Theorem 3 (Completeness). For any propositions ¢, ¥ of ILGL, if [¢] < [y for all
interpretations [—]| on layered Heyting algebras then ¢ + ¢ in ILGLy. |

We now show that the layered graph semantics is a special case of the algebraic
semantics.

Definition 18 (Preordered layered magma). A preordered layered magma is a tuple
(X, ], 0), with X a set, < a preorder on X, and o a binary partial operation on X. a

It is clear that, given a preordered scaffold (G, &, X, <), the structure (X, <, @g) is
a preordered layered magma. Analogously to the classical case [6], we can generate a

layered Heyting algebra.

Proposition 9. Every preordered layered magma generates a layered Heyting algebra.
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Proof. Let (X, <, o) be a preordered layered magma. An up-set of the preorder (X, <) is
aset U C X such that x € U and x < y implies y € U. Denote the set of all up-sets
of X by Up(X). The structure (Up(X), U, N, —,0, X) is a Heyting algebra, where — is
defined as follows: U — V :={x € X | forally(x < yandy € U implies y € V)} We
define the operators »,—, »- as follows:

U» V:i={xeX| thereexistsye U,ze V(yoz| andyoz < x)}
U»V:={xeX| forally,z(x<yandyoz] andz € U implies y o z € V)}
Uwr-V:={xeX]| forally,z(x<yandzoy| andz € U implies zoy € V)}

It is straightforward that these all define up-sets, and are thus well-defined. It remains to
prove monotonicity of » and adjointness of the operators. For monotonicity, let U C U’,
VcVandx e Uw» V. Then thereexisty e U C U’ andz € V C V' such that y o z|
and y o z < x. It follows immediately that x € U’ » V’.

Next, adjointness. We give just one case, for »- The others are similar. Suppose
V € U»-W. We must show U » V C W, so assume x € U » V. It follows that there
exist xo € U and x; € V such that xy o x;| and x( o x; < x. By assumption, x; € U »W
and we have x| < x1, x9 o x1| and xy € U, so it follows that xy o x; € W. Finally, W is
an up-set, so xp o x| < x entails x € W, and the verification is complete. O

We can now get the soundness and completeness of the layered graph semantics
with respect to ILGLy as a special case of the algebraic semantics. Note that a persistent
valuation V : Prop — @(X) corresponds uniquely to a valuation V’ : Prop — Up(X).
By definition, for each propositional variable p, V(p) is an up-set of the preorder (X, <)
and trivially an up-set of (X, <) is an element of p(X). We can thus use a persistent
valuation to generate an interpretation [—] on the layered Heyting algebra generated
by (X, <, @g).

Proposition 10. For any layered graph model M with valuation V : Prop — ¢(X) and
every formula ¢ of ILGL, we have [¢]ly = {G € X | G Em ¢} € Up(X). |

Hence the layered graph semantics of ILGL is a special case of the algebraic se-
mantics and ILGLy is sound and complete with respect to the layered graph semantics.

Proposition 11 (Equivalence of the Hilbert and tableaux systems). +- ¢ is provable
in ILGLy iff there is closed tableau for . |

S Extension to resources and actions: examples

To express the examples mentioned in Section 1 conveniently and efficiently, we con-
sider an extension of layered graph semantics and ILGL in which we label the am-
bient graph with resources and consider action modalities (cf. Stirling’s intuitionistic
Hennessy—Milner logic [21]) that express resource manipulations. This extension intro-
duces a degree of statefulness to ILGL without changing the underlying semantics.
This extension is based on an assignment of a set of resources R to the vertices
of the graph G. That is, each r € R is situated at vertices of G. Such assignments are
denoted G[R], where we think of G as the (directed) graph of locations in a system
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model. Resources should also carry sufficient structure to allow some basic operations
on resource elements. In [16,5,4], resources are required to form pre-ordered partial
monoids, such as the natural numbers (N, <, +,0), and we use this approach here. Let
(R,C, o, e) be a resource monoid, where R is a collection of sets of resources and o :
R X R — R is a commutative and associative binary operation. It is easy to see that
assignments of resources can be composed and that the algebraic semantics can be
easily extended (cf. [6]).

Lemma 11. Consider @ and o. Both are binary operations with @ non-commutative
and non-associative while o is commutative and associative. A non-commutative, non-
associative operation on graphs labelled with resources can be defined.

Proof. Wehave @g: GXG — Gand o : RXR — R. Define o5 : (GXR)X(GXR) —
(G X R) as (G1,R)) e (G2, Ry) = (G @g G2, Ry o Ry). It is clear that eg is both non-
commutative and non-associative. |

We write G[R] < G’[R’] to denote the evident containment ordering on labelled graphs
and resources (i.e., G’ is a subgraph of G and R C R’). We assume also a countable set
Act of actions, with elements a, etc.. Action modalities, (a) and [a] manipulate (e.g.,
add to, remove from) the resources assigned to the vertices of the graph.

Definition 19 (Satisfaction in resource-labelled models). We extend layered graph
models to graphs labelled with resources and extend the interpretation of formulae to
the action modalities. For a resource monoid R, a countable set of actions, Act, and a
layered graph model M = (X, V) over labelled graphs, with the containment ordering
on labelled graphs, we generate the satisfaction relation |=pC X[R] X Form as

G[R] Em T always G[R] Em L never GI[R] Em pift G[R] € V(p)
GIRIEM ¢ AU T GIRlIEm ¢ and GIRI Em ¢ GIRl Em ¢ V Y iff GIR] Epm ¢ or GIR] Em ¢
G[R] Epm ¢ — y iff, for all G’[R’] such that G[R] < G’[R’], G’[R’'] Em ¢ implies G’[R'] Em ¥

G[R] 'ZM ("0 %) iff for some Gl[Rl],Gz[Rz] such that Gl[Rl] s Gz[Rz] < G[R],

Gi[R1] Em @1 and G2[Ry] Em 2

G[R] Em ¢ ¢ iff for all G[R] < H[S] and all K[T] such that H[S ] eg K[T],
KI[T] Em ¢ implies (H[S] eg K[T]) Em ¢

G[R] Em ¢ >y iff for all G[R] < H[S] and all K[T] with K[T] eg H[S]],
KI[T] Em ¢ implies (K[T] g H[S]) Em ¥

G[R] Em (a)yp iff for some well-formed G[R’] such that G[R] 5 GIR'],GIR' 1 Em e
G[R] Em lale iff for all well-formed G[R’] such that G[R] N GIR'],GIRIEM ¢ [m}

We defer the presentation of the metatheory to account for this extension, including
proof systems and completeness results, to another occasion. To do so we follow the ap-
proach of dynamic epistemic logics [22], wherein the transitions underlying the action
modalities correspond to maps between models rather than states. It is clear persistence
will not (and should not) hold for action modalities, but at any given model persistence
will hold. To extend the tableaux system we should instead take sequences of CSSs,
together with a history of actions following similar approaches in the proof theory of
Public Announcement Logic [1].
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Example 1 (A transportation network). Here we abstract a public transportation net-
work into social and infrastructure layers. For a meeting in the social layer to be quorate,
sufficient people (say 50) must attend. To achieve this, there must be buses of sufficient
capacity to transport 50 people, represented as resources, to the meeting hall, in the in-
frastructure layer (see Figures 8 and 9). The formula ¢, denotes a quorate meeting,
¢, denotes that x number of people are picked up at bus stops, and the arrival of buses
of capacity x in the infrastructure layer is denoted by the action modality ( bus,). These
actions move x amount of people from the bus stops to the meeting hall in the social
layer. Let @neering assert the existence of a meeting in the social layer, G,. Then, if G,

Social layer Social layer

Infrastructure laye

Fig. 8. Buses ready to roll Fig. 9. Buses arrive at meeting

denotes the graph of the infrastructure layer, we have the formulae

G2[R] Em (buszs){busss)(@meeting » $50)» Pquorum)
G2[R] Em <bus40>((¢meeting > Pa0)> _‘¢quorum)

which assert that having two buses available with a total capacity of more than 50 will
allow the meeting to proceed, but that a single bus with capacity 40 will not.

Example 2 (A security barrier). This example (see Figure 10) is a situation highlighted
by Schneier [20], wherein a security system is ineffective because of the existence of a
side-channel that allows a control to be circumvented. The security policy, as expressed

outside road Security

Outside
layer

route of vehicle

security

barrier . i ‘
H y missing fence

Inside

Outsideg”

Inside

inside road

Routes
layer

Fig. 10. The security barrier and
side channel Fig. 11. The layered graph model

in the security layer, with graph G|, requires that a token be possessed in order to pass
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from the outside to the inside; that is, (pass)(Pinside — Proken)- However, in the routes
layer, with graph G, it is possible to perform an action (swerve) to drive around the
gate, as shown in the Figure 11; that is,

Gl @g GZ ':M ((pass>(¢inside - ¢token) > <Swerve>(¢inside A _‘¢token))

Thus we can express the mismatch between the security policy and architecture to which
it is intended to apply.

Example 3 (An organizational security architecture). Our final example concerns an
organization which internally has high- and low-security parts of its network. It also
operates mobile devices that are outside of its internal network but able to connect to
it. Figure 12 illustrates our layered graph model of this set-up. We can give a char-

Low High
D e D
Mobile layer

Fig. 12. Organizational Security Architecture

acterization in ILGL of a side channel that allows a resource from the high-security
part of the internal network to transfer to the low-security part via the external mobile
connection. Associated with the mobile layer are actions that allow the transference
of data We have two local compliance properties, in the high- and low-security parts
of the network, respectively: ypign(r) describes compliance with a policy allowing re-
source in the high-security network and y..(r) is a correctness condition that if a re-
source r is not permitted in the low-security network, then it is not in it. We take actions
copy, download, upload associated with the mobile layer G,, allowing data to be copied
to another location as well as moved down and up &-edges respectively, with 6(r) a
compliance property such that G>[R] [Eaq {copy)é(r) in order to copy data ». Now we
have that

G2[R] Em (download)((xhigh(r) » 6(r)) A (copy){upload)(6(r) » —xsec(r)))

showing that the mobile layer is a side channel that can undermine the policy yec.
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