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Abstract

App Store Analysis studies information about applications mined from app stores.  App stores
provide a wealth of information derived from users that would not exist had the applications
been  distributed  via  previous  software  deployment  methods.   App  Store  Analysis
incorporates  this  non-technical  information with  technical  information  to learn  trends and
behaviours within these forms of software repositories.  Findings from App Store Analysis
have a direct and actionable impact on the software teams that develop for app stores, and
have led  to  techniques  for  requirements  engineering,  release  planning,  software design,
security and testing.  This survey describes and compares the areas of research that have
been explored thus far, drawing out new directions future research should take to address
open problems and challenges.
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1 Introduction

App stores are a recent phenomenon: Apple’s App Store and Google Play were
launched in 2008, and since then both have accumulated in excess of 1 mil-
lion downloadable and rateable apps. Dediu stated that there were more than
200 million Android devices as of April 2012 [54]. Mobile app stores are also
extremely lucrative: the set of online mobile app stores were projected to be
worth a combined 25 billion USD in 2015 [148]. The success of app stores
has coincided with the mass consumer adoption of smartphone devices. Smart-
phones existed prior to the launch of these stores, but it was not until 2008 that
users could truly exploit their extra computing power and resulting versatility
through downloadable apps. In-house and even commercial applications had
been available before the launch of app stores, but app stores had some key
differences: availability, compatibility, ease of use, variety, and user-submitted
content.

It is the user-submitted content which really distinguishes app stores from
the ad-hoc commercially available applications that existed beforehand. Through
readily available, downloadable toolkits, users can write their own applications
to make use of a smart device’s hardware. They can subsequently publish their
software in the central app store for users globally to download (and possibly
pay for). This publication process is subject to the store’s in-house review and
certification policies, but in general apps and app updates can be made available
quickly (typically within hours/days).

In this paper we provide an initial survey into literature that performs “App
Store Analysis for Software Engineering” between 2000 and November 27, 2015.
Our contributions are as follows: i) We provide formal definitions of apps,
stores, and technical and non-technical attributes, which are used for App Store
Analysis research. ii) We study the growth patterns of App Store Analysis liter-
ature both overall, and in each emergent subcategory. iii) We analyse the scale
of app samples used, and discuss how this is likely to progress in the future.
iv) We identify some of the key ideas published in App Store Analysis, to help
readers to understand the progression of the field overall.

1.1 Definitions

The following definitions help to clarify key components of App Store Analysis
literature. We used them to find all the relevant literature.
App: An item of software that anyone with a suitable platform can install with-
out the need for technical expertise.
App Store: A collection of apps that provides, for each app, at least one non-
technical attribute.
Technical attribute: An attribute that can be obtained solely from the software.
Non-technical attribute: An attribute that cannot be obtained solely from the
software.

Examples of attributes are shown in Fig. 1, based on the data we collected
in previous studies [91, 149, 195]. As our diagram shows, some attributes
are distinctly technical or non-technical in a boolean sense, but others lie in
a grey area, depending on the precise interpretation of what can be obtained
from software alone. Those in the box can be considered non-technical in the
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Figure 1: Example attributes showing mined attributes which are strictly tech-
nical (left) or non-technical (right), and attributes which may be in either cate-
gory (centre in box).

strictest sense of the definition; they cannot be guaranteed to be obtainable
solely from the software in all cases. That is, those in the grey box can be non-
technical, but can also be technical. They are attributes that, in some cases, can
be provided by the developer and not the app store, whilst attributes that are
strictly non-technical may only be provided by an app store.

1.2 Scope

App Store Analysis literature encompasses studies that perform analysis on a
collection of apps mined from an App Store. We are particularly interested in
studies that combine technical with non-technical attributes, as these studies
pioneer the new research opportunities presented by app stores. However, we
also include studies that use app stores as software repositories, to validate
their tools on a set of real world apps, or by using specific properties such as
the malware verification process apps go through before being published in the
major app stores.

Our survey is not a Systematic Literature Review (SLR). The area of App
Store Analysis is still developing, but has not reached a level of maturity at
which research questions can be chosen and asked of a well-defined body of
literature. Our study aims to define, collect and curate the disparate literature,
arguing and demonstrating that there does, indeed, exist a coherent area of
research in the field that can be termed “App Store Analysis for Software Engi-
neering”. We hope that this will prove to be an enabling study for future SLRs
in this area.

We apply the following inclusion criteria:
i) The paper is related to software engineering, and may have actionable con-
sequences for software users, developers or maintainers.
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ii) The paper is related to mobile app stores, concerning the use of collections
of apps or non-technical data gathered from one or more app stores.

We apply the following exclusion criteria:
i) The paper focuses on mobile app development but does not extend to collec-
tions of apps or to app stores.
ii) The paper uses an arbitrary collection of apps to test a tool but it was not
mined from an app store, and the study does not extend to app stores.

1.3 Search Methodology

In order to collect all relevant literature to date that meets the scope defined
in Section 1.2, we perform a systematic search for the terms defined below,
from each repository (also defined below). Unique papers are collected into a
table, and a decision is made based on the inclusion criteria in three stages:
Title: We remove publications that are clearly irrelevant from the title.
Abstract: We inspect the abstract and remove publications which are clearly
irrelevant according to the scope defined in Section 1.2.
Body: Results are read fully and a judgement is made on whether the paper
a) meets the key requirements on what is defined as “app store analysis” in
our scope, or b) is very relevant to the field and so should be included as “ex-
panded literature”, to put the main literature into context. Papers matching the
requirements of a) or b) are included in this survey.

A summary of the number of papers found through the search, as well as the
number of papers accepted at each stage of validation, can be found in Table 1.
We make many of the papers discussed in this survey available in an online
repository [194].

1.3.1 Search Repositories

We performed a search in each of the following repositories for papers to include
in the study: Google Scholar, Scopus, JSTOR, ACM, IEEE and arXiv.

1.3.2 Terms

We searched for the following terms and phrases, to encompass the sub-fields of
App Store Analysis that we identify: “App Store”, mining, API, feature, release,
requirements, reviews, security, and ecosystem. We performed searches for the
following specific queries, where terms joined by an ‘AND’ must appear, and
phrases in quotes must appear verbatim:

“app store analysis” AND mining AND API
“app store analysis” AND mining AND feature
“app store analysis” AND mining AND release
“app store analysis” AND mining AND requirements
“app store analysis” AND mining AND reviews
“app store analysis” AND mining AND security
“app store analysis” AND mining AND ecosystem

We performed the following more general searches to ensure that no relevant
literature was missed from the survey:

“app store analysis”
“app store” AND analysis
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Figure 2: Histogram of App Store Analysis literature showing the period from
2010 to November 27, 2015.

“app store” AND mining
“app store” AND mine

1.4 Snowballing

In addition to the repository searches specified in Section 1.3, we also perform
snowballing [235] on many of the included studies. This is where we inspect
the studies cited by the study, and the publications that subsequently cited the
study, using Google Scholar and ACM. By performing this process in addition
to repository keyword searching, we reduce the risk that relevant literature is
omitted from this survey.

1.5 Search Results

Search results can be found in Table 1.
We set the time window to start with the year 2000, yet the earliest reported

study is 2010. This is likely because the App Stores that propelled mobile app
usage to become widely adopted were launched in 2008. Yet, it is interesting
that studies incorporating technical with non-technical app store information
did not emerge until two years later. Papers were collected until November 27,
2015.

1.6 Overview

We present a summary of the included literature in Tables 3 to 9. A histogram
depicting the growth of publications studied on App Store Analysis for software
engineering can be found in Fig. 2, and a breakdown of these studies in each
sub-field that we identify is presented in Figs. 3 and 4.
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Table 1: Search query results indicating the number of hits each query gen-
erates, the number of these that were available to be inspected, the number of
titles and subsequent abstracts and paper bodies that were accepted as valid.
The top boxes indicate queries run only in Google Scholar, and the lower boxes
indicate the queries run to multiple paper repositories. In the case of Google
Scholar, only the top 1,000 results were accessible to inspect at the time of
search.
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Hits 15 9 9 3,130 409 1,040
Inspect 15 9 9 1,000 409 1,000
Title 14 8 9 87 35 37
Abstract 14 8 9 61 23 33
Body 14 8 9 52 21 32
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Google
Scholar

Hits 35 17 9 13 9 12
Inspect 35 17 9 13 9 12
Title 15 13 8 12 9 12
Abstract 13 13 8 12 9 12
Body 12 13 8 12 9 12

ACM

Hits 7 1,146 295 231
Inspect 7 1,146 295 231
Title 4 69 44 31
Abstract 3 57 27 22
Body 3 44 26 17

arXiv

Hits 0 81 28 10
Inspect 0 81 28 10
Title 0 4 1 0
Abstract 0 4 1 0
Body 0 4 1 0

IEEE

Hits 3 40 13 13
Inspect 3 40 13 13
Title 3 8 8 8
Abstract 3 7 4 4
Body 3 5 4 4

JSTOR

Hits 0 36 4 13
Inspect 0 36 4 13
Title 0 0 0 0
Abstract 0 0 0 0
Body 0 0 0 0

Scopus

Hits 1 128 21 1
Inspect 1 128 21 1
Title 1 128 21 1
Abstract 0 13 6 0
Body 0 11 4 0
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Figure 3: Histogram of sub-field trends showing the period from 2010 to
November 27, 2015.
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Figure 4: Pie chart showing overall sub-field distribution showing the period
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Figure 5: Histogram showing number of research papers incorporating
non-technical information and technical-only research papers showing the
period from 2010 to November 27, 2015.

2 Non-Technical Research

It is important to note that while software engineering deals primarily with
code, is not confined to deal with strictly technical sources of information. We
can combine data from multiple (technical and non-technical) sources, and app
stores provide a wealth of such information. There are 127 of 187 (68%) papers
included in this study that incorporate non-technical information mined from
app stores in order to either infer technical attributes (such as features), or to
extract useful information such as bug reports and feature requests from users.
The histogram in Fig. 5 shows that the number of studies incorporating non-
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Figure 6: Histograms showing number of research papers grouped into app
quantity ranges each year, showing the period from 2010 to November 27,
2015. Each histogram depicts a range such as 102 - 103 apps, which means that
the studies included used between 102 and 103 apps.

technical information is growing year-on-year. This graph also shows that in
2013 there was not only a large spike in App Store Analysis research, but that
much of this growth came from technical-only papers mining data from app
stores to support related research, treating them as a type of software repository.
We can see from Fig. 2 that even including the boom in technical-only research,
there is a linear growth trend to App Store Analysis research (R2 = 0.90).
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Table 2: Number of research papers studying each app quantity range from
2010 to November 27, 2015.

No. Apps Range Papers No. Apps Range Papers

0 6 [103, 104) 36
[1, 10) 19 [104, 105) 39
[10, 102) 21 [105, 106) 28
[102, 103) 31 ≥ 106 3

3 Scale of Studies

In order to discuss the number of apps that are studied by research papers, we
first need to define a set of ranges. We assign the papers studied to app quantity
ranges in ascending powers of 10, according to the number of apps that they
consider. The ranges that we assign, and the number of research papers that
study them, are shown in Table 2.

The median number of apps used in the considered literature is 1,679, and
the mean is 44,807. This result shows that half of the papers study fewer than
3,000 apps, but the other half study a quantity of apps several orders of mag-
nitude higher. This is reflected in Fig. 6, where the range [104, 105) is shown to
grow and in 2015 represents almost half of the app usage literature.

The histogram for the studies using between 104 and 105 apps shows growth
from 2011 to 2015, and this result is reflected in the histogram for studies using
between 105 and 106 apps as well, up to 2014. It is important to note that
2015 is not a complete year, and so this result is subject to change. Studies
using smaller scales of apps show an uncertain change in frequency, indicating
that most studies in the future are likely to continue using over 104 apps. We
anticipate larger studies in the future, based on the growth of App Store Analysis
literature, the increasing quantity of apps studied, and of course the growing
app stores themselves.

4 Key Ideas Timeline

A timeline depicting the key ideas is shown in Fig. 7. The first App Store Analysis
literature emerged in 2010, with the study by Shabtai et al. [200] that extracted
feature information for training a classifier to distinguish tools and games. The
authors proposed that the approach could later be used for detecting malware.
This was the first app store feature analysis paper. In the same year, Bläsing et
al. [26] used the Android Market as a form of software repository by download-
ing a set of apps to test their static and dynamic analysis tool. This was the first
app store security analysis paper.

Lee et al. [123] published the earliest work that incorporated technical with
non-technical information in 2011 by analysing developer sales strategies in the
Apple App Store. In the same month, Henze and Boll [94] studied release times
in the Apple App Store, finding that Sunday evening is the best time for deploy-
ing games. These were the first app store release engineering papers. Syer et
al. [205] compared feature equivalent apps from Android and Blackberry. This
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2008 Apple App Store launched

Google Play launched (as Android Market)

2009 Blackberry World App Store launched

2010 [200] Shabtai et al. extracted feature information to differentiate between Tools and Games cat-
egories (Feature)
[26] Bläsing et al. used the Android Market as a software repository for testing their APK anal-
yser (Security)
Windows Phone Store launched

2011 [205] Syer et al. compared Blackberry and Android platforms using feature equivalent apps
(Store ecosystem)
[123] Lee et al. analysed deployment strategies for optimising download rank (Release engi-
neering)
[94] Henze and Boll studied release times in the Apple App Store for game deployment
(Release engineering)
[199] Sethumadhavan discussed function point analysis for mobile apps (Size and Effort Pre-
diction)

2012 [79] Goul et al. analysed reviews in order to facilitate requirements engineering (Reviews)

[36] Chandy and Gu mined 6,319,661 reviews from the Apple App Store for spam classification
(Reviews)
[91] Harman et al. connected non-technical, technical & business aspects; extracted technical fea-
tures from text descriptions (Feature)
[188] Ruiz et al. studied class reuse and inheritance in Google Play (API)

[247] Zhu et al. studied the problem of mobile app classification (Feature)

2013 [221] Vision Mobile found 72% of devs dedicated to Android; iOS and Android devs earn 2x
other platform devs
[130] Lim and Bentley simulated an app store ecosystem (Store ecosystem)

[102] Iacob and Harrison automatically analysed app reviews to identify feature requests and
bug reports (Reviews)
[249] Zhu et al. studied ranking fraud in App stores (Security)

2014 [187] Ruiz et al. investigated the effect of ad libraries on app ratings (API)

[78] Gorla et al. performed malware detection through API usage/description cluster outliers
(Feature)
[222] Vision Mobile paid and with-ads models almost tied in revenue and developer share

2015 [152] McIlroy et al. studied update frequency of Google Play apps (Release engineering)

[149] Martin et al. identified the “App Sampling Problem” (Reviews)

[146] Malavolta et al. investigated hybrid mobile apps from technical and user perspectives
(Reviews)
[173] Park et al. studied the mobile app retrieval problem (Reviews)

[195] Sarro et al. studied feature migration between apps (Feature)

[116] Khalid et al. surveyed app store review literature (Reviews)

[63] Ferruci et al. compared approaches for size and effort prediction in mobile apps (Size and
Effort Prediction)

Figure 7: Key ideas timeline for App Store Analysis literature.
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was the first app store ecosystem analysis paper. In the first study on size and ef-
fort prediction for mobile apps, Sethumadhavan [199] discussed the application
of FPA (Function Point Analysis) to Android applications.

In 2012 Goul et al. [79] analysed sentiment in 5,000 reviews in order to
facilitate requirements engineering. Then in a larger study Chandy and Gu [36]
mined 6,319,661 reviews from the Apple App Store for spam classification.
These were the first app store review analysis papers. Harman et al. [91] iden-
tified App Store Analysis as a “Mining Software Repositories” problem, and per-
formed analysis on the trends between technical, non-technical and business at-
tributes extracted from the Blackberry store. Later in 2012, Ruiz et al. published
the first study on app store API usage, by studying class reuse and inheritance
in Google Play. Zhu et al. [247, 248] published the first study on the problem
of mobile app classification, using features extracted from the web and device
logs.

In 2013 Lim and Bentley performed a simulation of the app store ecosys-
tem [130], and Iacob and Harrison produced a system for automatically ex-
tracting feature requests and bug reports from app reviews [102]. In this year
Vision Mobile identified a clear lead in the number of developers dedicated to
Android, over other platforms [221]. Zhu et al. published the first study on
problem of detecting ranking fraud in app stores [249].

In 2014 Ruiz et al. identified a link between ad libraries on app ratings [187],
and Gorla et al. performed malware detection by clustering app descriptions
and identifying API usage outliers [78]. With-ads revenue models have seen
increased usage since the inception of apps stores, and at the end of 2014 had
almost tied paid apps for revenue and developer share [222].

In 2015 McIlroy et al. performed the first study on app update times in
Google Play [152], and Martin et al. identified the “App Sampling Problem”
that affects many App Store Analysis papers [149]. In addition, Malavolta et al.
analysed hybrid apps [93] from technical and user perspectives [146], and Park
et al. utilised user reviews to improve mobile app retrieval [173]. Later in 2015,
Sarro et al. performed the first study on feature migration between apps [195],
and Khalid et al. published the first survey of app store review literature [116].
In an empirical study, Ferrucci et al. [63] compared the approaches for size and
effort prediction of mobile apps.

5 API Analysis

Papers that extract the API usage from app APKs or source code, and combine
this information with non-technical data are discussed in this section, and are
summarised in Table 3. All API analysis literature studied apps from the An-
droid platform. This is due to the availability of tools which can be used to
decompile the apps and extract their API calls, which are freely available and
can be applied to downloaded app binaries. It is perhaps surprising that this
has not been possible for the Apple platform iOS, since the store was launched
in 2008, but this is likely due to the complexity and security inherent in iOS
binaries; iOS binaries are only available for the intended platforms, and cannot
be downloaded to, or used from a desktop computer without an Apple Devel-
oper account, which is not free. Even with such an account, app binaries or
source code would be needed, and neither are freely available due to a) copy-
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Table 3: Chronological summary of API-related App Store Analysis litera-
ture showing the authors, publication year, publication venue, and the number
of apps used in the study.

Authors [Ref], Year Venue No. apps

Ruiz et al. [188], 2012 ICPC 4,323
Linares-Vásquez et al. [136], 2013 FSE 7,097
Shirazi et al. [189], 2013 EICS 400
Minelli and Lanza [156], 2013 ICSM 20
Minelli and Lanza [157], 2013 CSMR 20
Ruiz et al. [187], 2014 IEEE Soft. 236,245
Hao et al. [90], 2014 MobiSys 3,600
Dering and McDaniel [56], 2014 MILCOM 450,000
Linares-Vásquez et al. [138], 2014 MSR 24,379
Ruiz et al. [186], 2014 IEEE Soft. 208,601
Linares-Vásquez [135], 2014 ICSE comp. 0
Viennot et al. [217], 2014 SIGMETRICS 1,107,476
Bartel et al. [17], 2014 IEEE Soft. Eng. 1,421
Zhang et al. [241], 2014 WiSec 10,311
Borges and Valente [29], 2015 PeerJ C. S. 396
Bavota et al. [20], 2015 IEEE Soft. Eng. 5,848
Kim et al. [119], 2015 ASE 350
Khalid et al. [112], 2015 IEEE Soft. 10,000
Watanabe et al. [233], 2015 SOUPS 200,000
Zhou et al. [245], 2015 WiSec 36,561
Wan et al. [227], 2015 ICST 398
Wang et al. [228], 2015 ISSTA 105,299
Syer et al. [206], 2015 Soft. Qual. 5
Azad [14], 2015 Masters thesis 950
Wang et al. [229], 2015 UbiComp 7,923
Seneviratne et al. [197], 2015 WiSec 4,114

Mean 93,298
Median 5,086
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right on binaries and b) many iOS apps are paid-for. Due to these difficulties,
it is uncertain whether it will be possible for future studies to extract API infor-
mation from iOS apps; in fact, it may become harder since the move (in iOS9)
to developer-submitted LLVM IR (Intermediate Representation) binaries, which
are then compiled for specific platforms by Apple. The Windows Phone plat-
form is relatively recent, and we may start to see API analysis studies utilising
this platform; the Google Play store launched in 2008 (as Android Market), but
it was not until 2012 that App Store Analysis literature studied API usage in the
store.

In 2012 Ruiz et al. [188] studied class reuse and inheritance in 4,323 An-
droid apps mined from 5 categories in Google Play. 217 apps were found with
exactly the same set of classes as another app in the same category. The study
was later extended to 208,601 apps by Ruiz et al. [186] in 2014. More evidence
of substantial code reuse was found, and the authors concluded that the apps
benefit from increased productivity but risk dependence on the quality of the
code they reuse. Borges and Valente [29] used association rule mining to in-
fer API usage patterns, using a dataset of 396 open source Android apps. For
their study, the authors extended APIMiner [161] to mine usage patterns and
instrument API documents with extracted usage patterns. They reported a study
over 17 months, during which instrumented Android documentation was made
publicly available, and received approximately 78,000 visits.

Linares-Vásquez et al. analysed the effect of fault and change-prone core
Google APIs on app ratings [136]. This is an important study as it combines
technical API information with non-technical information in the form of average
user reviews, in order to assess the impact that API usage can have. The authors
found that the more fault-prone and change-prone APIs we used frequently by
less well-rated apps, and that the more popular (successful) apps used APIs that
were less susceptible to API faults and changes. The paper presents an analysis
of 7,097 randomly selected free apps with > 10 reviews. Changes and faults
were measured as the number of API changes and bug fixes, respectively, to the
particular associated core libraries. Building on the work by Linares-Vásquez et
al. [136], Linares-Vásquez also presented an approach for a recommendation
system for Android app developers [135], to help them to prepare for platform
updates and avoid breaking changes and bugs. The authors extended their API
analysis work to identify APIs that have a high energy usage [137], but this
study did not combine non-technical app store information.

In 2013 Minelli and Lanza presented a visual analytics web tool for studying
repositories of apps [157, 156]. The tool analyses snapshots of apps throughout
their version history, using an interactive graphical user interface. Following
their subsequent study on 20 free and open source Android apps, the authors
found that 3rd party API code is often (incorrectly) committed along with the
app code, instead of including the corresponding 3rd party jar files. Exclud-
ing 3rd party code, most apps were found to have small code-bases. Addi-
tionally the authors found little use of inheritance in Android apps, and much
duplication. Shirazi et al. [189] extracted the API usage with regards to user
interface (UI) elements and layout, and compared statistics between the 21 dif-
ferent categories of the Google Play store that existed in 2012. Peiravian and
Xingquan [174] used API calls to augment their malware classifier training.

Hao et al. [90] studied the insertion of UI handlers into app code. They pub-
lished the PUMA tools which makes UI automation programmable, and enables
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researchers to analyse correctness properties of apps. They tested the tool on
a set of 3,600 apps downloaded from Google Play. Dering and McDaniel [56]
downloaded a set of 700,000 app binaries from 450,000 free apps on Google
Play and analysed library and permission usage. They found a strong correlation
between the number of libraries used and the number of permissions requested
by the apps, leading to the conclusion that libraries tend to have specific use
cases that require additional permissions from the user. This finding presents
a security concern: is each library doing what it is supposed to, and does it
need this permission? In conjunction with the finding by Book et al. [28], this
suggests that library usage is a significant security concern, since libraries of-
ten make use of existing permission privileges, and also increase the number of
permissions requested.

Ruiz et al. studied the effect of ad libraries on app ratings [187]. They
combined non-technical rating information with the extracted technical infor-
mation showing ad library usage to perform the study. Ad libraries query their
host server at regular intervals to fetch advertisements for display, and this in-
terval determines the “ad fill rate”. Multiple libraries are often used to obtain
higher fill rates in order to increase revenue. From a sample of 236,245 apps,
the authors found no evidence of a correlation between rating and the number
of ad libraries. However, certain APIs were found to have low median ratings
from apps that used them. The authors assessed that this is due to intrusive
behaviours, such as recording entered passwords. Bavota et al. [20] later in-
vestigated how the number of changes and faults present in APIs used affected
apps’ ratings. Their results showed an inverse correlation between the popular-
ity of apps and the number of faults and changes in APIs they used. That is,
low rated apps were found to use APIs that are more fault and change prone
than highly rated apps. Bavota et al. surveyed 45 Android developers who
confirmed the relationship from anecdotal experience. These studies combined
technical (API usage) with non-technical (user ratings) information to highlight
best practice for API usage in Android development.

Linares-Vásquez et al. [138] decompiled and analysed 24,379 APKs from
Google Play and found that the 82% of detected clones replicate 3rd party li-
braries. Gorla et al. [78] trained a one-class support vector machine [147] on
API usage information in order to identify outliers in trained clusters for security
purposes. Viennot et al. [217] introduced the PlayDrone Google Play crawler,
which they used to store daily data on 1.1M apps and decompile 880k free apps.
The authors found that native libraries are heavily used in popular apps, and ap-
proximately a quarter of free apps are duplicated content. They found that paid
apps account for just 0.05% of downloads, and the top 10% of most popular
apps account for 96% of total downloads as of June 23, 2013. Bartel et al. [17]
showed that off-the-shelf static analysis is insufficient for permission-protected
API methods, and investigated alternatives, which they tested on 1,421 apps
downloaded from two Android markets.

Zhang et al. [241] proposed ViewDroid, an app plagiarism detection system
that uses view transition graphs as birthmarks to capture app behaviour, in order
to detect clones in the presence of code obfuscation. Apps mined from Google
Play were used as a false negative set. In a related study, Kim et al. [119] scan
API invocations to identifying plagiarised applications, in a more sophisticated
approach than similarity detectors that scan code, as it handles code obfusca-
tion. Wang et al. [228] proposed WuKong, a two-phase Android clone detection
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system that first filters third-party libraries to increase detection speed. The au-
thors tested the system on 105,299 Android apps and found zero false positives.

In 2015, Khalid et al. [112] performed static analysis on 10,000 free Google
Play apps, and found that 3 categories of FindBugs warnings occur more fre-
quently in lower rated apps. The categories ‘bad practice’, ‘internationalisation’
and ‘performance’ had more warnings in lower-rated apps, suggesting that these
areas are the ones developers should focus on to achieve better rating perfor-
mance. Watanabe et al. [233] found, from analysing the description and API us-
age of 200,000 Android apps, that there is disparity between their descriptions
and requested permissions. This is due to a combination of factors: unneces-
sary permissions requested by app building frameworks, or developers that use
similar manifests for multiple app projects; secondary functionality that is not
mentioned in descriptions; and the use of 3rd party libraries. In a related study,
Zhou et al. [245] mined a set of 36,561 Android apps, and proposed the tool
CredMiner which is focused on decompilation and program slicing. They iden-
tified over 400 apps that leaked developer user-names and passwords, required
for the program to execute normally.

Wan et al. [227] explored energy hotspots in apps by transforming their UIs
and producing a ranked list of UI components by energy consumption. The
authors tested their approach on 398 apps mined from Google Play. Syer et
al. [206] studied the effect of platform independence on source code quality,
finding that the more defect prone source files also depend more heavily on
the platform. The authors therefore suggest prioritising platform-dependent
source files for unit testing, as a quality assurance strategy. Azad [14] studied
apps mined from Google Play and F-droid, and produced tools to inspect API
usage and suggest similar APIs based on Stackoverflow discussions; score the
similarity of apps; identify the degree to which apps have copied the source
code of open source projects; and detect license violations.

Tian et al. [211] extracted API information and evaluated apps in terms of
code complexity, API dependency, API quality, as well as a number of other fac-
tors, in order to train features to distinguish high from low rated apps. Wang
et al. [229] decompiled 7,923 apps from Google Play and mined features from
the decompiled code and variable names. They trained a machine learning clas-
sifier on labelled instances of the apps using location and contact information,
in order to identify the way in which sensitive information is used. Seneviratne
et al. [197] studied 275 free and 234 paid Android apps, and found that paid
apps collect personal information, in the same way as free apps do. 60% of the
paid apps collected personal information, compared to 85% in free apps. The
authors subsequently showed that 20% of 3,605 collected Android apps were
connected to more than three trackers.

6 Feature Analysis

Papers that extract feature information from either technical or non-technical
sources of information are discussed in this subsection, and are summarised
in Table 4. We can observe that these research papers study a wide range of
platforms: Android, iOS, Nokia Widsets, Blackberry and Windows Phone. In
addition, the publications investigate a large number of apps: the minimum is
3 and the maximum is 600,000.
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Table 4: Chronological summary of feature-related App Store Analysis lit-
erature showing the authors, publication year, store used: g signifies Google
Play or other Android stores, a signifies Apple App Store, n signifies the Nokia
(or Widsets) platform, b signifies Blackberry, s signifies Samsung (Android) and
w signifies Windows Phone; publication venue, and the number of apps used in
the study.

Authors [Ref], Year Store Venue No. apps

Shabtai et al. [200], 2010 g CIS 2,285
Chen and Liu [38], 2011 a iConference 102,337
Coulton & Bamford [47], ’11 n MobileHCI 3
Harman et al. [91], 2012 b MSR 32,108
Sanz et al. [190], 2012 g CCNC 820
Teufl et al. [210], 2012 g MobiSec 130,211
Zhu et al. [247], 2012 n CIKM 680
Mokarizadeh et al. [160],’13 g WEBIST 21,065
Teufl et al. [209], 2013 g Sec. & Com. Netw. 443
Lulu and Kuflik [21], 2013 g IUI 120
Bhattacharya et al. [24],’13 g CSMR 24
Yin et al. [240], 2013 a WSDM 5,661
Lin et al. [133], 2013 a SIGIR 7,116
Ihm et al. [105], 2013 g CGC 10
Kim et al. [120], 2014 a Service Business 100,830
Finkelstein et al. [64], 2014 b Tech. report 42,092
Yang et al. [239], 2014 g Tech report 26,703
Zhu et al. [248], 2014 n TMC 680
Zhu et al. [250], 2014 g KDD 170,753
Jiang et al. [107], 2014 g INTERNETWARE 150
Zhu et al. [246], 2014 a IEEE Cybernetics 15,045
Vakulenko et al. [213], 2014 a ICIS 600,000
Lin et al. [134], 2014 a SIGIR 6,524
Sarro et al. [195], 2015 b,s RE 54,983
Berardi et al. [23], 2015 a,g SAC 5,993
Svedic [204], 2015 a PhD thesis 60
Seneviratne et al. [198],’15 g WWW 232,906
Tong et al. [212], 2015 g,w JCST 10,000
Wang et al. [229], 2015 g UbiComp 7,923
He et al. [92], 2015 g Big Data 122,875
Tian et al. [211], 2015 g ICSME 1,492
Nayebi and Ruhe [166],’15 g PeerJ C.S. 241
Lulu and Kuflik [22], ’15 g MOB INF SYST 6,633

Mean 52,084
Median 6,579
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Papers in this section show that it is possible to extract feature informa-
tion from sources other than source code or requirements lists: features are
extracted from app descriptions, API usage, manifest files, decompiled source
strings, categories and permissions. Many different methods are used for extrac-
tion and categorisation of features, including natural language processing, topic
modelling and clustering. The work shows that analysis of multiple apps can
be augmented with meaningful technically-oriented information, mined from
freely-available app store pages.

Shabtai et al. [200] extracted feature information from the manifest, XML
files, API calls and methods used from a set of 2,285 Google Play apps. They
trained a classifier on the features to differentiate between Tools and Games
categories, as a proof of concept that malware detectors could be trained in the
same way.

In 2011, Coulton and Bamford [47] conducted a case study on games cre-
ated for the WidSets platform, an earlier app store that targets Nokia phones
(including non-smartphones). Their findings were transferable to modern app
stores: high download numbers are required in order to gain active users, and
popular features such as chat can increase popularity and the proportion of ac-
tive users. Chen and Liu [38] collected 102,337 apps from Apple App Store,
and observed no correlation between download rank and rating, from a sample
of the top 200 most popular apps.

In 2012 Sanz et al. [190] trained machine learning classifiers to predict
app categories, using extracted features. The features used for prediction were
strings extracted from the decompiled app code, requested permissions, rating,
number of ratings and app size. They tested the approach on 820 apps and
found a peak AUC (area under ROC curve) of 0.93 using the Bayesian TAN
classifier [66].

Harman et al. [91] introduced app store mining as an MSR (Mining Software
Repositories) problem. They mined app information and performed correlation
analysis on price, downloads, and rating. Correlations were computed in both
app and feature space, where features were extracted using natural language
processing techniques from app descriptions, and results showed that under
most conditions there is a strong correlation between rating and downloads
(popularity). The proposed approach can be applied to different app stores by
modifying the data extraction and parsing phases to accommodate the different
app store structure and data representations. The authors later extended this
work [64], finding that free apps have higher ratings than non-free apps, with
a medium effect size. They also carried out a developer survey on the extracted
features, who found them meaningful, and were able to successfully detect the
extracted features over randomly generated features.

Teufl et al. [210] mined 130,211 apps from Google Play and performed clus-
tering on both app descriptions and requested permissions, as part of their acti-
vation patterns malware detection approach. They later extended this work [209]
to propose a first-step malware detection method using links between descrip-
tion terms and security permissions to identify suspicious outliers. Zhu et al. [247,
248] studied the problem of mobile app classification in the Nokia Store. The
authors mined 680 apps, and experimented by classifying apps using data from
web search and from device logs from users of the apps. Their approach out-
performed other classification techniques, and enabled them to automatically
classify a given app onto a predefined category of Apple’s App Store taxonomy.
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In 2015 Berardi et al. [23] built on this work, by constructing a classifier using
features mined from app descriptions, categories, names, ratings and file sizes.
They trained the classifier using a support vector machine for each of 50 classes,
and used the BM25 weighting scheme [184] on the features. Users manually
classified 5,993 apps mined from Apple App Store and Google Play, to act as the
training (cross validation) set for the classifier.

In 2013 Mokarizadeh et al. [160] performed clustering on 21,065 apps,
mined from Google Play, after applying topic modelling on app descriptions.
They found that the resultant clustering was very different from the app’s as-
signed categories, and apps in the same category often had dissimilar descrip-
tion topic distributions. Mokarizadeh et al. also performed correlation anal-
ysis and found unsurprisingly that users download free apps more frequently,
and that downloads correlate with the number of ratings an app has received.
Lulu and Kuflik [21] performed clustering on 120 apps mined from Google
Play, comparing description-based with category-based clustering. They found
that descriptions provide good clustering features, and present the method as
the basis of an app recommendation system. The authors later built on this
work [22], by extracting features from 6,633 app descriptions and enriching
them with information on the web, found by searching for the app name. They
used the enriched features to provide an installed-app recall interface, sup-
ported by functionality-based categorisation. The interface was validated by
performing a user study with 40 participants, who were able to find apps faster
and found the categorisation more intuitive, when compared with a reference
“smart launcher” interface [73].

Bhattacharya et al. [24] presented an empirical study of 24 open source
Android apps from multiple categories, with the aim of defining metrics of bug
report quality and developer involvement. The authors showed how the bug-fix
process is affected by differences in bug lifecycles. Security bug reports were
found to be of higher quality, but the associated bugs are fixed more slowly.
Importantly, the scale of the study was large as all apps had more than 1,000
ratings, 100,000 downloads and 200 bug reports. The authors found that bug
report quality correlates with description length but not app rating.

Yin et al. [240] proposed the Actual Tempting (AT) model to perform app
recommendation for users. The model uses latent tempting parameters, and
uses information such as the number of users who own an app “a” and later
download app “b”, and who do not download “b” after owning “a”. The model
also uses feature overlap information, measured by performing topic modelling
on app descriptions and computing the topic overlap between each pair. The
authors find that the AT approach outperforms collaborative filtering and case-
based reasoning in their initial experiments. Lin et al. [133] used topic mod-
elling on the Twitter messages of users that follow an app’s Twitter feed, in order
to generate latent groups related to the app. The groups are then used as part of
a recommendation system, in order to help remove the problem of cold start in
app recommendation based on other metadata. The system was tested on 7,116
apps mined from Apple App Store and the authors found that it outperformed
recommendation using app descriptions. However, in 2014 Lin et al. [134] used
topic modelling on app descriptions in order to produce a recommendation sys-
tem. The model is semi-supervised and incorporates app version information
using different weights corresponding to update types: so that newer app ver-
sions can be recommended when they add a certain feature to the description.
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Resultant topics are weighted based on their category in the app store to pro-
vide a recommendation. The model was trained on 6,524 apps mined from the
Apple App Store. Ihm et al. [105] conducted a study on 10 popular apps in
the Google Play store, analysing the correlations between app downloads in the
store and external metrics. The authors found a strong positive correlation be-
tween the number of downloads in the store and the number of registered users
on the app’s respective websites, and a strong correlation between the number
of downloads and the app website (inverse) download rank.

Yang et al.[239] introduced the APPIC framework, which extracts main
theme tag words from Android description and permission files. It does this
using LDA and Partially Labelled Dirichlet Allocation (PLDA), for the purpose of
identifying misleading app descriptions. It uses the app’s permissions file to es-
tablish whether the description makes correct claims about its functionality, and
whether it resides in the correct category. The method was tested on 207,865
apps from Google Play, and was manually evaluated on a subset of 1,000 apps.
The authors found their method achieved (average) 88.1% category accuracy,
and 76.5% permissions accuracy. Kim et al. [120] mined 100,830 apps from
Apple App Store, and extracted feature keywords from their descriptions using
natural language processing. They clustered apps using the extracted features,
and recategorised them using the resulting clusters. Zhu et al. [246] mined
the daily top 300 free and top 300 paid apps from Apple App Store charts from
February 2, 2010 to September 17, 2012, collecting information on 15,045 apps
in total. They used popularity information to construct a Popularity-based Hid-
den Markov Model (PHMM), to encode trend and other latent factors. The
authors state that this can be used in a variety of ways, including app recom-
mendation, review spam detection, and demonstrate its usefulness in ranking
fraud detection.

Jiang et al. [107] conducted a user survey on 50 app descriptions in order
to identify the attributes most important to the quality of the description. A
support vector machine was trained on the resultant attributes and tested on a
sample of 100 descriptions, finding an accuracy of 0.62. The findings showed
that quick overviews are the most effective form of app description, and the
study contains further heuristics on good description styles. Jinh et al. [108]
used the features: numbers of app installs, number of reviews, category and
rating score, in conjunction with features based on information flow, for their
machine learning classifier for rating app security risk. Zhu et al. [250] built
an app recommendation system using a combination of technical information
(device permissions requested) and non-technical information (app popular-
ity). They tested the system on 170,753 apps mined from Google Play to show
its scalability. However, the system received no human-based evaluation of its
recommendations. Valulenko et al. [213] performed topic modelling on a set of
600,000 app descriptions mined from Apple App Store. They use the resultant
topics to suggest categories, and to improve and augment existing categorisa-
tion approaches used in app stores.

In a longitudinal study on 60 paid iOS apps, Svedic [204] found that rat-
ings and reviews can impact sales ranks. The study found that higher, more
stable ratings lead to users associating the app with high quality and as a result
the app sales increase. Watanabe et al. [233] found that apps often contain
secondary functionality that is not mentioned in their descriptions. In a study
of 232,906 apps, Seneviratne et al. [198] trained a machine learning classifier
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on app features in order to detect spam apps. The features used for the clas-
sifier were numeric statistics about an app’s description. The authors labelled
apps that were removed from the store and establishing potential reasons for
removal. Apps likely to have been removed due to being spam (the majority of
those removed) were then used to train a boosting classifier in order to identify
potential spam.

Sarro et al. [195] proposed a theoretical characterisation of feature lifecy-
cles in app stores, to help app developers to identify trends and to find undis-
covered requirements. In order to investigate app feature migratory and non-
migratory behaviours in current app stores, they mined features from app de-
scriptions using the techniques in the earlier work [91], and used the proposed
theory to empirically analyse the migratory and non-migratory behaviours of
4,053 non-free features from Samsung and Blackberry stores. The results re-
vealed that features generally migrate to a category that has similar character-
istics, however there are also a few features that migrate to apparently non-
related categories. The early identification of these features may allow devel-
opers to find undiscovered requirements. The authors also found that approxi-
mately one third of features were intransitive (they neither migrate nor do they
die out over the period studied), and such features exhibited significantly differ-
ent behaviours with regard to important properties, such as their price. Being
aware of which are the intransitive features in a given category may support
developers in identifying crucial (‘must-have’) requirements for their apps.

Tong et al. [212] proposed the App Generative Model (AGM) topic model,
for extracting semantically coherent app features from descriptions, using term
co-occurrence statistics. The AGM model resulted in lower perplexity (a topic
model fitness function that measures the log-likelihood of generating a held-out
test set), than the most commonly used model, LDA. However, the model pre-
cision was evaluated only against TF.IDF, and not LDA or similar topic models
such as the weighted topic model [155]. Nevertheless, the study shows the im-
portance of accurate feature discovery and representation, and can help lead
to future studies using extracted features. Wang et al. [229] extracted features
from decompiled Java code, from their collection of 7,923 apps mined from
Google Play. They used the extracted features to train classifiers for predicting
how ‘location’ and ‘contact’ information is used, with 85% and 94% accuracy,
respectively. He et al. [92] trained a system for targeting users for advertis-
ing, with a dataset containing app install data on a per-user basis, consisting of
122,875 apps from the Huawei App Store. The authors reported a higher click
rate than current targeting approaches.

Tian et al. [211] studied 1,492 high and low rated apps from Google Play,
and identified the features which most accurately differentiate apps with high
rating from those with low rating. The authors used technical features, such
as code complexity and API usage, with non-technical information such as the
category and the number of images displayed on the app store page. The most
important features for differentiating high from low rated apps were the size
of the app and the number of images on store page. The target SDK version
was also an influential feature which suggests that high rated apps are updated
more frequently and use more modern features of the Android operating system.
Nayebi and Ruhe [166] extracted feature information from 241 Google Play
apps, and used crowd-sourcing to assign user value to each of the features. The
authors use the approach for service portfolio planning [2].
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Table 5: Chronological summary of release engineering-related App Store
Analysis literature showing the authors, publication year, store used: g signifies
Google Play or other Android stores, a signifies Apple App Store and w signifies
Windows Phone; the type of literature, and the number of apps used in the
study.

Authors [Ref], Year Store Venue No. apps

Lee and Raghu [123], 2011 a AMCIS 3,168
Henze and Boll [94], 2011 a MobileHCI 24,647
Datta and Kajanan [52], 2013 a CloudCom-Asia 3,535
Lee and Ragu [124], 2014 a JMIS 7,579
Ruiz et al. [159], 2014 g IEEE Soft. 120,981
Guerrouj et al. [83], 2015 g SANER 154
Comino et al. [43], 2015 a,g Tech report 1,000
McIlroy et al. [152], 2015 g ESE 10,713
Gui et al. [84], 2015 g ICSE 21
Carbunar and Potharaju [31],’15 g ASONAM 160,000
Alharbi and Yeh [5], 2015 g MobileHCI 24,436
Martin et al. [150], 2015 g,w Tech report 1,033

Mean 29,772
Median 5,557

7 Release Engineering

This section discusses papers that focus on app releases or release strategies,
which are summarised in Table 5. We can see from Table 5 that there were
two papers published in 2011 that tackle this issue, one in 2013, and then a
recent influx of 5 prior to November 27, 2015. Release studies typically require
time series data, in order that the changes made to apps in their releases can be
recorded. Due to the recent spike in release engineering studies, we expect the
trend to continue and contribute to the growing numbers of App Store Anal-
ysis literature. As can be seen in Table 5, the stores studied are split almost
equally into Apple and Google, but there are no release studies in Blackberry or
Windows Phone Store. The scale of the past studies in this section is relatively
small, ranging from 21 to 24,647; this scale is not surprising, given the difficulty
of mining longitudinal data for a large number of data points.

Lee et al. [123] published the earliest work that meets our definition of
“app store analysis” in 2011 by incorporating technical with non-technical in-
formation for analysis of apps. The authors mined app information from the
top 300 iOS apps in all 21 categories free and paid, mining at least 3,168 apps.
They analysed developer diversification through publishing apps in multiple cat-
egories and in both free and paid, and found a positive relationship between
download rank and app portfolio diversification. The study incorporates tech-
nical (download rank) with the non-technical information (category, price) in
order to identify actionable findings for app developers. In 2011 Henze and
Boll [94] analysed release times and user activity in the Apple App Store, and
concluded that Sunday evening is the best time for deploying games. Their
study also found that version updates were an effective strategy for raising an
app’s rank in the store.

In 2012 Moller et al. [164] studied the installation behaviour of users with
recently updated apps, in a security related study. In 2013 Datta and Ka-
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janan [52] studied review counts from the Apple App Store, and found that
apps receive more reviews after deploying updates on Thursdays. In 2014 Lin
et al. [134] incorporated version information in their app recommendation sys-
tem, in order to ensure that apps are recommended if they add new features
to new versions. Lee and Raghu [124] studied the factors that affect an app’s
likelihood of staying in the top (most popular) charts in the Apple App Store.
They found that free apps are more likely to ‘survive’ in the top charts, and that
frequent feature updates are the most important factor in ensuring their sur-
vival, along with releasing in smaller categories. The authors also found that
high volumes of positive reviews improve an app’s likelihood of survival.

The 2014 study by Ruiz et al. investigated the updates made to update
ad libraries [159]. They found that over 12 months, almost half of the 5,937
apps with multiple updates had an ad library update. Approximately 14% of ad
updates contained no changes to the app’s code, indicating the effort involved
in keeping ad libraries updated. In 2015 there was a spike in studies focused
on app release engineering. Gui et al. found, from 21 apps in Google Play with
frequent releases, that 23% of their releases contained ad-related changes [84].

Comino et al. [43] studied the top 1,000 apps in Apple App Store and Google
Play. They found that for iTunes, increased numbers of app releases are more
likely when the app is performing badly, and releases can boost downloads.
Neither finding held true for Google Play, however. Very recently, McIlroy et
al. [152] studied update frequencies in the Google Play store, after mining data
about 10,713 mobile apps. They found that only 1% of the studied apps re-
ceived more than one update per week, and only 14% were updated in a two-
week period. McIlroy et al. also found that rating was not affected by update
frequency. However, the findings of Guerrouj et al. [83] indicate that high code
churn in releases correlates with lower ratings. Carbunar and Potharaju [31]
conducted a longitudinal study on 160,000 Google Play apps mined daily over
a 6 month time period in 2012. They found that at most 50% of apps were
updated in each category, and that there is an issue of “stale apps” affecting
aggregated statistics on large populations. The authors also found that a few
developers dominated the total download counts, that productive developers
did not have many popular apps, and that there was no correlation between
price and downloads.

Alharbi and Yeh [5] tracked the design patterns used by 24,436 Android
apps over a period of 18 months. They found that depreciated patterns are
sometimes adopted after they are depreciated, and that new pattern adoption
rates are low. By tracking the app descriptions, they found that authors some-
times update the app descriptions to reflect changes to their design patterns.
They believe that this shows that descriptions are used as a communication
channel between developers and users. The authors report on apps that start
and stop using certain design patterns. An interesting future research direction
might be to record the migration of these “design features” using the app feature
migration terminology of Sarro et al. [195]. Nayebi and Ruhe [166] combined
app features with values gained from crowd-sourcing as an approach to app ser-
vice portfolio planning. Martin et al. [150] conducted a longitudinal study on
1,033 apps mined from Google Play and Windows Phone Store in a 12 month
time period. The authors used causal inference to identify the releases with
most impact in ratings and downloads. They found that release text discussing
features and not bug fixes may lead to more impactful releases, and releases
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that improve rating.

8 Review Analysis

Literature discussed in this section concerns the study of app reviews; a sum-
mary of discussed literature can be found in Table 6. We can see from Table 6
that the majority of studies focus on the Google Play store, with a minority
focusing on Apple App Store, and 1 paper studying Blackberry store. Review-
centred literature was first published in 2012, and has been gaining momentum:
we can see from Fig. 3 that there are greater numbers of requirements/reviews
literature each year. We hypothesise that this is due to the tenure of the stores,
and the progression of the field. One avenue of research that has not been
attempted is the study of reviews in the Windows Phone Store, which was
launched in 2010 but has not achieved the widespread success of Google Play
and Apple App Store, in the competitive market.

In 2012 Goul et al. [79] published the earliest work to study online app store
reviews. The authors performed sentiment analysis on 5,000 Apple App Store
reviews in order to facilitate requirements engineering. In a larger study Chandy
and Gu [36] mined 6,319,661 reviews from 3,090 apps in the Apple App Store.
After manually labelling a subset of the mined reviews as spam or not spam, the
authors trained both a supervised decision tree and unsupervised latent class
analysis to identify spam reviews. The unsupervised method achieved higher
accuracy, and took into account factors such as average rating of a user, and
number of apps rated.

Later in 2012, Hoon et al. [99] and Vasa et al. [215] collected a dataset con-
taining 8.7 million reviews from the Apple App Store and analysed the reviews
and vocabulary used. In 2013 Hoon et al. analysed 8 million reviews from Ap-
ple App Store [98]. They found that the majority of mobile apps reviews are
short in length, and that rating and category influences the length of reviews.
The majority of studied apps received under 50 reviews in their first year. Half
of the apps analysed decrease in rating quality over time, leading the authors
to suggest that user expectations are changing rapidly towards apps, and that
developers must keep up with demand to remain competitive.

Another large sample was used in the 2013 study by Fu et al. [67], in which
the authors analysed over 13 million Google Play reviews for summarisation.
They designed a system called WisCom that enables summarisation of reviews at
a per-review, per-app or per-market level. This tool can be useful for large-scale
overviews of competitor apps, or for gathering information about a market. The
weakness of the system is the need for a large complete sample of reviews to be
mined first, and the associated mining difficulties. However, the WisCom system
enables summarisation of ‘complaint’ or ‘praise’ reviews over time, and so it
must produce accurate results given a complete sample in a fixed time period
i.e. 6 months, so long as the inherent sample bias is taken into account. The
authors found that there is a large difference between free and paid apps, and
that paid apps have an associated ‘complaint’ type about price that free apps do
not.

In 2013 Ha et al. [88] manually examined 556 reviews mined from 59
Google Play apps, in order to classify them into topics and sub-topics based
on content. They found that most information in reviews concerns the quality
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Table 6: Chronological summary of reviews-related App Store Analysis lit-
erature showing the authors, publication year, store used: g signifies Google
Play or other Android stores, a signifies Apple App store, b signifies Blackberry;
the type of literature, and the number of apps used in the study.

Authors [Ref], Year Store Venue No. apps

Hoon et al. [99], 2012 a OzCHI 17,330
Vasa et al. [215], 2012 a OzCHI 17,330
Chandy and Gu [36], 2012 a WebQuality 3,090
Goul et al. [79], 2012 a HICSS 9
Ha et al. [88], 2013 g CCNC 59
Oh et al. [168], 2013 g CHI 24,000
Hoon et al. [98], 2013 a Tech report 17,330
Iacob and Harrison [102], 2013 g MSR 270
Galvis Carreño et al. [68] g ICSE 3
Khalid [113], 2013 a ICSE 20
Fu et al. [67], 2013 g KDD 171,493
Chen et al. [40], 2013 a,g WWW 5,059
Pagano and Maalej [169], 2013 a RE 1,100
Hoon et al. [97], 2013 a OzCHI 25
Iacob et al. [104], 2013 g BCS-HCI 161
Iacob et al. [103], 2014 g MobiCASE 270
Khalid [115], 2014 a IEEE Soft. 20
Chen et al. [39], 2014 g ICSE 4
Cen et al. [34], 2014 g PIR 6,938
Guzman and Maalej [87], 2014 a,g RE 7
Khalid et al. [114], 2014 g FSE 99
Wano and Iio [232], 2014 a NBIS 500
Erić et al. [60], 2014 a QIP 968
Khalid et al. [116], 2015 g IJITCS 0
Gao et al. [69], 2015 g SOSE 4
McIlroy et al. [153], 2015 a,g ESE 12,000
Cen et al. [33], 2015 g SIAM 12,783
Vu et al. [225], 2015 g ASE 3
Vu et al. [224], 2015 g CoRR 95
Malavolta et al. [145], 2015 g MS 11,917
Malavolta et al. [146], 2015 g MOBILESoft 11,917
Park et al. [173], 2015 g SIGIR 43,041
Panichella et al. [172], 2015 a,g ICSME 7
Palomba et al. [170], 2015 g ICSME 100
Moran et al. [162], 2015 g FSE 14
Gomez et al. [77], 2015 g MOBILESoft 46,644
Martin et al. [149], 2015 b MSR 15,095
Maalej and Nabil [144], 2015 a,g RE 1,140
Pérez [219], 2015 g Masters thesis 4
Khalid et al. [117], 2015 - IJIEEB 0
Gu and Kim [82], 2015 g ASE 17
Guzman et al. [85], 2015 a,g ESEM 7
Guzman et al. [86], 2015 a,g ASE 7
McIlroy et al. [154], 2015 g IEEE Soft. 10,713
Liang et al. [126], 2015 a IJEC 139

Mean 9,594
Median 161
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of the app, and not security or privacy concerns. Oh et al. [168] developed a re-
view digest system which they tested on 1,711,556 reviews mined from 24,000
Google Play apps. They automatically categorised reviews into bug reports,
functional requests and non-functional requests, and produce a digest featuring
the most informative reviews in each category.

Iacob and Harrison [102] presented an automated system (MARA) for ex-
tracting and analysing app reviews in order to identify feature requests. The
system is particularly useful because it offers a simple and intuitive approach to
identifying requests. 161 apps and 3,279 reviews were used for manually train-
ing linguistic rules. 136,998 reviews were used for the evaluation, which found
that 23.3% of reviews contain feature requests. Iacob et al. [104] then studied
how the price and rating of an app influence the type and amount of user feed-
back that it receives through reviews. The authors selected 3,279 reviews for
the study, from which they identified 9 classes of feedback: positive, negative,
comparative, price related, request for requirements, issue reporting, usabil-
ity, customer support, versioning. From the selected apps, there was a roughly
equal split of positive type reviews with feature/issue type reviews, with very
few other types such as negative or price related. As an extension to the MARA

system, Iacob et al. [103] introduced a set of linguistic rules for identifying
feature requests and bug reports in order to help facilitate app development.

Khalid [113, 115] manually categorised 6,390 negative reviews from a sam-
ple of 20 free iOS apps, and reported the most frequent causes of complaints.
The apps had combined over 250,000 reviews, and so 6,390 reviews is a statis-
tically representative sample at the 95% confidence level. The authors carried
out a manual analysis of the 6,390 reviews, finding that 11% of samples con-
cerned complaints about a recent update. Users were most dissatisfied by issues
relating to invasion of privacy and unethical behaviour, while hidden cost was
the 2nd most negatively perceived complaint.

Chen et al. [40] compared the maturity ratings of 1,464 equivalent apps be-
tween the Apple App Store and Google Play, and taking the Apple store ratings
as the accurate ratings, the authors found that 9.7% of the Android apps were
underrated and 18.1% were overrated. The authors also studied a sample of
729,128 reviews from 5,059 Google Play game apps, and trained a classifier
on the sets of app descriptions and user reviews, and iOS maturity ratings, to
automatically verify app maturity ratings. Pagano and Maalej [169] gathered a
sample of 1.1 million reviews from the Apple App Store in order to provide an
empirical summary of user reviewing behaviour. They found that most feedback
is provided after releases, that positive feedback is often associated with highly
downloaded apps, and that negative feedback is often associated with poorly
downloaded apps and often does not contain user experience or contextual in-
formation. Khalid et al. [114] studied the devices used to submit app reviews,
in order to determine the optimal devices for testing.

Several authors have incorporated sentiment in their study of reviews. Galvis
Carreño and Winbladh [68] extracted user requirements from comments using
the ASUM model [109], a sentiment-aware topic model. Initial results showed
that the method aids requirements summation with significantly less effort than
manual identification, but do not return all possible requirements. Hoon et
al. [97] gathered a set of 29,182 short reviews of up to 5 words, from the top
25 Health & Fitness apps in the Apple App Store. They analysed the reviews and
found they are mostly made up of sentiment words, and match the star rating
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of the review closely.
In 2014 Chen et al. [39] produced a system for extracting the most infor-

mative reviews, placing weight on negative sentiment reviews. Guzman and
Maalej [87] studied user sentiments towards app features from a multi-store
sample, which also distinguished differences of user sentiments in Google Play
from Apple App Store. Wano and Iio [232] analysed the textual content of 856
reviews from 500 apps in the Japanese App Store, and found that the review
styles differed between apps in different categories. In a large scale study, Erić
et al. [60] studied the star ratings of 48 million reviews from 968 popular free
and paid Apple apps. They found that the reviews were mostly positive, and
there were significant differences in the distributions between categories, and
also between free and paid. Free apps had more reviews but a lower mean, and
higher standard deviation. Due to the higher numbers of reviews for free apps,
which give an app credibility, the authors argue that in-app purchasing revenue
models are a good way to make money for developers, especially if used as a
‘teaser’ for a paid version.

Cen et al. [34] devised an approach to identify the Comments with Security
/ Privacy Issues (CSPI) from a set of mined Google Play app reviews. The
authors later built upon this work, using reviews in order to rank the security
risk of apps, by detecting security labels in a crowd-sourcing approach [33].
Using AndroGuard [7] scores as a ground truth, the authors found that their
tool outperformed other metrics for ranking app security risk, half of which
incorporated user reviews and half of which relied on declared permissions.

In 2015 McIlroy et al. [153] studied reviews in Google Play and Apple App
Store, and developed an automated labelling scheme that can identify multi-
ple elements to reviews that could be beneficial to stakeholders. For example,
a review might contain a feature request and a bug report, and so a label for
each type would be applied to it. Gao et al. [69] proposed AR-Tracker, a sim-
ilar tool to AR-Miner [39], that automatically collects user reviews of apps and
ranks them in order to optimise the representation of the review set, in terms
of frequency and importance. Gomez et al. [77] used an unsupervised ma-
chine learning approach in order to identify apps that may contain errors, using
1,402,717 reviews mined from 46,644 apps. The authors used the error in-
formation in addition to permissions used by the apps, in order to construct a
ranked recommender system to analyse app permissions, for app store modera-
tors.

Martin et al. [149] identified the App Sampling Problem, finding that the
majority of past work used partial subsets of biased data for app review anal-
ysis. The authors assessed the bias and identified techniques which can be
used to ameliorate its effects, as well as defining a classification scheme that
can be applied to app review analysis studies to describe dataset completeness.
Pérez [219] mined and labelled 160 user reviews from 5 Google Play apps in
order to train a review categorisation tool, that identifies feature requests and
bug reports. The tool was evaluated on 400 labelled reviews and achieved 0.78
accuracy. Malavolta et al. [145, 146] analysed 3 million reviews from 11,917
Google Play apps, and produced a summary of user perceptions about 445 hy-
brid apps [93] compared with native apps. The authors found that hybrid mo-
bile apps are receive similar ratings to native apps, but native apps have been
reviewed on average 6.5 times more. They plan to replicate the work using
multiple stores and a small set of cross-platform apps to compare their percep-
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tion across different platforms. Vu et al. [224, 225] developed MARK, a system
that identifies keywords in sets of reviews in order to assist summarisation and
search. The method is one of several summarisation approaches that are applied
to reviews.

Park et al. [173] developed AppLDA, a topic model designed for use on app
descriptions and user reviews, that discards review-only topics. This enables
developers to inspect the reviews that discuss features present in the app de-
scriptions. The authors tested the system on 1,385,607 reviews mined from
43,041 apps. Panichella et al. [172] presented a system for automatically clas-
sifying user reviews based on a predetermined taxonomy, in order to support
software maintenance and requirements evolution. They verified the system on
a manually labelled truth set of 1,421 sentences extracted from reviews, and
achieved 0.85 precision and 0.85 recall when training the system on language
structure, content and sentiment features. Maalej and Nabil [144] produced
a classification method identifying bug reports and feature requests from user
reviews. The authors found that upwards of 70% precision and 80% recall
can be obtained using multiple binary classifiers, as an alternative to a single
multiclass classifier. They also found that the commonly used NLP techniques,
stopword removal and lemmatisation, can negatively affect the performance of
this classification task.

Khalid et al. [116] partially reviewed recent literature in app store review
analysis, and made several suggestions that could improve the app reviewing
process for both users and developers. They proposed assigning categories to
reviews, as well as the ability to sort and filter reviews based on the assigned
category, helpfulness and star rating. They suggest that adding a user reply
feature would assist the developers to get the highest quality reviews.

Moran et al. [162] propose the FUSION system, that performs static and dy-
namic analysis on Android apps, in order to help users complete bug reports.
The system focuses on the steps to reproduce a bug, using dynamic analysis
to walk through Android system events. A separate set of authors, Khalid et
al. [117], argue that app store reviews can be used for crowdsourcing. They
argue that users are inadvertently performing crowdsourcing when they review
apps, solving the following problems: requests for potential features, sugges-
tions for developer action, recommendations for other users, and issue report-
ing.

Palomba et al. [170] study the Google Play reviews from 100 open source
Android apps, and link the reviews to code changes. They find that a mean
of 49% of reviews are implemented in new releases, and that the apps with
changes more directly implementing the content of user reviews improve their
ratings with new releases. Gu and Kim [82] proposed SUR-Miner, a review
summarisation and categorisation tool, which they evaluated on 2,000 sen-
tences from reviews of 17 Google Play apps. The tool is intended for use by
developers, and produces a visualisation of the reviews. The authors surveys
the developers of the studied apps, of whom 28 out of 32 agreed that the tool
is useful. In the Google Play store it is possible for developers to respond to
reviews, which can lead to users changing their rating.

Guzman et al. [85] developed a tool called DIVERSE, which extracts key
reviews specific to a queried feature. DIVERSE groups together reviews with
similar sentiments about the same feature in order to condense the information.
The authors tested their tool on the dataset used in their earlier study [87].
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Guzman et al. [86] also developed an ensemble of machine learning classifiers
in order to classify user reviews. They tested this system on 4,550 reviews mined
from 7 apps in the Google and Apple app stores, and achieved a precision of 0.74
and recall of 0.59 on a manually labelled set of 1,820 reviews.

McIlroy et al. [154] studied responses to reviews from 10,713 Google Play
apps, finding that most developers do not respond to reviews. However in the
cases where a response occurred, 38.7% of users were found to subsequently
change their ratings, resulting in a median increase in individual user ratings of
20%. Liang et al. [126] performed MultiFacet Sentiment Analysis (MFSA) on
user reviews from 139 apps mined from Apple App Store. They reported that
opinions on product quality form a larger portion of reviews, but opinions on
service quality have a bigger effect on sales.

In order to bridge the gap between software attributes and user reviews,
Hoon et al. [96] developed an ontology of words used to describe software
quality attributes in app reviews. A summary of mobile app user feedback clas-
sification can be found in the study by Maalej et al. [226].

9 Security

Studies relating to app security are discussed in this section, and are sum-
marised in Table 7. We can see from Table 7 that the number of studies grew
year on year until 2013 and then remained stable. A large proportion of these
papers do not combine technical with non-technical attributes, but rather use
properties such as the validation that highly rated apps have received, through
being downloaded, used, and highly rated by thousands of users. Much of the
security-related literature uses the property that popular apps can generally be
assumed non-malware, since they are scanned prior to being hosted in the store,
and have large user bases. Almost all dedicated security research in this section
that mines app stores as software repositories use the Google Play store; that is,
there are no studies on Blackberry or Apple, and just one study on Windows.
Many studies in this section use large collections (>10,000 apps) of benign apps
for malware detection. The number of apps used ranges from 1 to 998,286 (the
largest study in this survey).

In 2010 Bläsing et al. [26] used the top 150 free Google Play apps to test
their static and dynamic APK analyser. They tested these apps against 1 known
malware app which was shown to be an outlier, proving that their approach can
work for malware detection. In 2011 Batyuk et al. [19] used the top 1,865 free
Google Play apps to test their static APK analyser, which detected that 167 apps
accessed private identifiers, presenting a security risk. 114 of these apps wrote
the information after reading it, which might indicate that the apps contain
spyware. The work has since been extended into a static analysis tool called
Androlyzer [51].

In 2012 Potharaju et al. [177] conducted a study on 158,000 free Android
apps, identifying apps that are likely to be plagiarised in order to spread mal-
ware. The authors found that the 29.4% of apps with the most permissive
rights are most likely to spread malware, and that non-technical information
such as category, number of downloads and publishing day can increase the ini-
tial spread of the malware. Chia et al. [41] evaluated the ratings of apps from
Facebook, Chrome and Google Play, as a means of warning against privacy risks.
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Table 7: Chronological summary of security-related App Store Analysis lit-
erature showing the authors, publication year, store used: g signifies Google
Play or other Android stores, or the Android platform in general, and a signifies
Apple App Store; the type of literature, and the number of apps used in the
study.

Authors [Ref], Year Store Venue No. apps

Blasing et al. [26], 2010 g MALWARE 150
Batyuk et al. [19], 2011 g MALWARE 1,865
Potharaju et al. [177], 2012 g ESSoS 158,000
Moller et al. [164], 2012 g LARGE 1
Chia et al. [41], 2012 g WWW 19,344
Gibler et al. [71], 2012 g TRUST 24,350
Grace et al. [80], 2012 g WiSec 100,000
Crussell et al. [48], 2012 g ESORICS 75,000
Peng et al. [175], 2012 g CCS 500,000
Zhu et al. [252], 2015 g ICICS 5,685
Awang Abu Bakar and
Mahmud [13], 2013

g ACSAT 5,000

Stevens et al. [203], 2013 g MSR 10,300
Book et al. [28], 2013 g CoRR 114,000
Sanz et al. [191], 2013 g Cybernet. Syst. 333
Sanz et al. [193], 2013 g SECRYPT 333
Sanz et al. [192], 2013 g NSS 333
Wang et al. [231], 2013 g DBSec 272,774
Crussell et al. [49], 2013 g ESORICS 265,359
Gibler et al. [72], 2013 g MobiSys 265,359
Peiravian and
Xingquan [174],’13

g ICTAI 1,250

Chakradeo et al. [35], 2013 g WiSec 14,888
Pandita et al. [171], 2013 g SEC 581
Zhu et al. [249], 2013 a CIKM 15,045
Liu et al. [141], 2014 w NSDI 51,150
Crussell et al. [50], 2014 g MobiSys 165,426
Gorla et al. [78], 2014 g ICSE 32,136
Ham and Lee [89], 2014 g IJCCE 10
Bhoraskar et al. [25], 2014 g SEC 1,010
Qu et al. [180], 2014 g CCS 45,811
Zhu et al. [251], 2015 a TKDE 15,045
Schütte et al. [196], 2015 g ConDroid 10,000
Mutchler et al. [163], 2015 g MoST 998,286
Avdiienko et al. [12], 2015 g ICSE 2,866
Ma et al. [143], 2015 g COMPSAC 22,555
Vigneri et al. [218], 2015 g CoRR 5,000
Yang et al. [238], 2015 g ICSE 633
Lageman et al. [122], 2015 g MILCOM 417
Deng et al. [55], 2015 a CCS 2,019
Zhang et al. [242], 2015 g CCS 100
Huang et al. [100], 2015 g SEC 16,000
Chen et al. [37], 2015 g SEC 1,165,847

Mean 106,933
Median 14,888
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They found a strong correlation between popularity and the number of ratings
apps receive, but no correlations between permissions asked and privacy risk,
nor rating. This result shows that ratings are not an effective indicator of the
privacy of apps, and new suspicious apps are not likely to receive many ratings
which could serve as a warning for future users. Moller et al. [164] studied the
update behaviour of users following recent updates, finding from a case study
that approximately half of users did not update their app for at least a week
after the update. The authors argue that this could lead to users continuing to
run vulnerable software even after a fix is available.

Gibler et al. [71] mapped Android API calls to privacy information, and
performed static analysis to identify apps where private data is leaked. Using
their tool, AndroidLeaks, they analysed 24,350 apps from Google Play and
third party stores, and found 2,342 apps with privacy leaks. Crussell et al. [48]
introduced the tool DNADroid, which they used to identify 141 cloned apps in
the Google Play store, from a mined set of 75,000 apps. The authors then
introduced the tool AnDarwin, which decompiles apps and compares their to
detect clones [49]. They detected 4,295 cloned apps using this approach from
a mined set of 265,239 apps. This dataset is used in the study by Gibler et
al. [72], who investigated the effects of application plagiarism on developers.

Peng et al. [175] proposed an app risk rating system trained on metadata
from name, category and set of permissions. The system was trained on a set of
378 malware apps and evaluated on almost 500,000 apps mined from Google
Play. Zhu et al. [252] proposed an approach to malware detection by using per-
mission and description information to detect abnormal permission sets. They
evaluated the system on 5,685 apps mined from Google Play and found some
words that have a large effect on permission validity; they also tested the system
on known malware and found that it was able to successfully detect it as such.

In 2013 Awang Abu Bakar and Mahmud [13] mined 5,000 apps from the
Google Play store and analysed their permissions. They found extremely weak
correlations between (technical) the number of permissions asked for and (non-
technical) the price, download rank and rating. They highlight the top permis-
sions requested by apps, and found that 40% of the apps requested the phone’s
status and identity, a source of sensitive information. Stevens et al. [203] mined
10,300 apps from several Android stores including Google Play and applied the
permissions analysis tool Stowaway [11] that can detect declared and used per-
missions. The authors found that 44% of apps in their sample contained at
least one unnecessary permission, and computed a Spearman’s correlation coef-
ficient of 0.72 between the popularity of permissions on Stackoverflow and their
misuse. Chakradeo et al. [35] created an app malware triaging tool call MAST,
which they trained on known malware and a set of 14,888 apps mined from
Google Play (that are assumed to be benign). Peiravian and Xingquan [174]
trained a malware classifier using 1,250 samples of known malware, and 1,250
samples of benign apps mined from Google Play. They trained the classifier
using information on the permissions requested and the API calls made by the
apps.

Grace et al. [80] introduced AdRisk, a static analysis tool for identifying po-
tential privacy risks associated with ad libraries. From their study on 100,000
apps mined from Google Play, the authors found that 52,067 apps use ad li-
braries, of which 31% use more than one. The authors remarked that the major-
ity of 100 studied ad libraries were found to collect personal information. Book
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et al. [28] studied library permissions on 114,000 apps mined from the Google
Play store, showing libraries bundled with apps lead to old versions being in-
cluded. Increasingly ad libraries take advantage of app permissions presenting
a security risk, which the authors argue should be solved by the app store or
privacy legislation.

Sanz et al. [193] used cosine similarity between the sets of features declared
in Android manifest files, in order to detect anomalies that could be malware
when compared with a benign set. Sanz et al. later trained machine learn-
ing classifiers to distinguish between sets of known malware and 333 benign
apps mined from Google Play [192, 191]. Similarly, Wang et al. [231] proposed
DroidRisk, an app trained on sets of known malware and assumed benign soft-
ware mined from Google Play. DroidRisk rates the security risk of other apps in
order to help prevent users from installing malware unknowingly. Apps mined
from Google Play are assumed benign as Google’s tool Google Bouncer [4] is
run to detect malware and remove it from the store. Zhu et al. [249, 251] mined
ranking, rating and reviewing data from 15,045 apps from the Apple App Store.
They detected outliers using hypothesis tests in order to find potential fraudu-
lent apps. They took a unique approach to the issue with app ranks (only the top
apps in Google Play, Windows Phone Store and Apple App Store have download
ranks), in that they termed the period in which an app has a rank as a ‘leading
event’ and consecutive events as a ‘leading session’.

Pandita et al. [171] presented the WHYPER system for automatically extract-
ing the reason a permission is used from the description. They evaluated the
system using 581 apps mined from Google Play, which were manually labelled
by the authors. The authors tested the system on the permissions address book,
calendar and audio recording, and achieved an average precision of 82.2% and
recall of 81.5%. In a related study, Qu et al. [180] introduced AutoCog, a tool
for checking the fidelity between app descriptions and requested permissions.
The authors tested the system on 45,811 Google Play apps, and achieved a pre-
cision of 92.6% and a recall of 92.0% when detecting 11 permissions. In 2015,
Zhang et al. [242] argued that the descriptions given to apps contain insufficient
security information. The authors presented the DescribeMe system, that gen-
erates security-centric descriptions using static analysis. They performed a user
study using Amazon’s Mechanical Turk [6], on a set of 100 apps, asking whether
the generated descriptions are readable and whether they can reduce the rate
at which users download malware. The generated descriptions achieved a 4%
lower readability rating than the original human-written descriptions, but de-
creased the malware download rate by 39%.

Ravindranath et al. [182] used a sample of apps mined from Windows Phone
Store to run their greybox fault detection tool. They found that 1,138 of the
sample of 3,000 apps had failures. Liu et al. [141] presented their DECAF system
for detecting ad placement and layout violations, which can indicate ad fraud.
They tested the system on 51,150 Windows apps for tablet or phone, and plan
to extend it to detect more types of rule violation. The DECAF system was used
by Microsoft Advertising in 2013 to prompt developers to comply with layout
rules. Crussell et al. [50] presented MAdFraud, a system that detects ad fraud
in the form of requesting ads while the application is in the background, and in
the form of simulating user clicks on ads. They tested the system on 165,426
apps gathered from Google Play and a separate security company, and found
that 30% of apps made ad requests while running in the background, and 27
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apps simulated user clicks on ads.
As a means of detecting potentially malicious apps, Gorla et al.[78] per-

formed topic modelling on app descriptions, and then applied K-means to the
results to form distinct clusters. Utilising API information from the app man-
ifest, the authors trained a one-class support vector machine (SVM) [147] on
each cluster to detect outliers in terms of API usage. This method indicates
which apps are not doing what apps of a similar nature typically do, and could
be used to detect malware. This approach was later extended by Ma et al. [143]
who used known malware and benignware to train their model, and reported
improvements on the resultant precision, recall and F-measure.

Avdiienko et al. [12] extracted information flow data from apps in order to
train a benign-trained malware classifier. The classifier was trained on 2,950 of
the most popular Google Play apps, which are assumed benign as their down-
load rank is in the top 100 in each of 30 categories. In this way, the authors
combined non-technical information (download rank) with extracted techni-
cal information (information flow) to detect malware. The system reported
high precision on sets of known malware from the Genome project [244] and
VirusShare database [220]. In a similar way, the 2013 study by Sanz et al. [191]
trained machine learning classifiers to separate known malware and benign
apps mined from Google Play. The 2014 study on identifying malicious apps
using system call events, by Ham and Lee [89], also used apps from the Google
Play Games category as a benign set.

In 2015 Schütte et al. [196] tested their dynamic analysis tool ConDroid
on the top 10,000 free Google Play apps and found 172 apps suffered from
a logic bomb vulnerability, by selectively executing code sections that use vul-
nerable APIs. Mutchler et al. [163] took a snapshot of 1,172,610 Google Play
apps. They found that 998,286 of these apps used WebView, indicating that the
apps use an embedded WebView in some way. The authors searched for several
known vulnerabilities and found that 28% of the studied apps had at least one
of these vulnerabilities. As a result, the authors propose a set of API changes
to mitigate such threats. In a similar study Bhoraskar et al. [25] mined 1,010
apps from Google Play and used static analysis and partial app rewriting to
check for known security issues in third party components. They found 13 of
200 apps using Facebook SDK are vulnerable to known attacks, and 175 of 220
children’s apps potentially collect information in violation of the US Children’s
Online Privacy Protection Act [44].

Vigneri et al. [218] used a set of 5,000 apps mined from Google Play, on
which they performed dynamic execution to determine network usage. They
focused, in particular, on network activity to URLs which could present privacy
or security risks, such as those associated with tracking, spyware or malware.
Network activity was compared both within category and overall in order to de-
termine apps with suspiciously high activity. The authors noted that a large pro-
portion of apps, even those with high ratings and download ranks, downloaded
a large number of advertisements. Yang et al. [238] used 633 apps mined from
Google Play as the benign set to test their tool for distinguishing between mali-
cious and benign apps. They found that the intent of security accesses is more
related to whether an app is malicious than the type of security-sensitive re-
sources that it accesses. Lageman et al. [122] generated feature sets to be used
for classification of malware and benignware, from runtime log datasets of 419
malware apps and 417 mined benign apps. They tested the feature set and
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achieved a true positive rate of 90% with a Random Forest classifier [75].
Deng et al. [55] introduced their iRiS system, which performs static analy-

sis on iOS apps in order to detect suspicious apps that may violate Apple’s terms
of service. The authors detected 146 apps from a sample of 2019, that accessed
sensitive user information through use of private APIs. Huang et al. [100] pre-
sented their SUPOR system, which detects privacy information entry fields as
potential privacy or security risks using static analysis. They evaluated the sys-
tem on 16,000 apps mined from Google Play, obtaining a precision of 0.973
and a recall of 0.973, with a false positive rate of 0.087. The cases of entry
fields found include national ID, username, password, credit card and health
data. In the largest app study to date, Chen et al. [37] ran their DiffCom sys-
tem on 1,165,847 apps mined from Google Play and third party Android stores.
DiffCom detects malware, including zero-day malware, without prior knowl-
edge of malware, using a simple comparison with known apps in the corpus.
The system was tested on a sample of 50,000 apps and achieved a false positive
rate of 0.04 and false negative rate of 0.06, and when run on the entire dataset,
detected 127,429 instances of malware and 20 likely instances of zero-day mal-
ware.

App security has been well studied in the literature, and perhaps warrants
a survey of its own. There are a host of studies into mobile app security that
use app stores in a less direct way than those discussed in this section, some of
which are mentioned in Section 13.2. There is potential future work in this area
in augmenting approaches with the non-technical information made available
by app stores.

10 Store Ecosystem

In this section we discuss literature that focuses on a store’s ecosystem, or the
differences between stores. This literature is summarised in Table 8. There are
potential research opportunities to be found comparing stores, especially con-
cerning the Windows Phone Store, which has taken off slowly but continues to
grow. The scale of studies in this section is small, ranging between 0 and 10,150
apps, with a median of just 15. It is therefore also an opportunity to expand on
the scale of the discussed studies, in order to negate any bias introduced by the
small datasets used so far.

In 2011, Syer et al. [205] studied the different code practices between app
stores, by selecting 3 pairs of feature-equivalent apps from Android and Black-
berry. The authors analysed the source code, code dependencies and code churn
of these apps, and found that Android apps are generally smaller but rely heav-
ily on the platform. Conversely, Blackberry apps are larger and rely heavily on
3rd-party APIs. In order to reach the largest customer base developers need to
cater for each platform, and so the authors remarked that it is therefore easier
to develop for Blackberry and port to Android than the reverse.

In 2013 McDonnell et al. [151] studied 10 apps using source code from
github [74]. The Android platform was shown to be evolving fast with an av-
erage of 115 API updates per month, due to which 28% of Android references
were out of date, and the median lag time to update to support a new API was
found to be 16 months. The APIs used most were the ones updated most fre-
quently, yet interestingly API updates are more defect prone than other changes
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Table 8: Chronological summary of store ecosystem-related App Store Anal-
ysis literature showing the authors, publication year, store used: g signifies
Google Play or other Android stores, a signifies Apple App Store, b signifies
the Blackberry store and w signifies Windows Phone; publication venue, and
the number of apps used in the study. Numbers in the table indicate empirical
app data mined from stores, (*) signifies 500,000 simulated apps, (**) signifies
1,250,000 simulated apps, and (***) signifies over 500 simulated apps (final
values were not specified by the paper’s authors); only empirical data is consid-
ered for mean and median.

Authors [Ref], Year Store Venue No. apps

Syer et al. [205], 2011 b,g SCAM 3
d’Heureuse et al. [57], 2012 a,b,g,w MCCR 1,164,489
Jung et al. [111], 2012 a Market Lett 1,189
Garg and Telang [70], 2013 a MIS 1,223
Lim and Bentley [129], 2012 a GECCO *
Lim and Bentley [128], 2012 a ALIFE *
Lim and Bentley [130], 2013 a CEC *
Zhong & Michahelles [243],’13 g SAC 191,301
Petsas et al. [176], 2013 g IMC 316,143
Syer et al. [207], 2013 g CASCON 15
McDonnell et al. [151], 2013 g ICSM 10
Cocco et al. [42], 2014 a MWIS ***
Wenxuan and Airu [234],’14 a,g,w ICDMW 736,377
Ng et al. [167], 2014 g COMPSAC 506
Liu et al. [139], 2015 g WSDM 6,157
Ruiz et al. [158], 2015 g IEE Soft. 10,150
Joorabchi et al. [110], 2015 a,g ISSRE 14
Gómez et al. [76], 2015 g ICSE NIER 1
Askalidis [10], 2015 a CoRR 162
Xie and Zhu [236], 2015 a WiSec 179,353
Corral and Fronza [45], 2015 g MOBILESoft 100
Lim et al. [131], 2015 a TEVC **

Mean 144,844
Median 848
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in client code. Syer et al. [207] later compared development practices between
15 Android apps and 5 traditional desktop and server applications. They found
that mobile apps are most similar to Unix utilities, in terms of smaller code
bases and small development teams. However, mobile apps suffer from greater
numbers of defects and slower fix times than the studied traditional applica-
tions.

In 2012 d’Heureuse et al. [57] mined 1,164,489 total apps from Apple,
Blackberry, Google and Windows app stores at regular intervals over a period of
3 months, in order to perform cross store comparison and also to study growth
over time. The authors found that although Google and Apple are much larger
stores, Blackberry and Windows show rates of new apps and removed apps, and
Google has twice the rate of app deletion of other stores. Google also showed a
higher growth rate, and so the authors predicted that it would overtake Apple
in total apps in February 2013. The smaller stores (Blackberry and Windows)
were found to be the most expensive, and all stores displayed a similar power-
law curve in price, with many cheap and free apps. Apps that appear in multiple
markets were on average 7.15 MB larger in the Apple store, and were a similar
size in the 3 other stores. Jung et al. [111] assessed the differences between
free and paid apps on Apple’s Korean App Store. They found that customer rat-
ings are more critical to the survival of free apps, and there is also more benefit
to getting an early entrant in markets.

Lim and Bentley simulated the app store ecosystem using an agent-based
evolutionary model, in order to experiment with different publicity strategies [129,
128], modelling apps with infectious properties, so that they can spread after
being downloaded by a user. They found that an ‘app epidemic’ is most likely
to occur if the app appears on the ‘new apps’ chart. The authors then used the
model to explore different ranking algorithms [130]. The study simulated users,
and experimented with alternating time periods for updating the “new apps”
chart, and the degree to which historical performance factors into the “top apps”
chart. The study found that the top apps chart performs best in terms of overall
downloads by incorporating fresh apps, and for this to work it needs to incor-
porate less historical performance data (also found later by Ruiz et al. [158]).
This study is unique and provides useful findings for app store maintainers. Lim
et al. later simulated the ecosystem from a user’s perspective [131], using col-
lected usage information from over 10,000 participants [127]. They modelled
developer strategies such as ‘innovator’ (who produces apps with random fea-
tures) and ‘copycat’ (who copies the app) [131]. They found that ‘optimiser’
(who improves on the original ‘innovator’ apps) and ‘copycat’ working together
led to the best overall fitness, provided they represented a low proportion of the
overall modelled developer population.

Cocco et al. [42] extended the model used by Lim and Bentley, and inves-
tigated additional ranking algorithms and user behaviour. They explored store
ranking algorithms, and found that a 1% chance of a new app appearing in the
top charts leads to the highest downloads-to-browse ratio. Apps in Google Play
do not have accessible information on their number of downloads, other than
‘buckets’, such as the range 50-100. Zhong and Michahelles [243] analysed
the distributions of download buckets and ratings of 191,301 apps from Google
Play. They found that a small number of popular ‘blockbuster’ apps account for
the majority of app downloads, and also have high ratings indicating customer
satisfaction. Paid apps achieved more success if they were cheaper, but expen-
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sive professional apps have disproportionally high numbers of downloads. The
authors conclude that developers can break into the top downloads numbers by
fulfilling a niche market.

Petsas et al. [176] analysed the downloads of 316,143 apps from 4 third-
party Android app stores. They found that 10% of the apps account for at least
70% of the total downloads in the stores, and that user downloads follow a
clustering type behaviour, where their subsequent app downloads are usually in
the same category. The authors also found that popularity follows a power-law
distribution against app price, for paid apps. Garg and Telang [70] compared
paid app demand in the Apple App Store, using download ranks. They found
that the top ranked paid app is downloaded 120-150 times more than the 200th
ranked app. Ng et al. [167] looked into the safety of third-party Android stores
by downloading the top apps from Google Play and 20 other third-party Chinese
Android app stores. They compared the APKs to check if they are the same as
the official, and ranked the severity level of differences. The authors concluded
that the third party app stores studied cannot be trusted, as the proportion of
apps which do not match their official releases is high, as are the corresponding
difference severity levels.

In 2014 Wenxuan and Airu [234] used information on the number of down-
loads and numbers of reviews, as well as the numbers of apps downloaded by
and reviewed by participating users. This data was used as part of a recommen-
dation system called Interoperability-Enriched Recommendation (IER), which
enables them to recommend similar apps to a user in the Windows Phone Store
using data mined from 736,377 Google Play, Apple App Store, and Amazon App
Store apps. Liu et al. [139] also studied app recommendation systems, by incor-
porating the level of privacy that the app needs as well as user interests. They
evaluated their approach using 6,157 apps mined from Google Play, and found
that their recommender performed better when treating each app function with
different privacy allowances. They use the rating distribution over their dataset
as the motivation for modelling user preference with a Poisson distribution.

In 2015 Ruiz et al. [158] conducted a longitudinal rating study on 10,150
apps over the period of 12 months. They argue that the Amazon style rating
system, in which ratings are accumulated over the lifespan of an app, is too slow
to adapt to changes in apps, whose performance is determined by the current
release. As it stands, the Google Play rating system makes it more difficult for
an app to increase its rating with a strong release than, for example, the Apple
App Store rating system. Askalidis [10] studied the effects of sales promotions
in the Apple App Store on 162 apps, finding that rival apps can benefit from
the promotion if the apps are not reduced to become significantly cheaper than
them, and that sales where apps become free, or have easily redeemable digital
discounts are the most successful. Sales are shown to have mixed effects on
the ratings of apps. Joorabchi et al. [110] introduced CheckCAMP, a tool that
checks for inconsistencies between Android and iOS versions of the same app.
The authors tested the tool on 7 open source apps and 7 industry apps, and
validated their results with a user study, finding an F-measure of 1.0 on the
open source apps and an F-measure of 0.92 on the industry apps.

Gómez et al. [76] proposed an app store feature of automatically patching
defective apps, which they demonstrate by automatically fixing a defective app
mined from Google Play. Xie and Zhu [236] investigated the practice of promot-
ing apps through buying positive reviews, via illicit “underground” services. The
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Table 9: Chronological summary of App Store Analysis literature related to
size and effort prediction showing the authors, publication year, publication
venue, and the number of apps used in the study.

Authors [Ref], Year Venue No. apps

Sethumadhavan [199],’11 ISMA 6
Preuss [178], 2012 The IFPUG Guide to IT &

Software Measurement
1

Preuss [179], 2013 ICEAA 1
van Heeringen and van
Gorp [214], 2014

IWSM-MENSURA 0

Abdullah et al. [1],’14 ICOS 0
D’Avanzo et al. [53],’15 SAC 8
Francese et al. [65],’15 SEAA 23
Ferrucci et al. [62],’15 SEAA 13
Ferrucci et al. [63], 2015 PROFES 13

Mean 7
Median 6

authors registered on 8 such app promotion sites and exposed approximately
30,000 promoted apps. Their tool, AppWatcher was used to collect information
from 179,353 randomly selected iOS apps, from which they mined 9,399,014
reviews. The authors reported on differences between datasets of promoted
and random apps. Corral and Fronza [45] studied 100 open source apps that
are available on the Google Play store. They performed correlation and regres-
sion analyses between source code quality metrics and the store performance
metrics number of downloads, number of reviewers and average rating. The au-
thors found no strong correlation and no strong regression coefficients, rejecting
their initial hypotheses that source code quality plays a role in app success.

11 Size and Effort Prediction

Papers that predict size or effort based on the functionalities offered by an app
are discussed in this section, and are summarised in Table 9. Many of the papers
mine apps from Google Play, and compare the resultant predicted size with the
actual size reported in the store and/or LOC (number of Lines Of Code) of
the apps. The scale of studies up to November 27, 2015 is relatively small
compared with other sections of App Store Analysis, but as the field has shown
strong growth in 2015, it seems likely that the scale of studies will increase in
the future.

In 2011 Sethumadhavan [199] discussed the application of Function Point
Analysis (FPA) to Android applications, pointing out that compared with tradi-
tional desktop applications, mobile apps contain limited functionality, and of-
ten functionality is merely a wrapper to system functionality. Preuss [178, 179]
then showed how FPA can be used for the estimation of the cost of a mobile
app, using the approach on a case study Android application.

In 2014 van Heeringen and van Gorp [214] discussed how to use the COSMIC
method [46] to measure the functional size of apps. Abdullah et al. [1] dis-
cussed using the COSMIC method to estimate game apps, using an intermediate
representation of required assets and functionality in the Unity3D game engine.

38



2015 saw more much more work in this area. D’Avanzo et al. [53] ap-
plied the COSMIC approach to 8 Google Play apps, and applied linear regression
to the functional point size in order to estimate the code size. By applying
leave-one-out cross validation, the authors showed that the approach can accu-
rately estimate code size based on functionality alone, once trained. Francese
et al. [65] used linear regression to estimate the development effort needed,
and the number of GUI components, based on requirements alone. The authors
found from a study on 23 Android applications that the estimates were accurate
when trained on source code metrics such as classes, files and LOC. Ferrucci
et al. [62] applied the COSMIC approach to 13 Android applications, showing
that functional size is strongly correlated with app size, and that it can be used
to accurately estimate the bytecode size of the app. Ferrucci et al. [63] later
compared the related approaches by D’Avanzo et al. [53] and van Heeringen
and van Gorp [214] on their dataset of 13 Android apps. They found that both
functional size results were correlated with multiple app size measures, but that
the approach presented by D’Avanzo et al. [53] was more accurate.

12 Other sources of non-technical information

There are sources of non-technical information that replicate information found
on app stores, but provide a more accessible means to gather the data. For ex-
ample, the study by Syer et al. [206] uses information on the number of down-
loads from AppBrain, a replication of the number of installs bracket on Google
Play (eg. 1,000,000 - 5,000,000 installs appears on AppBrain as 1,000,000+).
Ihm et al. [105] combined download information on 10 social networking apps
from Google Play with the number of registered users on their respective web-
sites. They unsurprisingly found a strong correlation between the two metrics.

13 Closely Related Work

The following literature is important to the field of App Store Analysis, yet itself
does not meet our exact definition of App Store Analysis. Nevertheless, since
this work meets aspects of our definition we regard it as closely related. We
do not claim to comprehensively survey this literature, but provide it to add
context to the App Store Analysis literature discussed thus far in the survey.

13.1 User Surveys and Studies

There is a cross section of App Analysis studies which survey or study user
behaviour and feedback, but the information is not specific to observed apps,
and is therefore not combined with technical information. These studies are
important to the field of App Store Analysis and so are included here.

In 2011 Böhmer et al. [27] studied 4,100 Android users for app usage statis-
tics. This was done using AppSensor, an application that monitors the usage
of other apps on an Android device. They found that the average application
usage session is less than 72 seconds long, and that smartphones are used for al-
most 60 minutes every day. The type of application was found to differ between
times of day, such as news applications in the morning and games at night. The
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exception to this rule was communication apps, which are used throughout the
day.

In 2012 Ferreira et al. [61] surveyed 4,035 Android user charging habits,
using an app to record their behaviour. Lin et al. [132] conducted a survey on
179 Android users, that asked about their expectations of app’s purpose and
sensitive data handling. They found that the problem of apps not meeting ex-
pectations or utilising sensitive data unexpectedly was prevalent, and outlined
potential store interface changes to rectify the issue. Rein and Münch [183]
carried out a user study involving mock purchasing for planned app features, in
order to determine both the priority and ideal pricing for the features. In 2013
Oh et al. [168] surveyed 100 app users and found that users are more likely to
take a passive approach and delete apps rather than reviewing or contacting de-
velopers, but when they take an active approach, reviewing is the most popular
approach. In 2014 Tan et al. [208] surveyed users and developers of the Apple
App Store, regarding the iOS permission request explanation feature. The fea-
ture is infrequently used, but the survey found that users would be significantly
more likely to accept a permissions request if an explanation was given.

In 2015 Lim et al. [127] surveyed app users from 15 countries to understand
how usage of apps and app stores differs by region. They found that behaviour
does differ significantly by region in many regards. In Eastern regions such
as China and India a greater proportion of users participate in recommendation
and rating of apps, almost 4 times the proportion of Western users. Additionally,
the survey finds that app abandonment due to issues is higher than average in
Brazil and the UK, and lower than average in Japan and France, indicating that
differences are affected by more than global region. It is a unique study as it
gathers user information regarding multiple app stores across a large number of
global app users: the focus is on usage, not on apps, yet the authors identified
actionable findings for app developers.

13.2 Related Security

We present some of the key app security studies that do not perform App Store
Analysis, but that influenced some of the papers described in Section 9.

Enck et al. [59] introduced Kirin, an Android app certification tool for flag-
ging potential malware using a set of rules. In 2010 Enck et al. introduced
TaintDroid [58], a tool for tracking the flow of sensitive information within an
Android app. TaintDroid was one of the first static analysis tools for Android
and was built on extensively in subsequent work. Another information flow ex-
traction tool was created by Arzt et al. [9] in 2014, called FlowDroid. This tool
statically analyses information flow to find all possible flows.

Some authors have used sets mined from Google Play as benign app sets
to test against known malware: Xu et al. [237], Rastogi et al. [181], Jing et
al. [108], Arp et al. [8], Wang et al. [230], Liu and Liu [142], Roy et al. [185]
and Khanmohammadi et al. [118]. Ho et al. [95] used the top 10 most popular
apps in each category as a benign set, upon which to test their framework for
root kit exploit containment.

Other authors have used sets mined from app stores to test their tools on
large real-world datasets: Barrera et al. [16], Jeon et al. [106], Grace et al. [81],
Crussell et al. [48, 49], Ravindranath et al. [182], von Rhein et al. [223], Li et
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al. [125], Huang et al. [101], Cen et al. [32], Liu et al. [140] and Bastani et
al. [18].

13.3 Reports

Initial studies such as the 2010 work by Sharma et al. [201] evaluated the size
and growth of the apps market up to the time. In 2011 Butler [30] conducted
a study on the Android system, highlighting how it is changing mobile devel-
opment by enabling people with no prior development experience to release an
app. In 2012 Shuler [202] published a report on the Apple App Store Education
category, comparing it with their previous study in 2009. They found that over
72% of the top-selling apps in this category target children aged 10 or below,
a number that has significantly increased from 47% in 2009. Additionally, the
average price of an app had risen by 1 USD since 2009, and the majority of top
Education developers in 2012 had not been present in 2009.

The 2013 report by Vision Mobile [221] on app industry monetary value and
growth found that 72% of developers are dedicated to Android. iOS and An-
droid developers earn on average double that of developers of other platforms,
and iOS is considered the highest priority platform. As of 2013, iOS, Android
and Blackberry were the leading platforms, despite Blackberry’s increasing de-
cline, and the launch of the prospect Windows Phone Store in late 2010. Vision
Mobile have released yearly reports since 2012 on aspects such as developer
share, industry revenue and growth. The organisation gathers information by
surveying developers worldwide.

13.4 Mining Tools

Due to the plethora of analysis and research opportunities presented by app
store data, and indeed also due to the difficulties involved with mining app
stores, several mining tools have been published.

In 2013, Awang Abu Bakar and Mahmud [15] published OSSGrab which
mines HTML pages from Google Play. The tool was built in order to facilitate their
app permissions study [13]. In 2014, Viennot et al. introduced the PlayDrone

Google Play crawler [216], to facilitate their large scale API study [217].
The Android Malware Genome Project [244] is a popular source of malware

applications for testing security tools. In 2015 Krutz et al. [121] made available
a dataset containing 1,179 open source applications.

14 Future Work

We expect to see the scale of app samples used increase in the years to come,
as app stores increase in scale. Google Play and Apple App Store have both
exceeded 1.5 million apps, and already there are studies featuring over 1 mil-
lion apps. We also expect to see more longitudinal studies: the sub-fields for
prediction and release engineering studies lend themselves particularly well to
longitudinal data, and both of these fields grew in 2015. An avenue for future
research concerns the extraction of non-technical information from app stores,
and extracting samples of apps whilst dealing with the App Sampling Problem.
Cross-store studies are also an avenue for future research: few studies have
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compared multiple app stores, yet there is potential to learn the differences be-
tween dominant stores, and lesser known or fledgling stores. For discussions on
future avenues of research in software engineering for mobile apps, we refer the
reader to the works by Al-Subaihin et al. [3], and Nagappan and Shihab [165].

15 Conclusions

We have surveyed the published literature in App Store Analysis for software
engineering, and identified the key sub-fields of App Store Analysis to date: API
analysis, feature analysis, release engineering, review analysis, security analy-
sis, store ecosystem comparison, and analysis of size and effort prediction. The
four largest fields are API, feature, review and security analysis, but release en-
gineering and prediction have shown strong growth in 2015 and may outgrow
other sub-fields in the future. The scale of app samples used in studies has in-
creased: in 2015 the number of studies using between 10,000 and 100,000 apps
was approximately three times that of 2014. We have observed the emergence
of new areas of App Store Analysis, and the progression from conceptual ideas
to practical empirical studies that apply and refine them.
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