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Abstract

App developers would  like to know the characteristics of  app releases that  achieve high
impact. To address this, we mined the most consistently popular Google Play and Windows
Phone  apps,  once  per  week,  over  a  period  of  12  months.  In  total  we  collected  3,187
releases, from which we identified 1,547 for which there was adequate prior and posterior
time  series  data  to  facilitate  causal  impact  assessment,  analysing  the  properties  that
distinguish  impactful  and  non-impactful  releases.  We  find  that  40%  of  target  releases
impacted performance in the Google store and 55% of target releases impacted performance
in the Windows store. We find evidence that more mentions of features and fewer mentions
of bug fixing can increase the chance for a release to be impactful, and to improve rating.
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1 Introduction

The motivation for our study derives from the need
for developers to understand the impact of their re-
leases [9, 12, 17, 18, 21, 28, 36]. The high release fre-
quency in app stores, and the correlation between per-
formance metrics and revenue that accrues to developers
from those releases, can lead to the adoption of rapid
release strategies. Such strategies can offer significant
benefits to both developers and end users [28], but high
code churn in releases can correlate with decreased rat-
ings [17]. Releases can happen for a number of reasons
such as updating advertisement libraries [18], or stimu-
lating performance [9], in addition to more traditional
bug fixes, feature additions and interface improvements.
Developers may even find certain days of the week can
stimulate performance more than others [12, 21]. McIl-
roy et al. [36] studied update frequencies over 7 weeks in
the Google Play store, finding that 1% of apps received
updates more than once per week, and 14% of the stud-
ied apps were updated in a two-week period. They found
that rating was not affected by update frequency.

In this study, we record time-series information about
apps, and identify how release frequency can affect an
app’s performance as measured by rating, popularity
and number of user reviews. We identify the set of
‘impactful’ releases, that statistical evidence suggests
caused a significant change in one of their app’s per-
formance metrics, compared with a baseline set of non-
releasing apps. We then analyse the characteristics of
these highly impactful app releases, in order to under-
stand the properties under developer control which could
lead to releases impacting performance.

We use Causal Impact Analysis [6], a form of causal
inference [22, 33], in order to identify those releases that
are significantly likely (p ≤ 0.01) to have changed an
app’s rating, download rank or user reviewing frequency.
Causal inference is primarily used in economic forecast-
ing, for measuring or predicting the effect of an event
on time-series data, but it has also seen recent use for
software defect prediction [10, 11, 53].

We use information retrieval to investigate the top
terms and topics that occur in the release text of highly
impactful releases, and also investigate the overall effects
of release frequency and release interval on app perfor-
mance. Our results provide actionable findings for de-
velopers in Google Play and Windows Phone stores, and
are also likely to apply to other app stores.

To facilitate this study, we collected data over a 52
week time period concerning the most popular apps in
the Google Play and Windows Phone app stores. We set
the time interval between which we collected snapshots
of the two app stores to one week; since only 1% of apps
release more frequently than once per week, and these
have been studied in detail by McIlroy et al. [36], our
collection interval seems representative of the majority
of releasing behaviours of the studied apps. We are in-
terested in investigating evidence that release behaviour
has an impact on app performance, in order to determine
whether developers’ release behaviour is justified. Hith-
erto, it is unknown whether particular strategies have an
impact on subsequent app performance, making findings

that characterise these impacts important for software
engineers.

Our contributions are as follows:
i) We find that 40% of target releases are impactful in
Google and 55% are impactful in Windows.
ii) We find that impactful releases had proportionally
fewer mentions of (bug, fix) in their release text than
non-impactful releases: 33% to 38% in the Google store
and 44% to 48% in the Windows store.
iii) We find that releases that positively impacted rat-
ing had proportionally fewer mentions of (bug, fix) than
those that negatively impacted rating: 29% to 33% in
the Google store and 38% to 43% in Windows store, and
more mentions of (new, feature): 30% to 25% in Google
store and 55% to 39% in Windows store.
iv) Our results indicate that Causal Impact Analysis is
useful for identifying impactful releases for further anal-
ysis.

2 App Metrics Collected

The questions we ask involve recording changes to apps
and changes in their performance. In order to assess
performance, the following app-level metrics are used:

(R) Rating: The average of user ratings made for the
app since its first release on the store.

(D) Download rank: Indicates the app’s popularity,
although specifics of the calculation of download rank
vary between app stores and are not released to the
public. The rank is in descending order. That is, it
increases as the popularity of the app decreases: from
a developer’s perspective, the lower the download rank,
the better. We report download rank as-is in box plots,
but in tables indicating positive or negative gains for
metrics, we report decreases in the download rank as
positive (and increases as negative), since decreases cor-
respond to benefit to the developer.

(N) Number of ratings: The total number of ratings
that the app has received.

(NW) Number of ratings per week: The number
of ratings that the app has received since the previous
snapshot, which is taken a week earlier.

The following metrics are under developer control:

(P) Price: The amount a user pays for the app in GBP
in order to download it. This value does not take into
account in-app-purchases and subscription fees, thus it
is the ‘up front’ price of the app.

Version identifier: An app release occurs when an app
snapshot has a different version identifier for the released
app compared to the previous snapshot.

(RT) Release text: The app’s description (if changed)
and the ‘what’s new ’ section of the app store for that app
(if changed).

3 Research Questions

This section explains the questions posed in our study
and how we approach answering them.
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RQ1: Do app metrics change over time?

Before performing detailed analysis of the changes over
time, we first set a baseline by establishing whether app
performance metrics change between snapshots. Using
the metrics R, D, N and NW as defined in Section 2, we
compute their standard deviation over 52 weeks for each
app, and draw them on box plots. This enables us to
establish whether metrics change over time, and to what
extent this occurs. If the metrics do change over time,
it motivates further analysis of events that could cause
changes over time, specifically releases.

RQ2: Do release statistics have a correla-

tion with app performance?

We measure whether app performance is affected by the
number of app releases by measuring the correlation be-
tween performance metrics and the number of releases
in 52 weeks, as well as the change in metrics over 52
weeks.
RQ2.1: Does the number of releases have a

high correlation with app performance? We per-
form correlation analysis between the number of releases
of each app and their current value for the metrics R, D
and N. We do not use NW because this number is set
on a per-week basis, but instead use the change in R, D
and N from the first snapshot to the last, denoted ∆R,
∆D and ∆N respectively.
RQ2.2: Does the median time interval be-

tween releases have a correlation with app per-
formance? We perform correlation analysis between
the median interval between multiple releases of each
app and the metrics used in RQ2.1. For this, only apps
which have releases in the time period are used.

RQ3: Do releases impact app perfor-

mance?

There are two limitations to correlation analysis. Firstly,
correlation analysis seeks an overall statistical effect in
which a large number of apps and their releases partici-
pate. However, it may also be interesting, from the de-
velopers’ point of view, to identify specific releases that
have an atypically high impact, compared to the ‘back-
ground’ behaviour and characteristics of the app store as
a whole; general correlation analysis is not well-suited
to this more specific question. Secondly, of course, as
is well-known any correlation observed does not neces-
sarily imply the presence of a cause (correlation is not
causation). Therefore, even were we to find strong cor-
relations, this would not, of itself, help us to identify
causes. This motivates our use of causal impact analy-
sis. We apply the causal impact analysis on each target
release to see if it caused a significant change in any of
the app-level performance metrics R, D, N or NW de-
fined in Section 2. Causal impact analysis is described
in Section 4.3.
RQ3.1: What proportion of releases impact

app performance? We compute the proportion of
apps whose releases have affected performance, and the
proportion of overall releases.

RQ3.2: How does the causal control set size af-
fect results? Causal impact analysis requires a control
set (in our case, a set of apps that have zero releases
in the period studied). As the set of potential mem-
bers of the control set is different in size between Google
and Windows, we carry out experiments to assess how
much control set differences could influence the results.
Our approach is similar to the experiment using differ-
ent control sets in the study by Brodersen et al. [6]. We
compute the causal impact analysis results for each met-
ric for a sample of 100 target releases in the Windows
dataset, using control sets of size 100, 200 and 397, the
smaller of which are randomly sampled from the maxi-
mum possible set of 397 non-releasing apps.

RQ4: What characterises impactful re-

leases?

We use the causal impact analysis results from RQ3 to
analyse impactful and non-impactful releases.
RQ4.1: What are the most prevalent terms in

releases? We pre-process the release text from all re-
leases in a given store as described in Section 4.4, then
identify the ‘top terms’ (most prevalent) for each set of
releases using two methods: TF.IDF [34] and Topic
Modelling [4].
We train both methods on the release text corpus,

treating each instance of release text as a document.
Each store is treated separately for training and evalu-
ation, to prevent combining store-specific vocabularies.
For both methods, we sum the resultant scores (proba-
bilities) for terms (topics) over each set of releases. We
restrict ourselves to only the top three terms to avoid
over specialisation.
The topic model is trained using 20 topics in each

case. We chose 20 topics for two reasons: i) the number
of documents in each corpus is between 1000 and 2000,
each consisting of tens to hundreds of words, which is
by no means a large corpus; ii) we wish to generalise, to
avoid training topics that are relevant to certain apps or
releases. The choice of 20 topics allows us to generalise
and easily inspect each of the trained topics, without
much risk of training a topic that is overly specific to an
app or release.
RQ4.2: How often do top terms and topics oc-

cur in each set of releases? We compute the counts in
each set of releases that contain top terms from TF.IDF
and topic modelling, as identified from RQ4.1. We ap-
ply a bag-of-words model, which ignores the ordering of
the words in each document. This eliminates the need
to check for multiple forms of text that is discussing the
same thing.

4 Methodology

This section describes the methods used in our study.

4.1 Data Mining

The download rank is unavailable for apps outside the
‘top’ free or paid lists for both Windows Phone and
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Google Play app stores. For Google Play, this infor-
mation is available for only the most popular 540 free
and 540 paid apps, while for Windows Phone, download
information is available for only the most popular 1000
free and 1000 paid apps.

We therefore mined apps from the Google Play and
Windows Phone stores (on a weekly basis), recording the
most popular 540 free and 540 paid apps from Google,
and top 1000 free and 1000 paid apps from Windows.
The time period we considered was from July 2014 to
July 2015, giving 52 snapshots for each of Windows
Phone and Google Play. In order to focus solely on the
consistently popular apps, we computed the intersection
of 52 snapshots. This resulted in 307 consistently popu-
lar (i.e. always within the top 540) Google apps, and 726
consistently popular (i.e. always within the top 1000)
Windows apps. These 1,033 apps are those studied in
this paper.

Our conclusions thus concern the effect of releases on
the most consistently popular apps over a period of the
year (July 2014 to July 2015), and care will be required
before the results could be extended to apps and their
releases more generally, due to the App Sampling Prob-
lem [35]. Nevertheless, we believe that conclusions about
the characteristics of impactful releases for the most con-
sistently popular apps will yield interesting and action-
able findings for developers, because consistently pop-
ular apps are an inherently developer- attractive and
interesting subset of app stores.

We extract app metrics from each of the 1,033 apps
including price, rating, download rank, number of rat-
ings, description, what’s new and version. In the case
of Google Play, the app store reports rounded app rat-
ings (rounded to 1 decimal place), thereby creating a
potential source of imprecision, which we would like to
overcome. To improve comparability between the two
app stores, we would also like to ensure that ratings are
computed to the same precision. Therefore, we recal-
culate the (more precise) Google Play average ratings,
using the extracted numbers of ratings in each of the five
star ratings (from 1-5).

4.2 Explanation of the Frequentist In-

ferential Statistical Analysis Tech-

niques Used

We use correlation analysis in order to understand cor-
relations between the observed app metrics and both the
quantity and interval of their releases.

However, since it is well known that ‘correlation does
not imply causation’, we further investigate the impact
of releases using causal impact analysis (explained in
more detail in Section 4.3). We follow up the causal
impact analysis with a nonparametric inferential statis-
tical analysis, to provide further evidence as to the rela-
tive likelihoods that each of the app properties observed
plays a role in the causal impacts detected by causal
impact analysis.

This subsection explains the role played, in our over-
all analysis, by traditional frequentist inferential statis-
tical techniques (with which software engineers are most

likely to be already familiar), while the following sub-
section explains causal impact analysis (which is com-
paratively less widely used in the domain of software
engineering [6, 11, 10, 33, 53]).
In RQ2 and RQ4 we use Pearson and Spearman statis-

tical correlation tests. Pearson introduced the measure-
ment of linear correlation [41], while Spearman subse-
quently extended Pearson’s work to include rank-based
correlation [46]. Pearson’s technique measures the lin-
ear correlation between two paired vectors of data, while
Spearman’s technique extends this to rank-based corre-
lation.
Each correlation metric reports a rho value and a p

value. The p value denotes the probability that a rho
value is different to zero (no correlation). A rho value
of 1 indicates perfect correlation, while -1 indicates per-
fect inverse correlation, and 0 indicates no correlation.
Values between 0 and 1 (-1) indicate the degree of cor-
relation (inverse correlation, respectively) present.
In RQ3 and RQ4 we also compare distributions using

a two-tailed unpaired non-parametric Wilcoxon test [51],
that tests against the Null-hypothesis that the result
sets are sampled from the same distribution. We also
compare the result sets using Vargha and Delaney’s Â12

effect size comparison test [50], which results in a value
between 0 and 1, that tells us the likelihood that one
measure will yield a greater value than the other.
In our case, we apply these inferential statistical tests

to examine differences in properties between the sets of
releases that have demonstrated a causal impact (using
causal impact analysis) and those which have not, as well
as between the sets of releases that positively impacted
rating and those that negatively impacted rating. The
p value is the probability that we would observe the dif-
ference in median values we find, given that there is, in
fact, no difference in the two distributions from which
the releases are drawn. It is a conditional probability,
usually used to reject the null hypothesis (that there is
no difference).
However, in our case, a prior causal impact analysis

has revealed that there is some causal difference between
the two sets, yet it remains unknown what this cause
is. Causal impact analysis does not fully overcome the
problem that ‘correlation is not causation’, but it does
provide greater evidence for causal impact (in our case
causal impact of a release). Therefore, the p value can
be interpreted as an indication of the relative likelihood
that the property tested is one of the influencing factors
in the causal impact already detected by causal impact
analysis. As such, we are not looking for statistical sig-
nificance (seeking a p below some arbitrary predefined
threshold). Instead, we use the relative probabilities of
rejecting the null-hypothesis as an indicator of the rela-
tive likelihood that each of the properties tested plays a
role in the causal impact detected.
Since we are computing multiple p values, the reader

might expect some kind of correction, such as a Bon-
ferroni or Benjamini-Hochberg [3] correction for multi-
ple statistical testing at the (traditionally popular) 0.05
probability level (corresponding to the 95% confidence
interval). However, since we are not using p values to
test for significance; should a p value lie above this (cor-
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rected) threshold, then this does not necessarily indicate
that the property does not contribute to the observed
causal impact. Quite the contrary; since we have al-
ready observed that there exists a causal impact, then
the property that exhibits the lowest p value remains
that with the highest probability of having some influ-
ence on the causal impact, amongst those properties as-
sessed using inferential statistics.

4.3 Causal Impact Analysis

We apply the Causal Impact Analysis method [6] using
the Google CausalImpact framework [5]. Each metric
(R, D, N, NW) and each release, requires an individual
experiment, as the method works each time on a single
data vector.
The Causal Impact Analysis method we use in RQ3

and RQ4 trains a Bayesian Structural Time-Series model
[22, 45] on the data vector for each target release, using
a set of unaffected data vectors known as the control
set. This allows the model to make a prediction of the
data vector in the posterior time period using a set of
regression coefficients and biases, accounting for local,
cyclic and global variations.
The method computes the probability that the ob-

served data vector post-release could have occurred by
comparing it with the counterfactual prediction. A low
value (p ≤ 0.01) indicates that the performance met-
ric changed significantly; see for example Fig. 1, which
shows that the rating of ‘Carp Fishing Simulator’ devi-
ates significantly from the predicted vector. Of course,
the degree to which we can assume causality relies on
the strength of our causal assumptions, that the control
set is unaffected by the release, and the relationship of
the control to the released app is unchanged.
We use the method to identify impactful releases

(defined below), and look for trends amongst them which
may hold true, using inferential statistical analysis as ex-
plained in Section 4.2. Our causal impact analysis can
only tell us that there is evidence that a release has had
an impact on the metrics we collect, and our subsequent
inferential statistical analysis can only point to the rel-
ative likelihoods that the properties we investigate play
a role in this causal impact.
In any and all causal impact analyses, it is of course

impossible to identify external uninvestigated proper-
ties, that might also have played a role in the causal
impacts observed. In the case of app stores, our current
analysis cannot, for example, account for the possible
impacts of advertising campaigns, timed to coincide with
the new release. While such campaigns might plausibly
contribute to the causal impact of the release, we have no
information about such campaigns, and therefore cannot
take it into account.
We use the following data to answer RQ3 and RQ4:

Control set: apps that have no releases in the 12 month
time period: for Google this set is 97 apps, and for Win-
dows this is 397 apps. We compare different control set
sizes in RQ3.2 in order to establish whether the choice
of control set affects the results.
Target releases: releases that occurred at least 3 weeks
after the previous release of the same app (or start of the

time-series), and that occur at least 3 weeks before the
next release (or end of the time-series). This ensures suf-
ficient data availability to accurately train causal impact
analysis.

Impactful release: a release for which one of the per-
formance metrics (R, D, N and NW) significantly devi-
ated from the counterfactual prediction. We consider a
significant deviation to be one in which the probability
of predicting the observed is ≤ 0.01. This is a cautious
choice of probability (corresponding to the 99% confi-
dence interval) to reduce the likelihood of raising false
alarms, which subsequently would turn out not to be
truly impactful after all. By setting our threshold to be
0.01, we have a 0.01 probability of claiming an impact
where one does not exist, and therefore expect roughly
1% false positive rate.

4.4 Information Retrieval Techniques

To answer RQ4, we perform information retrieval anal-
ysis on release text, using both TF.IDF and Topic Mod-
elling. We use two different techniques to increase the
confidence with which we can identify the top terms that
occur in impactful release text.

Filtering: Text is cast to lower case and filtered for
punctuation and stopwords, using the English language
stopwords from the Python NLTK data package1.

Lemmatisation: Each word is processed by the Python
NLTK WordNetLemmatizer, in order to be transformed
into its ‘lemma form’, to homogenise singular/plural,
gerund endings and other non-germane grammatical de-
tails.

TF.IDF: TF.IDF [34] finds ‘top terms’ in release text:
each term in each document is given a score of TF (Term
Frequency) multiplied by the IDF (Inverse Document
Frequency). The IDF is equal to the log of the size of
the corpus divided by the number of documents in which
the word occurs.

Topic Modelling: Topic modelling [4] finds top topics
in release text. Topic modelling is a generative proba-
bilistic technique that trains a graphical model on a set
of unstructured textual documents, under the assump-
tion that they are generated from a set of latent topics.

5 Results

This section answers the questions posed in Section 3.

RQ1: Do app metrics change over time? We can
see from the box plots in Fig. 2 that the metrics (R)ating,
(D)ownloads, (N)umber of reviews and (NW) number of
reviews per week do, indeed, change over time, because
their median standard deviation is always positive.

However, Fig. 2 reveals that not all metrics vary so
greatly: the (R)ating metric exhibits the least variation
(median standard deviation < 0.05 for both Google and
Windows). This is a potentially useful baseline finding,
because it means that a high-impact release (that does
affect rating), has a chance to ‘stand out against the
crowd’.

1nltk.corpus.stopwords.words(’english’)
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Figure 1: Causal impact analysis for the rating of Carp Fishing Simulator in Google Play. The shaded region
surrounding the dotted trend line represents the confidence interval for counterfactual prediction. The vertical
dotted line denotes the release point, after which, the actual behaviour (solid line) clearly moves outside the
confidence interval.

R D N NW

Figure 2: RQ1: Standard deviation box plots for (R)ating, (D)ownload rank, (N)umber of ratings and (NW)
number of ratings per week.
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Developers are likely to care about such releases, since
ratings are important, and there is some evidence that
they impact upon popularity, and thereby revenue [20].
RQ2: Do release statistics have a correlation with
app performance? Having established a baseline, we
now measure the correlations between the number and
interval of releases in 52 weeks, and performance metrics.

RQ2.1: Does the number of releases have a
high correlation with app performance? Ta-
ble 1 presents the results of correlation analysis between
release frequency and app metrics for Google and Win-
dows app stores. We only report correlation coefficients
(the rho values) that are deemed significant (p <= 0.05),
i.e., where there is sufficient evidence that rho 6= 0.
The results from our Google dataset in Table 1 are

sparse, indicating only 1 significant correlation between
the number of releases and ∆N, the change in the num-
ber of reviews. Even this correlation, although signif-
icant, is still weak (rho = 0.13) so we conclude that
there is little evidence for correlation between release
frequency and app metrics in the Google app store. A
greater number of significant correlations was observed
for the Windows app store (Table 1). However, the cor-
responding correlation coefficients (rho values) remain
low, providing evidence only for a mild correlation be-
tween release frequency and the change in the number
of reviews per week (∆N).
We therefore conclude that there is no strong over-

all correlation between release frequency and the app
metrics we collect for either app store, but there is ev-
idence for a mild correlation between release frequency
and number of reviews in 52 weeks in the Windows store.
RQ2.2: Does the median time interval between
releases have a correlation with app perfor-
mance? Table 2 presents the results of correlation anal-
ysis between release interval and app metrics for the
Google and Windows app stores. As these results re-
vealed, there is little evidence for any strong correlation
between the median inter-release time period and the
app metrics we collect. Our findings corroborate and
extend the recent findings by McIlroy et al. [36], who re-
ported the rating was unaffected by release frequency in
the Google app store. This is interesting because there
is evidence that app developers release more frequently
when an app is performing poorly [9]; our results indi-
cate that this, perhaps rather desperate behaviour, is
unproductive.
RQ3: Do releases impact app performance? The
results from RQ1 and RQ2 have established that app
performance metrics do vary over releases, but that the
number of releases and time intervals between releases
are not important factors in determining these perfor-
mance changes. This makes causal impact analysis po-
tentially attractive to developers. With it, a developer
can seek to identify the set of specific releases that had
a higher performance impact, using evidence for signifi-
cant changes in post-release performance compared with
the set of non-releasing apps.
This is the analysis to which we now turn in RQ3.
RQ3.1: What proportion of releases impact app
performance? Table 3 presents overall summary

statistics for the results of causal impact analysis. The
row labelled ‘Apps’ indicates the number of apps sum-
marised in each of the two sub tables (307 Google apps
and 726 apps for Windows). This is the total number
of apps which remain consistently popular over all 52
weeks studied. The total number of releases reports the
number of app releases over the 52 weeks studied, while
the ‘target releases’ denotes the subset of releases for
which there is sufficient prior and posterior information
available to support causal impact analysis, in terms of
counterfactual posterior predictions, based on prior ob-
servations. Those releases that occur near the beginning
or end of the time period will therefore not have sufficient
information available, and so the causal impact cannot
be studied; hence we select a subset of releases that must
also belong in the range of weeks [4, 49], out of a possible
[1, 52]. Of these target releases, some are impactful and
some are not according to causal impact analysis. As
Table 3 reveals, we found 39.9% of the target releases in
the Google store and 55.1% in the Windows store to be
impactful.
The remainder of Table 3 reports the observed change

in performance metrics for impactful releases, thereby
identifying candidate causes of these impacts. For each
performance metric change, we report the total number
of releases that exhibited an impactful change in the as-
sociated metric and the percentage (of all app releases)
that exhibited the change. We further subdivide this
total into those which are considered positive and those
which are considered negative from the developers’ per-
spective.
From the 39.9% of impactful Google releases, approx-

imately a third (31.9%) impacted more than one perfor-
mance metric. The releases of most potential interest to
developers are those that impact rating and download
rank (since these are most closely coupled to revenue),
of which there were 32 impactful releases.
In the Windows dataset there were a higher propor-

tion of impactful releases: 55.1% were impactful in some
performance metric, and of these impactful releases, ap-
proximately half (49.7%) had an impact on multiple met-
rics. There were 90 releases in the Windows dataset
that impacted rating and download rank, and 11 that
impacted rating, download rank and number of ratings
per week.
These results support the hypothesis that there is a

subset of releases that cause significant changes to their
app’s performance in the store.
RQ3.2: How does the causal control set size af-
fect results? Table 4 reports the effect of choosing dif-
ferent control set sizes, from among those apps which did
not undergo any releases during the time period stud-
ied. The Table 4 results show that very similar findings
are observed for impactful releases (with respect to each
performance metric), irrespective of the choice of control
set.
RQ4: What characterises impactful releases? The
finding from RQ3, tells us that there are impactful re-
leases in both app stores, but it cannot identify the
causes, merely that there has been an impact in post-
release performance. We now turn to analyse candidate
causes, and investigate the relative probability that each

7



Table 1: RQ2.1: Significant (p ≤ 0.05) correlations between number of releases and (R)ating, (D)ownload rank
and (N)umber of ratings at the end of the 52 week time period, as well as the change in these metrics from first
to last week.

Method R ∆R D ∆D N ∆N

Spearman - - - - - 0.13
Pearson - - - - - -

Google

Method R ∆R D ∆D N ∆N

Spearman 0.20 - -0.17 - 0.32 0.42
Pearson 0.16 - -0.16 -0.09 0.27 0.34

Windows

Table 2: RQ2.2: Significant (p ≤ 0.05) correlations between release interval and (R)ating, (D)ownload rank and
(N)umber of ratings at the end of the 52 week time period, as well as the change in these metrics from first to last
week.

Method R ∆R D ∆D N ∆N

Spearman - - - - -0.15 -0.19
Pearson - - 0.16 - - -

Google

Method R ∆R D ∆D N ∆N

Spearman - - 0.12 0.13 - -
Pearson - - 0.13 - - -

Windows

Table 3: RQ3.1: Causal impact analysis results.

Details of target releases (percentages reported over 754 target releases)
Type Total (of target) Apps 307
Non-impactful 453 (60.1%) Total releases 1,570
Impactful 301 (39.9%) Target releases 754

Details of impactful releases (percentages reported over 301 impactful releases)
Metric Total (of impactful) +ve -ve
R 152 (50.5%) 67 (22.3%) 85 (28.2%)
D 130 (43.2%) 48 (15.9%) 82 (27.2%)
N 54 (17.9%) 54 (17.9%) 0
NW 84 (29.9%) 52 (17.3%) 32 (10.6%)
R ∩ D 32 (10.6%) 9 (3.0%) 12 (4.0%)
R ∩ D ∩ NW 7 (2.3%) 2 (0.7%) 1 (0.3%)

Google

Details of target releases (percentages reported over 793 target releases)
Type Total (of target) Apps 726
Non-impactful 356 (44.9%) Total releases 1,617
Impactful 437 (55.1%) Target releases 793

Details of impactful releases (percentages reported over 437 impactful releases)
Metric Total (of impactful) +ve -ve
R 228 (52.2%) 90 (20.6%) 138 (31.6%)
D 207 (47.4%) 93 (21.3%) 114 (26.1%)
N 267 (61.1%) 267 (61.1%) 0
NW 48 (11.0%) 27 (6.2%) 21 (4.8%)
R ∩ D 90 (20.6%) 15 (3.4%) 36 (8.2%)
R ∩ D ∩ NW 11 (2.5%) 2 (0.5%) 5 (1.1%)

Windows
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Table 4: RQ3.2: Results indicating minimal effects from
different control set choices using a test set of 100 target
releases.

Control Set
Result 100 200 397

R results 45 43 39
D results 40 42 41
N results 36 40 40
NW results 13 13 14

has played a significant role in causing the impacts we
have observed.

RQ4.1: What are the most prevalent terms in
releases? Table 5 reports the results of information re-
trieval, using TF.IDF and the topic modelling on the
release text of impactful releases. In this table, we con-
sider only those apps for which release text is available.
For Google, of the 754 target releases (those with suf-
ficient evidence for causal impact analysis), 641 have
release text available. For Windows, 546 of the 793 tar-
get releases have available release text. The remainder
of the table consists of four overall columns, giving the
metric for which a release is found to be impactful (left-
most column), followed by the most prevalent terms (for
TF.IDF) and topics (for topic modelling), followed by
a subdivision of these prevalent terms into those whose
impacts are positive and negative from the developers’
perspective.

Table 5 reveals that terms and topics themed around
bug fixes occur frequently in the Google dataset, while
in the Windows dataset, the topics appear to be more
closely associated with features (message chat free, new
search feature).

The Windows app store is comparatively more recent
than the Google app store, and it is tempting to spec-
ulate that, at this comparatively immature stage, per-
haps users are more concerned with new features than
bug fixes. Further research would be required to inves-
tigate this possibility. Nevertheless, these observations
motivate our analysis in RQ4.2 for the tuples (bug, fix)
and (new, feature).

RQ4.2: How often do top terms and topics occur
in each set of releases? Table 6 shows the number
of occurrences, within impactful and non-impactful re-
leases, of the tuples (bug, fix) and (new, feature) high-
lighted by information retrieval in RQ4.1. We can see
from the results in Table 6 that the terms (bug, fix)
are more common in the non-impactful releases in both
stores. However, it is more striking that for the met-
rics (R)ating and (D)ownload, the terms occur more of-
ten in the releases that negatively impact rating, and
negatively impact popularity (having a positive impact
on (D)ownloads column). We conclude, therefore, that
release text mentioning bug fixes occurs more frequently
in releases that negatively impact metrics such as rating
and download rank.

The results show that there are proportionally more
mentions of (new, feature) in releases that positively im-
pact (R)ating and popularity for both Google and Win-

dows. There were (proportionally) more impactful re-
leases in the Google store that mentioned (new, feature),
but fewer for Windows.

Our results lead to the conclusions that releases are
more likely to positively impact rating or popularity if
they claim to introduce new features, and more likely to
negatively impact rating or popularity if they claim to
fix bugs. While the former finding is to be expected, it
seems a little unfair on developers that bug fix claims
might reduce performance. Future work might further
investigate this effect to see whether bug fix claims are
unsubstantiated, thereby providing a potential explana-
tion.

6 Threats to Validity

In this section we discuss threats to the construct, con-
clusion and external validity of our findings.

Construct Validity: The gap between data anal-
ysis and causality is large, forcing any user to make
very strong assumptions if they hope to effectively imply
causality. Causal analysis can hope to reduce this gap,
but no such analysis could ever hope to fully close the
gap; there will always be unknown factors which may
nevertheless have affected the data and the scrutiny. In
the specific case of app stores, there will always be po-
tential external influences for which no data is available
to capture them.

We have shown how causal impact analysis can be
a useful way to identify releases that have some form
of impact. This may be useful to the developers in its
own right, since they might choose to further manually
analyse those releases for which evidence for impact is
strong. Nevertheless, the developer would undoubtedly
be more interested to know the precise causes of an im-
pact. Unfortunately, this is simply overoptimistic; be-
cause there is no necessary link between correlation and
causation, the best we can hope to do is provide proba-
bilistic evidence that ranks potential causes as we have
done in RQ3 and RQ4. Great care is required when in-
terpreting these probabilistic findings, particularly when
they are applied to the analysis of a specific app release
for which one or more external factors may have had
some particular effect.

Conclusion Validity: Our conclusion validity could
be affected by the qualitative human assessment of ‘top
terms’ and topics for sets of releases in RQ4.1. We mit-
igate against this threat to validity by asking a quan-
titative question of the number of times (bug, fix) and
(new, feature) occur in each set of releases in RQ4.2.

External Validity: Our dataset is subject to the
App Sampling Problem [35]. Performance data is avail-
able only for the most popular apps in each of the
app stores studied. We restrict our claims about find-
ings to those that apply specifically to the most consis-
tently popular apps over the 52 week period studied, and
thereby do not suffer from the App Sampling Problem
in our findings. However, any attempt to extend and
generalise the findings to other apps, would be vulnera-
ble to the App Sampling Problem, and so great care is
required due to this potential threat to validity.
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Table 5: RQ4.1: Top release text terms: TF.IDF terms on the left and Topic Modelling topics on the right.

Type Overall Apps 307
Non-impactful new fix bug fix bug fixed Target releases 754
Impactful fix bug new fix bug fixed Release text 641

Metric All +ve -ve
R fix bug new sky device channel sky fix bug sky device channel fix bug new app account use
D fix bug new new game experience new game security character new power fix bug new new game experience
N new fix bug sky device channel new fix bug sky device channel
NW new fix improvement photo filter add new performance im-

provement
app music live fix bug improvement photo filter add

R ∩ D fix bug sky app account use sky fruit carp sky device channel bug fix pay app account use
R ∩ D ∩ NW various klingon im-

provement
android song face-
book

security traveler dim app purchase flight song piano smule android song face-
book

Google

Type Overall Apps 726
Non-impactful video photo new message chat free Target releases 793
Impactful video app new file medium server Release text 546

Metric All +ve -ve
R video app phone added app sound video music phone message chat free app video photo added app sound
D video app phone app live new video new app app live new video phone app message chat free
N video app phone file medium server video app phone file medium server
NW app video dating app apps music dating video app added app sound weather shazam app app apps music
R ∩ D video app phone message chat free video music task video fix youtube channel app phone app also account
R ∩ D ∩ NW hike dating event message chat free dating pof free message chat free hike learn learning message chat free

Windows

Table 6: RQ4.2: Occurrences of (bug, fix) and (new, feature) in release text.

Type Overall Apps 307
Non-impactful 145 / 379 (38.3%) Target releases 754
Impactful 87 / 262 (33.2%) Release text 641

Metric Total +ve -ve
R 41 / 133 (30.8%) 16 / 56 (28.6%) 25 / 77 (32.5%)
D 42 / 110 (38.2%) 10 / 36 (27.8%) 32 / 74 (43.2%)
N 17 / 46 (37.0%) 17 / 46 (37.0%) 0 / 0
NW 22 / 77 (28.6%) 13 / 48 (27.1%) 9 / 29 (31.0%)
R ∩ D 12 / 29 (41.4%) 2 / 7 (28.6%) 4 / 12 (33.3%)
R ∩ D ∩ NW 3 / 7 (42.9%) 1 / 2 (50.0%) 0 / 1

Google (bug, fix)

Type Overall Apps 726
Non-impactful 118 / 248 (47.6%) Target releases 793
Impactful 130 / 298 (43.6%) Release text 546

Metric Total +ve -ve
R 62 / 152 (40.8%) 22 / 58 (37.9%) 40 / 94 (42.6%)
D 50 / 137 (36.5%) 22 / 71 (31.0%) 28 / 66 (42.4%)
N 77 / 183 (42.1%) 77 / 183 (42.1%) 0 / 0
NW 14 / 33 (42.4%) 8 / 18 (44.4%) 6 / 15 (40.0%)
R ∩ D 18 / 57 (31.6%) 2 / 9 (22.2%) 9 / 18 (50.0%)
R ∩ D ∩ NW 1 / 8 (12.5%) 0 / 1 1 / 3 (33.3%)

Windows (bug, fix)

Type Overall Apps 307
Non-impactful 92 / 379 (24.3%) Target releases 754
Impactful 72 / 262 (27.5%) Release text 641

Metric Total +ve -ve
R 36 / 133 (27.1%) 17 / 56 (30.4%) 19 / 77 (24.7%)
D 34 / 110 (30.9%) 13 / 36 (36.1%) 21 / 74 (28.4%)
N 12 / 46 (26.1%) 12 / 46 (26.1%) 0 / 0
NW 21 / 77 (27.3%) 14 / 48 (29.2%) 7 / 29 (24.1%)
R ∩ D 10 / 29 (34.5%) 4 / 7 (57.1%) 2 / 12 (16.7%)
R ∩ D ∩ NW 3 / 7 (42.9%) 1 / 2 (50.0%) 0 / 1

Google (new, feature)

Type Overall Apps 726
Non-impactful 133 / 248 (53.6%) Target releases 793
Impactful 145 / 298 (48.7%) Release text 546

Metric Total +ve -ve
R 69 / 152 (45.4%) 32 / 58 (55.2%) 37 / 94 (39.4%)
D 68 / 137 (49.6%) 39 / 71 (54.9%) 29 / 66 (43.9%)
N 95 / 183 (51.9%) 95 / 183 (51.9%) 0 / 0
NW 16 / 33 (48.5%) 8 / 18 (44.4%) 8 / 15 (53.3%)
R ∩ D 27 / 57 (47.4%) 6 / 9 (66.7%) 7 / 18 (38.9%)
R ∩ D ∩ NW 4 / 8 (50.0%) 1 / 1 (100.0%) 2 / 3 (66.7%)

Windows (new, feature)
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Naturally, care is also required when extending our
findings to other app stores. Indeed, our study on the
Google and Windows stores shows differences between
the two, as higher priced releases in Google are more
likely to be impactful, whilst the same is true of lower
priced releases in Windows. There are many common
findings, but this difference highlights the fact that our
results may not apply to other app stores. Nevertheless,
the methods we used to analyse causal impacts can be
applied to other app stores.

7 Related Work

App Store Repository Mining [20, 37, 44, 49, 52] is a
form of software repository mining. Recent papers in
the field have compared app stores [47], and studied code
reuse [43]. Many studies have also extracted API infor-
mation for malware detection [1, 15], detecting energy
greedy APIs [30, 31], and assessing how API usage af-
fects user ratings [2, 42] and code quality [48]. There
has been much recent work in app store review analy-
sis that mines user reviews from app stores for require-
ment prioritisation and elicitation [14, 24, 40], summari-
sation [8, 13, 16, 23, 32, 38] and even for test device
prioritisation [26]. Other work incorporated sentiment
analysis in order to identify complaint types [25, 27] and
differences in comments lodged in different stores [19].
Recent work has also studied how responding to user
feedback can increase the rating [39].

Martin et al. [35] introduced the concept of the App
Sampling Problem, a threat to validity for app store
analysis due to the inherent biases associated with par-
tial information. This threat can be ameliorated us-
ing inferential statistical techniques and/or by carefully
defining the scope of claims about apps. In this paper,
we avoided the App Sampling Problem by limiting our
claims to the most consistently popular apps in each of
the two app stores.

There has been considerable previous work that stud-
ies app releases: In 2011 Henze and Boll [21] analysed
release times and user activity in the Apple App Store,
and concluded that Sunday evening is the best time for
deploying games. In 2013 Datta and Kajanan [12] stud-
ied review counts from the Apple App Store, and found
that apps receive more reviews after deploying updates
on Thursday or late in the week. In 2015 Gui et al.
found from 21 apps from Google Play with frequent re-
leases, that 23% of their releases contained ad-related
changes [18]. Comino et al. [9] studied the top 1000
apps in Apple App Store and Google Play, finding that
app releases are more likely when the app is perform-
ing badly, and that releases can boost downloads. Very
recently, McIlroy et al. [36] studied update frequencies
in the Google Play store after mining data about 10,713
mobile apps. They found that only 1% of apps received
more than one update per week, and only 14% of the
studied apps were updated in a two-week period. These
findings support our weekly data collection schedule,
as very few releases can be ‘missed’ by collecting data
weekly; additionally the target releases we use (defined
in Section 4.3), mandate that very frequently updated

apps are excluded due to lack of sufficient prior and pos-
terior time series data. McIlroy et al. [36] also found that
rating was not affected by update frequency, however the
findings by Guerrouj et al. [17] indicate that high code
churn in releases correlates with lower ratings.
All of these previous findings on app releases tantalis-

ingly point to the possibility that certain releases may
have higher impact than others. Taken together, this
previous work is one of the motivations for the present
paper. However, no previous paper has specifically ad-
dressed the question of how we identify, in general, those
releases that are impactful, nor has any previous work
attempted to identify the characteristics of highly im-
pactful app releases: the primary technical and scientific
contributions of the present paper.
Causal inference is not a new concept, and whilst used

primarily in economic forecasting, it has been discussed
in empirical science papers [29]. As such, we are not the
first software engineers to use the concept: see for exam-
ple the work using the Granger causality test by Couto
et al. [10, 11] and Zheng et al. [53] as a means of software
defect prediction, and the work by Ceccarelli et al. [7] on
identifying software artifacts affected by a change. We
are, however, the first authors to apply causal impact
analysis to app store analysis.
The technique we use for causal impact analysis was

introduced by Brodersen et al. [6]. They exploited the
Bayesian structural time series model for causal infer-
ence, motivated by the need to measure the success of
online advertising campaigns. The method differs from
the Granger test, which measures the degree to which a
vector can be used to predict another. Instead, Broder-
sen’s approach (which we use in the present paper) cre-
ates and compares a counterfactual prediction with the
observed, in order to establish whether an event could
have significantly altered the path of the vector. For
more information about recent advances in causal infer-
ence, we refer the reader to the review by Maathuis and
Nandy [33].

8 Conclusions

Our analysis of the Google Play and Windows Phone
app stores, over a period of 52 weeks from July 2014 to
July 2015 has identified individual releases that caused
a significant impact in rating, download rank, number
of ratings or number of ratings per week. Overall, 40%
of releases had an impact in Google and 55% had an
impact in Windows. Our research has found that overall
release frequency is not correlated with subsequent app
performance, but that there is evidence that release text
content plays a role in whether a release is impactful and
the type of impact it has. Releases with text mentioning
new features instead of bug fixes are more likely to be
impactful and to positively impact rating.
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