

Research Note
RN/12/03

Evolving Human Competitive Spectra-Based Fault Localisation

Techniques

08/05/2012

Shin Yoo

Abstract

Spectra-Based Fault Localisation (SBFL) aims to assist de- bugging by applying risk
evaluation formulæ (sometimes called suspiciousness metrics) to program spectra and
ranking statements according to the predicted risk. Designing a risk evaluation formula is
often an intuitive process done by human software engineer. This paper presents a Genetic
Programming approach for evolving risk assessment formulæ. The empirical evaluation
using 92 faults from four Unix utilities produces promising results1. GP-evolved equations
can consistently outperform many of the human-designed formulæ, such as Tarantula,
Ochiai, Jaccard, Ample, and Wong1/2, up to 5.9 times. More importantly, they can perform
equally as well as Op2, which was recently proved to be optimal against If-Then-Else-2
(ITE2) structure, or even outperform it against other program structures.

1 The program spectra data used in the paper, as well as the complete empirical results, are available from:
http://www.cs.ucl.ac.uk/staff/s.yoo/evolving-sbfl.html.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/14/13

Computational Intelligence and Testing

3 November 2014

W. B. Langdon

Abstract

Discussion of the state of the art in and future research on Software Testing during NII Shonan
Meeting Computational Intelligence for Software Engineering, Seminar 053, 20-23 October
2014. The discussions between software engineers and experts in artificial intelligence were
mainly lead by Andreas Zeller and Jens Krinke.

http://shonan.nii.ac.jp/seminar/053/
https://www.st.cs.uni-saarland.de/zeller/
http://www.cs.ucl.ac.uk/staff/J.Krinke/

Computational Intelligence and Testing W. B. Langdon

1 Automated Test Case Generation

We did not spend much time on automated test case generation as it was regarded as pretty much a solved
problem. However typically even the best test suites only cover about 80% of the software being tested.
The remaining 20% may be either to hard to reach or even it may be it can never be executed. Unreachable
code may have been written as a defensive measure to catch error conditions which should never happen.

Although test cases can be generated to cover a large fraction of human written code, it remains an open
question how to check the program has indeed done the right thing for each test. This is known as the test
“Oracle Problem” [1].

2 Mutation Testing

Mutation testing is a well established technique for assessing the effectiveness of testing processes by
artificially inserting faults into the software being tested (known as mutants) and seeing how many of these
artificial bugs are found by the test suite [2, 3]. Notice mutation testing does not require a test oracle [4].
That is, test cases do not need to include the desired answer(s). Instead it is sufficient to see if the mutated
code yields the same answer(s) as the original un-mutated code. If a mutation causes a different answer, it
is regarded as having failed that test. It is said to have been killed by the test. The more mutants a test suite
kills, the better the test suite is.

Although the discussion was about software testing, mutation can be widely applied. E.g. the effectiveness
of proof reading a book can be estimated by randomly inserting errors into the text and then seeing what
fraction of seeded errors are reported. Since mutation testing is about the effectiveness of the test process,
it is also sometimes called “mutation analysis”.

Even for modestly sized code, a large number of mutants are created. Compiling and testing each of these
is expensive. Computational costs can sometimes be reduced by compiling source code containing all
mutations and then enabling them one at a time at run time [5].

Typically only a single change is made to the source code. E.g. replacing < by ≤. These are known as first
order mutants. It is becoming more common to consider making multiple simultaneous changes (known as
higher order mutants [6]). Potentially higher order mutants can reduce computational overhead as a higher
order mutant may be caught more easily by testing [7].

There are two major reason why mutation testing has not been widely adopted: 1) equivalent mutants [8]
and 2) expense. In general it is impossible to tell if two programs will always generate the same answers
(given the same inputs) as each other. That is, again in general, we do not know if a test suite has failed to
kill a mutant because of a weakness in the test suite of because the mutant genuinely has made no difference
to the program. (It is an “equivalent mutant”.) In practise mutation testing creates large numbers of mutants
which are not killed and thus creates a manual problem to decide if more and better tests are needed or if
the undead mutant is truly an equivalent mutant (and thus cannot be killed).

As the mutated code may not be well behaved it is common to run the mutated program in some form of
sand box. Potentially this might be provided at low overhead by a virtual machine. Alternatives include
enabling array bounds checking1 and intercepting system calls [3]. Since system calls, including I/O, can
be slow, a sand box which replaces them with dummies can, in some circumstances, actually speed up
testing.

It remains a long term goal to create a virtuous closed co-evolutionary loop in which mutation testing finds
untested parts of programs and then automatic testing creates additional test cases which cover it [9].

Yue Jia maintains a repository of papers on mutation testing [10]. It can be found at: http://crestweb.
cs.ucl.ac.uk/resources/mutation testing repository/

1William Bader has a patch for GCC which provides bounds checking for C.

RN/14/13 Page 1

http://www.cs.ucl.ac.uk/staff/Y.Jia/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://williambader.com/bounds/example.html

Computational Intelligence and Testing W. B. Langdon

3 Unit Testing

As generally units are only a small fraction of the total system, unit testing is easier and faster than system
testing. With fewer paths through the code, it may be possible (at the level of individual function level) to
test them all.

Although there are commercial tools to assist unit testing, these are not widely used. This may in part
be because they rely on pre- and post- conditions, which are often not available. (Notice that contract
programming, such as in the Eiffel programming language, requires the programmer to give pre- and post-
conditions.) That is, it may be possible to generate test cases to cover all the lines of code in a function
(i.e. a unit) but when the tests are run, without more information (such as pre- and post- conditions), we do
not know if the function has calculated the right answer or not. Also there may be a large number of cases
where the function creates an exception or a segmentation error because the unit test creates conditions the
code was not designed to handle. For example, instead of passing the address of a data structure, the test
case calls the function with a null pointer. If there are a large number of these problems the user may lose
faith in the tool.

There may be scope for automatically learning pre- and post- conditions, perhaps inconjunction with dis-
covering invariants, e.g. with Daikon [11], or other machine learning techniques. During normal operation,
Daikon might learn that a pointer to a data structure is never null.

4 Interplay Between System Testing and Unit Testing

A future testing tool might support both system and unit level testing and the interaction between them. For
example a machine learning approach might be invoked when running system tests to discover details of
how functions are called. These might then be used to control the ranges of inputs automatically generated
during unit testing. E.g. if during system testing, a function is always passed the address of a constant
string, this might be treated as a fact when generating test cases for when it is tested in isolation. Thus
reducing the load on the user caused by unit tests failing because they called the function with an illegal
address or the address of non-string data.

Additionally the invariants might be used to automatically add assertions to the code. For example,
assert(p!=null);

Testing may proceed by alternating between system and unit level testing. At the unit level, the assert()
documents an assumed invariant but during system tests it should not be triggered. Thus during system
testing it becomes an automated test oracle, since a test that fails it indicates a problem.

There was a brief discussion of bug masking, where two or more faults (bugs) are present but the code
appears to be working. This can create the paradox that removing one bug causes the (apparently) working
code to fail until the other bug is also fixed.

5 Future

As mentioned in Section 2, the integration of mutation testing and automatic test case generation remains a
long term goal, however progressing it will probably also require solving some of the problems with each
(mentioned in Sections 1 and 2).

As mentioned in Section 4, there seems to be great scope for testing strategies which mix system and unit
testing and some form of invariant learning or even automated solutions to the Oracle Problem (Section 1).

Although there are many tools for detecting duplicated code [12], in practise cloned code is not removed
or consolidated by refactoring. This is particularly true in financial applications where code consolidation
is regarded as increasing the risks (or expense) of a single point of failure whereas multiple copies of
equivalent code are each regarded as posing less risk to the user (i.e. the bank).

RN/14/13 Page 2

http://se.ethz.ch/~meyer/publications/online/eiffel/basic.html
http://plse.cs.washington.edu/daikon/

Computational Intelligence and Testing W. B. Langdon

Mostly the discussion was aimed at testing to discover bugs and assumed the use of automated test scripts
rather than manual or interactive testing, even for GUI and web based applications. We briefly touched
on test case prioritisation during regression testing [13]. Other topics include fuzz testing and stress or
performance testing. There is some evidence that the fraction of bugs removed from new code follows
a logistic curve with time (see talk “Predicting Release Time Based on Generalized Software Reliability
Model” by Hironori Washizaki at NII Shonan Meeting Seminar 053). A future topic might be to predict the
number [14] (and especially the severity) of remaining bugs [15]. A common business decision appears to
ship when 95% of bugs have been found and fixed. Research could continue to investigate other trade-offs
between release date and software quality.

There has been some recent work looking at creating or enhancing existing software by transplanting code
[16, 17]. Such plastic surgery approaches may take their feed stock from wide spread open source reposito-
ries (e.g. SourceForge and GitHub) or internal software might be used to donate code. Since transplanting
code seems feasible, perhaps future work should investigate the scope for computation intelligence tech-
niques for transplanting test suites, software requirements or even user expectations. There may also be
scope for using datamining and bigdata approaches (e.g. as used by Google Translate) to find matches be-
tween informal requirements and (fragments) of code implementations. While Google Translate is based
on learning from United Nations documents which have already been translated into multiple languages
[18], there is lots of open source code which might be used to find fraglets of code [19] which might be
assembled into complete programs, perhaps using an enhance form of genetic programming [20].

References

[1] Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: A comprehensive survey of trends in oracles
for software testing. Technical Report CS-13-01, University of Sheffield, Department of Computer
Science, UK (2013) To appear in IEEE Transactions on Software Engineering.

[2] DeMillo, R.A., Offutt, A.J.: Constraint–based automatic test data generation. IEEE Transactions on
Software Engineering 17(9) (1991) 900–910

[3] Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order mutation testing with
genetic programming. Journal of Systems and Software 83(12) (2010) 2416–2430

[4] Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: A comprehensive survey of trends in oracles
for software testing. Technical Report Research Memoranda CS-13-01, Department of Computer
Science, University of Sheffield (2013)

[5] Langdon, W.B., Harman, M., Jia, Y.: Multi objective mutation testing with genetic programming. In
Bottaci, L., Kapfhammer, G., Walkinshaw, N., eds.: TAIC-PART, Windsor, UK, IEEE (2009) 21–29

[6] Harman, M., Jia, Y., Langdon, W.B.: Strong higher order mutation-based test data generation. In
Zeller, A., ed.: 8th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2011), Szeged, Hun-
gary, ACM (2011) 212–222

[7] Harman, M., Jia, Y., Reales Mateo, P., Polo, M.: Angels and monsters: An empirical investiga-
tion of potential test effectiveness and efficiency improvement from strongly subsuming higher order
mutation. In: ASE. (2014)

[8] Harman, M., Yao, X., Jia, Y.: A study of equivalent and stubborn mutation operators using human
analysis of equivalence. In: 36th International Conference on Software Engineering (ICSE 2014),
Hyderabad, India (2014)

[9] Harman, M., Jia, Y., Langdon, W.B.: A manifesto for higher order mutation testing. In du Bous-
quet, L., Bradbury, J., Fraser, G., eds.: Mutation 2010, Paris, IEEE Computer Society (2010) 80–89
Keynote.

RN/14/13 Page 3

http://sourceforge.net
https://github.com/
http://philmcminn.staff.shef.ac.uk/publications/pdfs/2013-techreport.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2009_TAICPART.html
http://dx.doi.org/10.1145/2025113.2025144
http://www.cs.ucl.ac.uk/staff/mharman/ase14.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/harman_2010_Manifesto.html

Computational Intelligence and Testing W. B. Langdon

[10] Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Transac-
tions on Software Engineering 37(5) (2011) 649 – 678

[11] Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program
invariants to support program evolution. IEEE Transactions on Software Engineering 27(2) (2001)
1–25

[12] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation of clone
detection tools. IEEE Transaction on Software Engineering 33(9) (2007) 577–591

[13] Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: A survey. Journal
of Software Testing, Verification & Reliability 22(2) (2012) 67–120

[14] Mockus, A., Weiss, D.M., Zhang, P.: Understanding and predicting effort in software projects.
In: Proceedings of the 25th International Conference on Software Engineering. ICSE ’03, Portland,
Oregon, USA, IEEE (2003) 274–284

[15] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault
prediction performance in software engineering. IEEE Transactions on Software Engineering 38(6)
(2012) 1276–1304

[16] Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code transplants
to specialise a C++ program to a problem class. In Nicolau, M., Krawiec, K., Heywood, M.I., Castelli,
M., Garcia-Sanchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K., eds.: 17th European Conference
on Genetic Programming. Volume 8599 of LNCS., Granada, Spain, Springer (2014) 137–149

[17] Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery hypothesis. In Orso, A.,
Storey, M.A., Cheung, S.C., eds.: 22nd ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE 2014), Hong Kong (2014)

[18] Tanner, A.: Google seeks world of instant translations. Reuters (2007)

[19] Yamamoto, L., Tschudin, C.F.: Experiments on the automatic evolution of protocols using genetic
programming. In Stavrakakis, I., Smirnov, M., eds.: Autonomic Communication, Second Interna-
tional IFIP Workshop, WAC 2005, Revised Selected Papers. Volume 3854 of Lecture Notes in Com-
puter Science., Athens, Greece, Springer (2005) 13–28

[20] Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008)
(With contributions by J. R. Koza).

[21] Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. (IEEE Trans-
actions on Evolutionary Computation) Accepted.

RN/14/13 Page 4

http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1002/stv.430
http://dl.acm.org/citation.cfm?id=776816.776850
http://dx.doi.org/10.1109/TSE.2011.103
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://earlbarr.com/publications/psh.pdf
http://www.reuters.com/article/2007/03/27/us-google-translate-idUSN1921881520070327
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/conf_wac_YamamotoT05.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html

	Automated Test Case Generation
	Mutation Testing
	Unit Testing
	Interplay Between System Testing and Unit Testing
	Future

