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ABSTRACT
A variety of meta-heuristic search algorithms have been in-
troduced for optimising software release planning. However,
there has been no comprehensive empirical study of differ-
ent search algorithms across multiple different real world
datasets. In this paper we present an empirical study of
global, local and hybrid meta- and hyper-heuristic search
based algorithms on 10 real world datasets. We find that
the hyper-heuristics are particularly effective. For example,
the hyper-heuristic genetic algorithm significantly outper-
formed the other six approaches (and with high effect size)
for solution quality 85% of the time, and was also faster than
all others 70% of the time. Furthermore, correlation analy-
sis reveals that it scales well as the number of requirements
increases.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Algorithms, Experimentation, Measurement

Keywords
Strategic Release Planning, Meta-Heuristics, Hyper-Heuristics

1. INTRODUCTION
Release planning is the problem of determining the set-

s of requirements that should be included in each release
of a software system. In order to plan the software release
cycle, a number of different conflicting objectives need to
be taken into account. For example, the estimated cost of
implementing a requirement has to be balanced against the
perceived value to the customer of that requirement. There
may be multiple stakeholders, and their different interpreta-
tions of cost and value may lead to complex solution spaces
for release planners.
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In order to help decision-makers navigate these complex
solution spaces, meta-heuristic search has been widely stud-
ied as a candidate solution technique [5, 51, 61, 70]. This
work has placed release planning within the general area
of Search Based Software Engineering (SBSE) [35]. Ta-
ble 1 summarises the literature on search based release plan-
ning, listing the meta-heuristic algorithms proposed and the
datasets on which they have been evaluated.

The different cost and value objectives for each stakehold-
er are typically measured along incomparable dimensions.
To avoid the familiar problem of ‘comparing apples with or-
anges’, much of the previous work on multi-objective release
planning has used Pareto optimal search. The result of such
a search is a Pareto front. Each element on this front is a
candidate solution to the release planning problem. All so-
lutions on the Pareto front are non-denominated: no other
solution on the front is better according to all objectives.
The Pareto front thus represents a set of ‘best compromis-
es’ between the objectives that can be found by the search
based algorithm.

The overview in Table 1 reveals that previous work has
evaluated meta-heuristic algorithms on very few real world
datasets. Much of the previous work presents results for on-
ly a single real world dataset. In the absence of real world
datasets, many authors have relied upon synthetically gen-
erated data. While studies on synthetically generated data
can answer experimental research questions [34], they cannot
address the essential empirical question that will be asked by
any release planner: “how well can I expect these techniques
to behave on real world data?”

As a result, the state-of-the-art is currently poorly un-
derstood: though a variety of different algorithms has been
proposed, there has been no empirical study across multiple
different algorithms and multiple different datasets. We wish
to address this issue by providing a thorough empirical study
of optimised release planning. We believe that this may help
to understand the different strengths and weaknesses of al-
gorithms for release planning and their performance on real
world datasets. We hope that our study will also provide
results against which future work can compare1.

We report the results of an empirical study using 10 real
world datasets. We investigate multi-objective release plan-
ning with respect to these datasets, which we optimise using
Hill Climbing (HC), Genetic Algorithms (GA) and Simulat-
ed Annealing (SA).

1Note to referee: if the paper is accepted then we will make
all our implementations and data publicly available on the
web to support replication and further study.



As a sanity check, recommended for SBSE work [4, 37], we
also report results for purely random search. Random search
provides a baseline against which to benchmark more ‘intel-
ligent’ search techniques. Our study also includes hyper-
heuristic versions of HC, GA and SA. Hyper-heuristics [10]
are a more recent trend in search methodologies, not pre-
viously been used in any SBSE research. The findings we
report here indicate that they are promising for release plan-
ning problems.
Overall, our study thus involves 7 different algorithms.

We assess solutions found using these algorithms according
to 4 different measures of solution quality, over each of the
10 real world datasets. We include standard, widely used,
measures of multi-objective solution quality: convergence,
hypervolume and two different assessments of each algorith-
m’s contribution to the Pareto front. We also measure di-
versity and speed. For algorithms that produce good quality
solutions, these are important additional algorithmic prop-
erties for decision-makers, because they need quick answers
that enable them to base their decisions on the full diversity
of candidate solutions.
The primary contributions of the paper are as follows:

1. Comprehensive study: We provide a comprehensive
study of the performance of global, local and hybrid meta-
heuristic algorithms for release planning problems on 10 re-
al world datasets. The results facilitate detailed algorithm
comparison and reveal that dataset specifics can lead to im-
portant a differences in study findings.
2. Introduce hyper-heuristic search: We introduce and
evaluate hyper-heuristic algorithms for release planning. We
present evidence that they provide good solution quality di-
versity and speed.
3. Scalability assessment: We investigate the scalabil-
ity of meta- and hyper-heuristic algorithms on real world
datasets for the first time. The results provide evidence that
hyper-heuristics have attractive scalability and that random
search is surprisingly unscalable for release planning.
The rest of the paper is organised as follows: Section 2

sets our work in the context of related work. Section 3 intro-
duces our three hyper-heuristic release planning algorithms.
Section 4 explains our experimental methodology. Section 5
presents the results and discusses the findings and threats
to validity. Section 6 concludes the paper.

2. THE CONTEXT OF OUR STUDY
Bagnall et al. [5] first suggested the term Next Release

Problem and described various meta-heuristic optimisation
algorithms for solving it. Feather and Menzies [27] were the
first to use a real world dataset, but this dataset is no longer
publicly available. Ruhe et al. [3, 51, 52, 55] introduced the
software release planning process together with exact opti-
misation algorithms [1, 2, 50, 53] and meta-heuristics, such
as genetic algorithms. Van den Akker et al. [44, 60, 61, 62]
also studied exact approaches to single objective constrained
requirements selection problems.
Zhang et al. [70] introduced the Multi-Objective Next

Release Problem formulation as a Pareto optimal problem
with a set of objectives. However, Feather et al. [25, 26] had
previously used Simulated Annealing to construct a form
of Pareto front for visualisation of choices. Also, at the
same time, Saliu and Ruhe [54] introduced a multi-objective
search-based optimisation to balance the tension between
user-level and system-level requirements.

Table 1: Previous meta-heuristic algorithm studies
Paper Authors (Year) Algorithm(s) Dataset

Bagnall et al. [5] (2001) Greedy, HC, SA Synthetic
Feather & Menzies [27] (2002),
Feather et al. [26] (2004),
Feather et al. [25] (2006)

SA NASA

Ruhe & Greer [51] (2003),
Ruhe & Ngo-The[52] (2004),
Amandeep et al.[3] (2004),
Ruhe [50] (2010)

GA Synthetic

Zhang et al. [70] (2007) NSGA2, Pareto
GA

Synthetic

Durillo et al. [24] (2009),
Durillo et al. [23] (2011)

NSGA2, MO-
Cell, PAES

Synthetic
& Motorola

Colares et al. [15] (2009) NSGA2 Synthetic
Finkelstein et al. [31] (2008),
Zhang et al. [68] (2011)

NSGA2, Two-
Archive

Motorola

Zhang & Harman [67] (2010),
Zhang et al. [69] (2013)

NSGA2,
Archive-based
NSGA2

Synthetic
& RALIC

Sagrado & Aguila [19] (2009),
Sagrado et al.[20] (2010)

ACO, SA, GA Synthetic

Jinag et al. [39] (2010),
Xuan et al. [65] (2012)

Backbone Mul-
tilevel

Eclipse,
Mozilla,
Gnome

Zhang et al. [66] (2010) NSGA2 Ericsson
Jinag et al. [40] (2010) ACO, GRASP,

SA
Synthetic

Kumari et al. [43] (2012) QEMEA Synthetic
Souza et al. [17] (2011),
Ferrreira & Souza [21] (2012)

ACO Synthetic

Cai et al. [13] (2012) NSGA2, SPEA2 Synthetic
Brasil et al. [7] (2012) NSGA2, MO-

Cell
Synthetic

Cai & Wei [12] (2013) MOEAs Synthetic

Subsequently, Finkelstein et al. [32] used multi-objective
formulations to characterise different notions of fairness in
the satisfaction of multiple stakeholders with different views
on the priorities for requirement choices.

The multi-objective formulation subsumes previous single
objective formulations: any single objective formulation that
has a single objective and no constraints is clearly a special
case of a multi-objective formulation for n objectives where
n = 1. Furthermore, a constrained single objective formula-
tion, in which there is a single optimisation objective and a
set of constraints to be satisfied, can be transformed into a
multi-objective formulation in which the constraints become
additional objectives to be met.

The technical details of the various approaches used for
constrained single objective formulations and their multi-
objective counterparts are, of course, different. However,
in this paper we want to study the most general setting
in which requirements optimisation choices might be cast.
Therefore, we adopt the multi-objective paradigm.

The Next Release Problem (NRP) considers only a single
release, while Release Planning (RP) considers a series of
releases. NRP is thus a special case of the RP. Since RP is
the more general case, this is the formulation we shall study
in this paper.

2.1 Representation, Objectives and Fitness
In any approach to SBSE it is necessary to define the rep-

resentation of the problem and the objectives, which define
the fitness function(s) used to guide the search [36, 37]. Ap-
proaches to the NRP represent the solution as a bitset of
requirements for the next release. The RP formulation, be-
ing more general, is typically represented as a sequence of
integers that denote release sequence numbers.



That is, the RP representation we used is an integer se-
quence in which each index position denotes a requirement
number. The value stored at this index denotes the assign-
ment of a release number into which the corresponding re-
quirement will be deployed. The RP problem seeks a weight-
ed assignment that optimises for a set of objectives. In this
paper we use the three-release formulation, with weights 5,3
and 1 for the first, second and third releases respectively.
The choice of the objectives to be considered in any multi-

objective NRP/RP instance is governed by the specifics of
the dataset and scenario for which the search based opti-
miser seeks requirement sets. Figure 1 provides descriptive
statistics that characterise the datasets, their sources and
the requirement optimisation objectives pertinent to each
dataset. In all but one case, the problem is a bi-objective
problem in which there is a single objective to be maximised
(such as revenue) and a single objective to be minimised
(such as cost). The exception is the Ericsson dataset. It has
two ‘importance’ objectives to be maximised: one for the
present and one for the future.
The specific choice of objectives to be maximised or min-

imised are parameters to the search based optimisation al-
gorithm used to search for requirement sets. The algorithm-
s use these objectives as fitness functions that guide the
search. We can compare different algorithms across differ-
ent datasets, because the algorithm itself does not change,
merely the fitness functions used to guide the search.

3. HYPER-HEURISTIC SEARCH
Hyper-heuristics [10] are search methodologies, more re-

cently introduced to the optimisation literature than the
meta-heuristics that have been enthusiastically adopted by
the SBSE community [36, 49]. Hyper-heuristics differ from
meta-heuristics because they search the space of heuristics
rather than the space of solutions [11].
Hyper-heuristics encapsulate problem specific information

using a pool of low-level heuristics (known as search oper-
ators). In the wider literature on engineering and design
in general (rather than software engineering in particular),
hyper-heuristics have been widely applied. However, even
in this wider context, the design and engineering problems
attacked using hyper-heuristics have tended to be single ob-
jective problems, with only a very few previous attempts to
apply hyper-heuristics to multi-objective problems [9, 46].
Though hyper-heuristics have been suggested as a future

direction for SBSE [34], there has been no previous inves-
tigation of the potential of hyper-heuristics for any SBSE
problem, so their performance on release planning has, hith-
erto, been unknown. This paper is thus the first paper in
the requirements engineering literature to explore the use of
hyper-heuristics and one of the few papers in the optimisa-
tion literature to use multi-objective hyper-heuristics.
We implemented 10 search operators for hyper-heuristic

release planning. These are explained in Figure 2. The first
two (Random and Swap) represent standard mutation oper-
ators (i.e. they perform a small change on the solution, by
swapping or changing solution components), while the re-
maining 8 follow the so-called ‘ruin-recreate’ (also known as
the ‘destruction-construction’) principle [48]. Ruin-recreate
operators partly decompose (ruin) the solution and sub-
sequently recreate it, incorporating problem-specific recon-
struction heuristics to rebuild the solutions from their de-
composed fragments.

Table 2: The description of 10 search operators

Operator Description

Random With uniform probability, select a requirement
and change its release number to another re-
lease version (uniformly selected)

Swap Swap the release numbers of two requirements
in the sequence

Delete Add With uniform probability, exclude a require-
ment from the current release, and add it to an-
other release (also selected with uniform prob-
ability)

Delete Add
Best

With uniform probability, select a requirement,
r, and an objective o, replacing r with the best
performing requirement according to objective
o

Delete Worst
Add

With uniform probability, select a requiremen-
t, r, and an objective o, replacing r with the
worst performing requirement according to ob-
jective o

Delete Worst
Add Best

With uniform probability, select an objective
o, and a release number, n, replacing the worst
performing requirement according to objective
o at release n with the best performing require-
ment (according to o)

Delay Ahead With uniform probability, select two require-
ments r1 (for a release other than the first) and
r2 (for a release other than the last). Move the
release date of r1 to a later release number (the
number selected with uniform probability from
those that follow its current release position).
Move the release number of r2 forward to an
earlier number (selected with uniform proba-
bility from those that precede it). That is, r1
is ‘delayed’ and r2 is ‘advanced’

Delay Ahead
Best

With uniform probability, select a requirement,
r, and an objective o. Delay r and advance the
best requirement according to objective o

Delay Worst
Ahead

With uniform probability, select a requirement,
r, and an objective o. Delay the release of the
worst requirement (according to objective o)
and advance the release of r

Delay Worst
Ahead Best

With uniform probability, select an objective
o. Delay the release of the worst requirement
and advance the release of the best (‘worst’ and
‘best’ according to objective o)

3.1 Adaptive Operator Selection
An adaptive operator selection scheme consists of two

components, called the ‘credit assignment’ mechanism and
the ‘selection’ mechanism [30]. Credit assignment involves
the attribution of credit (or reward) to the hyper-heuristic’s
operators, determined by their performance during the search
process.

Our hyper-heuristic release planners use the scheme pro-
posed by Fialho et al. [29], known as ‘extreme value credit
assignment’, which is based on the principle that infrequent,
yet large, improvements in the objective score are likely to
be more effective than frequent, small improvements. There-
fore, it rewards operators that have had a recent large posi-
tive impact on the objective score, whilst consistent opera-
tors that only yield small improvements receive less credit,
and therefore have lower chances of selection.

The credit assignment mechanism needs to be coupled
with a selection mechanism that uses the accumulated cred-
its to select the operator to apply in the current iteration.
Most operator selection rules in the literature attach a prob-
ability to each operator and implement a randomised process
to select the operator according to these probabilities. We
used the simplest of these rules, called ‘Probability Match-
ing’ [59], which corresponds to the well-known roulette wheel
selection used by meta-heuristic SBSE work [36].



4. EXPERIMENTAL SET UP
This section explains our experimental methodology.

4.1 Algorithms
More than 15 different meta-heuristic algorithms have been

used in SBSE research [36]. Many of these have also been
used in research on the NRP/RP (as outlined in Table 1).
Indeed, all of these 15 (and many more meta-heuristics [8])
could be used, in principle, since the formulation of the prob-
lem is sufficiently generic that any search based technique
could be applied.
We chose to investigate the performance of six search tech-

niques: three meta-heuristics, Hill Climbing, Simulated An-
nealing and the Nondominated Sorting Genetic algorithm
(NSGA2), which we denote HC, SA and GA respectively,
together with hyper-heuristic versions of each of the three
meta-heuristics, which we denote HHC, HSA and HGA. The
motivation for this choice derives from the way in which
computational search algorithms can be classified as either
‘local’ or ‘global’. Local search techniques, such as hill climb-
ing, tend to be fast, but they can become stuck in a local
optimum, thereby producing sub-optimal solutions. By con-
trast, global search techniques, such as genetic algorithms,
may be computationally more expensive, but they incorpo-
rate mechanisms to avoid local optima confinement.
Many techniques embody elements of both local and glob-

al search, with the local search facilitating ‘exploitation’ in
the search landscape, while the global search facilitates ‘ex-
ploration’ of the landscape [16]. One widely studied algorith-
m that does this is Simulated Annealing, which augments
the basic hill climbing approach with a ‘cooling’ coefficient
that mimics cooling in annealing processes [63]. This pro-
cess can enable the algorithm to escape local optima. In the
SBSE literature, SA is the most widely used compromise
between global and local search [36].
Our choice of the three meta-heuristic algorithms reflects

our desire to sample from the set of possible algorithm choic-
es, three that, in some sense, ‘cover’ the spectrum of algo-
rithmic behaviours from local to global search. As Table 1
shows, all three of these meta-heuristic search techniques
have been proposed and studied for release planning prob-
lems. We also wish to study the effect of hyper-heuristics as
well as meta-heuristics, motivating our choice of the three
hyper-heuristic variants of the three meta-heuristics we se-
lected for study.
In the hyper-heuristic algorithms (HGA, HSA and HHC),

the mutation operator of the meta-heuristic version (GA, SA
and HC respectively) is replaced by the adaptive operator
selection mechanism outlined in Section 3.1. For the GA
and HGA we set the population size to 100 and the number
of generations to 50. To ensure a fair comparison, SA, HSA,
HC and HHC and the random search were all given the same
budget of fitness evaluations as GA and HGA.

4.2 Datasets
We used 10 datasets, of which 7 are drawn from real world

requirements selection problems in a variety of different or-
ganisations. Of these, 5 have been used in separate previous
studies in the literature and 2 (StoneGate and MS Word)
are newly introduced for the first time here. The other 3
datasets contain bug fixes requested for Eclipse, Mozilla and
Gnome. They might be regarded as ‘pseudo real world’; they
are taken from real world applications but it is debatable

whether they truly denote ‘requirements’.
We include these three in the study since they have previ-

ously been used to act as a surrogates for real world dataset-
s. Their use in previous work was motivated by the need
to overcome the difficulty of finding sufficiently many real
world datasets on which to evaluate [65]. A summary of
each dataset studied in this paper can be found in Figure 1.

Previous studies have included at most two real world
requirements datasets (or all three of the bug fixing pseudo-
real world datasets), often augmenting these with synthetic
data to compensate for the lack of real world data. Our
study is therefore the most comprehensive study of meta-
heuristics for release planning so far reported in the litera-
ture. Our use of these 10 datasets is sufficient to allow us
to ask an important research question that has, hitherto, e-
luded the research community: ‘how well do the algorithms
scale with respect to the size of the real world requirements
problem to which they are applied?’.

4.3 Performance Metrics
We use 4 quality metrics to compare the performance of

each of the 6 search-based optimisation algorithms (and ran-
dom search). In most multi-objective optimisation problems
the globally optimal Pareto front is unobtainable. Release
planning is no exception to this. In such situations it is
customary to construct a ‘reference’ front. The reference
front is defined to be the largest nondominated subset of
the union of solutions from all algorithms studied. As such,
the reference front represents the best current approxima-
tion available to the true location of the globally optimal
Pareto front. Three of the quality metrics we use (Contribu-
tion, Unique Contribution and Convergence) are computed
in terms of each algorithm’s distance from or contribution
to this reference front:
Contribution (denoted ‘Contrib’ in our results tables) for
algorithm A is the number of solutions produced by A that
lie on the reference front. This is the simplest (and most
intuitive) quality metric. It assesses how many of the best
solutions found overall are found by algorithm A.
Unique Contribution (denoted ‘UContrib’ in our results
tables) for algorithm A is the number of solutions produced
by A that lie on the reference front and are not produced
by any algorithm under study except A. This is a variant
of the ‘Contribution’ metric that takes account of the fact
that an algorithm may contribute relatively few of the best
solutions found, but may still be valuable if it contributes a
set of unique best solutions that no other algorithm finds.
Convergence (denoted ‘Conv’ in our results tables) for al-
gorithm A is the Euclidean distance between the Pareto
front produced by A and the reference front.
Hypervolume (denoted ‘HVol’ in our results tables) is the
volume covered by the solutions in the objective space. HVol
is the union of hypercubes of solutions on the Pareto front
[72]. By using a volume rather than a count (as used by
the ‘contribution’ metrics), this measure is less susceptible
to bias when the numbers of points on the two compared
fronts are very different.

Quality of solutions is clearly important, but diversity is
also an important secondary criterion for algorithms that ex-
hibit acceptable solution quality. We measured the diversity
using a standard metric introduced by Deb [18]:
Diversity measures the extent of distribution in the ob-
tained solutions and spread achieved between approximated



Name and Source Number of Objectives
Summary Description of Dataset and Software System

of Dataset R SH Max Min

Baan [62] 100 17 Revenue Cost ERP product developed by 600 engineers spread over four countries
StoneGate 100 91 Sales Value Impact Industrial software security release planning project (confidential source)
Motorola [68] 35 4 Revenue Cost UK service provider requirements for range of handheld communication devices
RalicP [69] 143 77 Revenue Cost Library and ID Card System in current use at University College London (UCL)
RalicR [69] 143 79 Revenue Cost Library and ID Card System in current use at UCL (a variant of RalicP)
Ericsson [66] 124 14 Importance Cost Requirements for a software testing tool for now and into the future
MS Word 50 4 Revenue Urgency Text editing system for use with Microsoft Word
Eclipse [65] 3502 536 Importance Cost The Eclipse environment with bug fix requests treated as requirements
Mozilla [65] 4060 768 Importance Cost The Mozilla system with bug fix requests treated as requirements
Gnome [65] 2690 445 Importance Cost The Gnome desktop system with bug fix requests treated as requirements

Figure 1: The 10 datasets used and their numbers of Requirements (R), stakeholders (SH) and objectives
to be Maximised (Max) and Minimised (Min). Those datasets with accompanying citations are taken from
previous studies; those without citations are used in this paper for the first time.

solutions and the reference front [18].
Finally, in order to assess the compensation or effort re-

quired to produce the quality and diversity of solutions ob-
served, we measure the computational effort:
Speed is measured in terms of the wall clock time required
to produce the solutions reported, averaged over 30 execu-
tions. All experiments were carried out on a desktop com-
puter with a 6 core 3.2GHz Intel CPU and 8GB memory.
In order to facilitate a more easy comparison of the six

overall metrics used in our study, we normalise all of them
to lie between 0.0 and 1.0 and convert all of them to ‘max-
imising metrics’ (such that higher values denote superior
performance). For example, ‘speed’ (to give it a name that
captures it ‘maximising form’) is computed as 1− T , where
T is the normalised wall clock time. Thus, in all tables of
data presented in this paper (including the correlation analy-
ses) the reader can safely assume ‘higher means better’. We
normalise a value x, drawn from a set of observed values,
ranging from xmin to xmax, using the standard normalising
equation: x−xmin

xmax−xmin
.

Our algorithms are executed 30 times each to cater for
their stochastic natures, so the normalised metric values re-
ported are averaged (using mean and median) over these 30
runs. Averaging means that there is often no value reported
in our results that happens to be exactly 1.0 or exactly 0.0,
despite normalisation using maxima and minima.

4.4 Statistical Testing
We need to take account of the stochastic nature of each

algorithm due to their partial reliance on randomisation.
This is a well-known phenomenon for which it is widely ad-
vised [4, 37] that inferential statistical testing should be used
as an appropriate way to compare algorithm performance.
The pseudo random number sequence used by the algorithm-
s is the cause of uncertainty. We are therefore sampling over
the population of pseudo random number sequences [37].
We use inferential statistical testing techniques to draw

inferences about the population of all possible executions of
the algorithm on a particular instance, based on a sample
of these executions. In our experiments we set our sample
size to 30. That is, each of the 7 algorithms is executed 30
times on each of the 10 datasets.
We had no knowledge of the distribution of the population

from which we sample executions so we use nonparametric
statistical techniques, thereby increasing the robustness of
our statistical inferences [4, 28, 37]. However, many widely
used nonparametric statistical techniques are not as robust

as the researcher might hope.
For example, though the widely used Mann-Whitney [45]

(and closely-related Wilcoxon [64]) test and the Kruskal-
Wallis test [42], make fewer assumptions than parametric
tests they do, nevertheless assume that that variance is con-
sistent across all populations [71]. Unfortunately, we can
make no such assumption about our data in these experi-
ments.

Therefore, we use Cliff’s method [14] for assessing statis-
tical significance. Cliff’s method is not only nonparametric,
but it is also specifically designed for ordinal data. Our
research questions are ordinal and we have no reason to be-
lieve that our measurement scales are anything but ordi-
nal [57]. Furthermore, unlike other popular nonparametric
inferential statistical techniques such as the Kruskal-Wallis
andWilcoxon-Mann-Whitney tests, Cliff’s method makes no
assumptions about the variance of the data, thereby making
it more robust.

We use the Vargha-Delaney Â12 metric for effect size (as
recommended by Arcuri and Briand [4]). Vargha-Delaney

Â12 also makes few assumptions and is highly intuitive:
Â12(A,B) is simply the probability that algorithm A will
outperform algorithm B in a head-to-head comparison.

We have set our α level to the widely used ‘standard’ val-
ue of 0.05. Each comparison of a p value with the chosen
α level is essentially a claim about probability; the prob-
ability of committing Type I error (the error of incorrectly
rejecting the Null Hypothesis). However, if the experimenter
conducts a series of tests, then the chances of committing a
Type I error increase, potentially quite dramatically, unless
some adjustment (or ‘correction’) is made.

One popular (but not necessarily ideal) adjustment is the
Bonferroni correction, which was first used to control for
multiple statistical inferences by Dunn [22]. Unfortunately,
this is been shown to be highly conservative; while it avoids
Type I errors, it does so at the risk of introducing Type II er-
rors (the error of incorrectly accepting the Null Hypothesis),
thereby reducing statistical power.

Fortunately, more recent techniques have been developed
that retain the property of the Bonferroni correction (avoid-
ing Type I errors), while simultaneously reducing its ten-
dency to increase Type II errors.

In our work we use just such a technique, the Hochberg’s
method [38] for controlling multiple hypothesis testing. This
method ranks the statistical tests applied, adjusting the α
level for each successive test. It is a less conservative adjust-
ment in the Bonferroni correction, while retaining its ability



to avoid Type I errors [6].
As well as investigating the quality of solutions produced

by each algorithm, we also want to investigate the correla-
tion between the size of the problem instance and the be-
haviour of each algorithm. Though we believe there may be
correlations of interest, we have no reason to believe that
they will be linear. Furthermore, since our data is mea-
sured on an ordinal scale, the use of the Pearson correlation
[33, 47, 56] is inappropriate; we need to choose an ordinal
correlation method. In order to ensure robustness of our con-
clusions we chose to use both Kendall’s τ [41] and Spearman
rank correlation [56, 58], both of which are nonparametric,
rank-based assessments of correlation.

4.5 Research questions
This section explains and motivates the four research ques-

tions we ask in our study. When comparing different algo-
rithms for release planning problems, a natural question to
ask is the quality of the solutions produced, according to the
standard measures of multi-objective solution quality. Our
first research question therefore investigates solution quality:

RQ1: Quality: According to each of the 4 quality mea-
sures, and on each of the 10 datasets, which algorithm per-
forms best? To answer this question we use the Cliff’s infer-
ential statistical comparison, as explained in Section 4.4 to
determine which algorithms significantly outperform others
and the Â12 measure of effect size in each case.
Quality of solutions is important, but from the release

planner’s point of view a wide diversity of candidate solu-
tions may also be important. In the most extreme case, a
degenerate Pareto front (containing only a single solution)
may have maximum quality but will have no diversity and
will thus offer the release planner no choice at all. We there-
fore also investigate the diversity of solutions produced by
each algorithm:

RQ2: Diversity: What is the diversity of the solutions
produced by each algorithm? We used Cliff’s method to
report on statistically significant differences in Diversity and
Â12 to assess the effect size of any such differences observed.
Naturally, the computational effort required to produce

these solutions is also important. An algorithm that pro-
duces slightly lower quality solutions, but which does so al-
most instantaneously will have different applications to one
that produces better quality solutions, but takes several min-
utes to produce them. The former can be used in a situation
where the release planner wants to repeatedly investigate
‘what if’ questions, rebalancing estimates of cost and value
in real time. In this scenario, speed trumps quality, provided
quality is sufficient to be acceptable for ‘what if’ analysis.
The latter will be more useful in scenarios where require-
ments optimisation provides decision support for an impor-
tant overall choice about release planning. In this situation,
quality trumps speed, provided a solution can be found in
reasonable time (which might be hours or even days).

RQ3: Speed: how fast can the algorithms produce the
solutions?
An algorithm that produces good solutions with accept-

able diversity in reasonable time for small problems may
scale less well to larger problems. In release planning prob-
lems, scalability is not merely a question of the increased
computational effort required for a larger problem; it is to
be expected that computational effort will be directly pro-

portional to problem size.
However, perhaps more importantly, there may also be

some degradation solution quality and/or diversity as the
size of the problem scales up. We therefore investigate scala-
bility from the point of view of all of the metrics we collected
in our answers to the foregoing three research questions.

RQ4: Scalability: What is the scalability of each of the
algorithms with regard to solution quality, solution diversi-
ty and speed? In order to answer this question we report
the rank of correlation between the size of the problem (mea-
sured in terms of the number of requirements in the dataset)
and each of the metrics for quality, diversity and speed.

Since each algorithm is executed 30 times to facilitate s-
tatistical comparisons, we report correlations between the
number of requirements and each of the mean, median and
best case for quality, diversity and speed. As explained in
Section 4.4, we use Kendall’s τ and Spearman rank corre-
lation to assess the degree of correlation between the quali-
ty, diversity and speed metrics and the size of the problem
(measured as the number of requirements).

5. RESULTS AND ANALYSIS
This section presents the results of the empirical study

of meta- and hyper-heuristic search techniques for multi-
objective release planning.

RQ1: Quality: Table 3 presents the mean and median
values of the metrics for quality, diversity and speed for each
of the 7 algorithms on each of the 10 datasets. Table 4
presents the results of the inferential statistical tests. Since
we need to compare 7 different algorithms with each other,
this yields 21 pairwise comparisons (and thus 21 columns of
data). Each of these columns contains the Vargha-Delaney

Â12 effect size measure where the result is significant (at
the 0.05 α level), and is left blank where the result is not
significant. The column heading indicates which algorithm is
being compared with which others, in groups of 6, 5, 4, 3, 2,
and 1 pairwise comparisons (6+5+4+3+2+1 = 21 pairwise
comparisons in total).

For example, in the pair of columns headed by the title
HHC

HC | R
, the HHC algorithm is compared against each of

the HC and R algorithms. The value 1.00 in the first row
under the first of these two columns indicates the following:
HHC outperforms HC significantly for its contribution to
the Baan dataset’s reference front (because the entry is not
blank) and the probability of this observation being made is
1.00. That is, HHC always beats HC for its contribution to
the Baan dataset reference front in our sample of 30 runs.

The fifth row of data in this same column contains the
effect size measure 0.06, which being nonblank, indicates a
significant result. However, this time the probability of H-
HC beating HC is 0.06, so the HC algorithm significantly
outperforms the HHC algorithm on the metric assessed (Di-
versity for the Baan dataset).

From these two entries in the table of results we can see
that, for the Baan dataset, HHC contributes far more strong-
ly to the reference front than HC, but HC is far more diverse.
As can be seen, the other three quality metrics for the com-
parison of HHC and HC on the Baan dataset also strongly
favour HHC. Based on these observations we would prefer
HHC to HC, since diversity is only interesting if the algo-
rithm’s quality is strong; a highly diverse set of sub-optimal
solutions is easy to achieve and is of little value to the release



planner.
The forgoing discussion indicates the density of informa-

tion contained in Table 4. Space does not permit a further
individual discussion of each of the 21 pairwise comparison-
s, but some general observations do emerge: From Table 3,
we can see that the random search (R) and also HC and
SA make few contributions to the reference front: Random
search contributes in two cases, while the other two algo-
rithms only manage a contribution in a single case: the Er-
icsson dataset. Even when these three search strategies do
make a contribution to the reference front they contribute
only tiny proportion of solutions (no more than 2%).
Looking at the results for the three meta-heuristic algo-

rithms (GA, SA and HC), we see that GA performs best
overall for quality on smaller datasets, while SA perform-
s noticeably better on the three larger datasets (Eclipse,
Mozilla and Gnome). This highlights the risk of drawing
conclusions based on too narrow a selection of real world
datasets.
The results for the three hyper-heuristic algorithms are

less equivocal; they outperform their meta-heuristic coun-
terparts according to all 4 quality measures. That is, HSA
and HHC each significantly outperform both SA and HC on
all 10 datasets with high effect size in every case, while H-
GA significantly outperforms GA on 9 out of the 10 datasets
with high effect size. HGA is beaten by its meta-heuristic
counterpart only on the Ericsson datasset.
HGA clearly offers the best performance over all datasets,

algorithms and quality metrics: It significantly outperforms
the other algorithms in 85% (205/240) of the pairwise algo-
rithm quality comparisons. However, though HGA performs
strongest in terms of solution quality, it would be a mistake
to conclude that is the only algorithm that should be used.
HSA outperforms the HGA for ‘contribution’ in 4 of the 10
datasets and, perhaps more importantly, for ‘unique contri-
bution’ in three cases. Even HHC significantly outperforms
HGA in terms of ‘contribution’ in one case.
We also observe further evidence that suggests that results

from one dataset may not generalise to others. The most
extreme example of this is the Ericsson dataset, for which all
of the algorithms behaved very differently (when compared
to each other) than they did for the other datasets.

RQ2: Diversity: As might be expected, random search
performs very well in terms of diversity. From Table 4 we
can see that it outperforms almost every other algorithm
for almost every dataset and often does so significantly and
with a large effect size.
However, we know from the answer to RQ1 that random

search only contributes to the reference front for 2 of the 10
datasets, and even then it only contributes at most 1% of
the unique solutions. We therefore conclude that the diver-
sity exhibited by the random search is largely suboptimal;
any solutions it offers (diverse or otherwise) are likely to be
dominated by solutions found by one of the other algorithms
(if not all of them).
Of the three hyper-heuristic algorithms (which were com-

petitive for the quality metrics), HGA exhibits the best
diversity. It significantly outperforms HSA in 9 of the 10
datasets and HHC in 8 of the 10. As with the quality met-
rics studied in answer to RQ1, we observe that the Ericsson
dataset also produces very different behaviour in terms of
Diversity. The NSGA2 algorithm (on which both GA and
HGA algorithms are based) was designed to promote diver-

sity and so we might expect that it should perform best,
both its meta- and hyper-heuristic versions.

Even the meta-heuristic version (GA) outperforms the
hyper-heuristic versions of simulated annealing (HSA) and
hill climbing (HHC) with respsect to Diversity for 9 of the
10 datasets. However, there is no evidence that it outper-
forms its own hyper-heuristic version (HGA) with respect to
Diversity. That is, GA significantly outperforms HGA for
one dataset (Ericsson), while HGA significantly outperforms
GA on 2 datasets (Mozilla and Gnome). In all other cases
neither significantly outperforms the other.

RQ3: Speed: One might expect that a random search
would be fast, since it is such a simple algorithm. How-
ever, we find (quite surprisingly) that the speed of random
search is worse than all other algorithms studied for the larg-
er datasets. We studied these results further and found that
the explanation lies in the cost of invalid solutions: As the
problem scale increases, a randomly constructed solution to
the release planning problem is increasingly likely to be in-
valid. For example, it is increasingly likely to contain gaps in
the release plan. The computational effort of random search
becomes dominated by repairing such invalid release plans
as the problem scale increases.

By contrast, meta-heuristic and hyper-heuristic algorithm-
s spend most of their time adapting existing release plans.
This makes them more scalable than random search, even
though they are more sophisticated. Interestingly, HGA is
fastest overall: it significantly outperforms its rival in 70%
(42/60) of the pairwise comparisons.

On the largest dataset, Mozilla, which has more than
4,000 requirements, each of the executions of random search
took more than 13 minutes to complete, while each HGA
execution took just over 3 minutes. Neither of these dura-
tions makes a big difference to the kind of release planning
applications that could be undertaken.

For the smaller datasets (with fewer than 200 require-
ments), each HGA executions completed in fewer than 10
seconds (sometimes merely 1 or 2 seconds). This puts HGA
tantalisingly close to the threshold at which it could be used
to investigate ‘what if’ scenarios; the release planner could
modify the available requirements and/or their attributes
and explore the impact of such changes in real time.

RQ4: Scalability: The tables in Figure 2 highlight a scal-
ability problem for meta-heuristic NSGA2 (denoted GA in
the tables): as the number of requirements increase, GA’s
contributions to the reference front decrease. This obser-
vation remains consistent whether we measure the mean,
median or the best performance of each algorithm and also
holds whether we use Kendall’s or Spearman’s correlation.

Figure 2 also reveals a negative correlation between the
number of requirements and convergence of meta-heuristic
NSGA2 and the best performance of meta-heuristic NSGA2
for hypervolume. Taken together, these negative correlation
results for meta-heuristic NSGA2 quality metrics suggest
that the quality of solutions it produces tend to decrease as
the problem size increases.

We also observe a slightly less strong, but positive, corre-
lation between the number of requirements and diversity of
solutions produced by meta-heuristic NSGA2. This suggest-
s meta-heuristic NSGA2 increases its diversity with scale.
However, since its contribution and quality tend to decrease
as the scale of the problem increases its diversity is of con-



siderably lesser value; it is simply producing a wider range
of increasing sub-optimal solutions as the problem scales.
Fortunately, the other algorithms found to perform well

in answer to RQ1 do not exhibit any such evidence for neg-
ative correlation between problem size and solution quality.
In particular, hyper-heuristic NSGA2 exhibits no such cor-
relation. Even more encouraging for this algorithm, we find
consistent evidence, across all six correlation values, that it
increases its diversity as the scale of the problem increases.

Actionable Findings and Threats to Validity: Our re-
sults are based on only 10 datasets. This is considerably
larger than any previous empirical study of release plan-
ning. These datasets are obtained from open source as well
as closed source, system tools as well as enterprise appli-
cations, and have sizes varying from 100 to 4,000 require-
ments. Nevertheless, it remains insufficient to generalise to
every type of project in every scenario. Indeed, we have
seen evidence in our results that algorithms can behave very
differently with respect to different datasets.
Therefore, as with other experimental/empirical SBSE

work [34], this finding suggests that the use of synthetic
datasets in experimental work on release planning should be
augmented with the study of real world datasets most likely
to share the characteristics of the problem domain to which
the proposed algorithms are to be applied.
We have attempted to control potential threats to con-

struct validity by the use of ordinal inferential statistical
techniques which make no assumptions about distribution
(including variance). For correlation analysis we use two d-
ifferent nonparametric correlations in order to increase con-
fidence in our findings. These findings suggest that hyper-
heuristics are an attractive new direction for release planning
optimisation and that, in particular, hyper-heuristic NSGA2
(the algorithm labelled ‘HGA’) is highly attractive: it typ-
ically outperforms the other algorithms studied in terms of
quality, diversity and speed. Furthermore, it appears that it
scales well compared to its meta-heuristic counterpart and
other algorithms studied.

6. CONCLUSION
We have presented a comprehensive study of meta-heuristic

and hyper-heuristic release planning on 10 real world dataset-
s. Overall, we found that hyper-heuristic NSGA2 performs
the best in terms of quality, diversity, speed and scalability.
However, our results also indicate that the hyper-heuristic
versions of Simulated Annealing and Hill Climbing also make
some contribution to the best solutions found and are also
relatively scalable.
This finding suggests that if only a single algorithm is

to be used then it should be hyper-heuristic NSGA2, but
if resources allow, it may be advantageous to combine its
results with those from other hyper-heuristic algorithms.
Furthermore, we found that algorithm behaviour can d-

iffer greatly from one dataset to another, indicating that
research on synthetic datasets needs to be augmented with
analysis of appropriate real world datasets.
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Techniques’ at UCL CREST in February 2014. Her tutorial
and subsequent discussions with us on ordinal inferential
statistical techniques greatly influenced our approach to the
analysis of results in this paper.

Alg.
Median value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.21 -0.52 0.21 0.30 0.66 -0.21
GA -0.61 -0.56 -0.52 -0.48 0.61 0.25
HSA 0.11 0.02 0.11 0.21 0.25 0.43
SA -0.05 -0.05 0.30 0.43 -0.25 0.36
HHC 0.07 -0.02 0.07 0.11 -0.16 0.57
HC -0.05 -0.05 0.11 0.16 -0.25 0.39
R 0.26 0.26 0.07 0.52 0.71 -0.61

Alg.
Best value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.17 -0.44 0.05 0.05 0.52 -0.25
GA -0.57 -0.57 -0.61 -0.57 0.43 0.75
HSA 0.32 0.27 0.11 0.21 -0.07 0.43
SA 0.17 0.12 0.30 0.25 -0.61 0.25
HHC 0.02 -0.02 0.07 0.16 -0.39 0.57
HC -0.07 -0.07 0.21 0.11 -0.30 0.21
R 0.71 0.66 0.34 0.57 0.00 -0.85

Alg.
Mean value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.25 -0.48 0.21 0.25 0.71 -0.25
GA -0.61 -0.57 -0.52 -0.48 0.66 0.25
HSA 0.11 0.05 0.11 0.21 0.25 0.43
SA 0.02 -0.12 0.25 0.34 -0.39 0.43
HHC -0.07 -0.02 0.07 0.11 -0.23 0.57
HC -0.12 -0.02 0.07 0.16 -0.21 0.39
R 0.61 0.61 0.25 0.52 0.66 -0.66

Kendall correlation values

Alg.
Median value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.28 -0.63 0.21 0.41 0.83 -0.18
GA -0.73 -0.71 -0.61 -0.50 0.73 0.41
HSA 0.23 0.06 0.31 0.32 0.27 0.63
SA -0.06 -0.06 0.52 0.62 -0.46 0.59
HHC 0.18 0.05 0.27 0.29 -0.17 0.78
HC -0.06 -0.06 0.36 0.31 -0.46 0.62
R 0.31 0.31 0.32 0.67 0.81 -0.78

Alg.
Best value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.22 -0.53 0.05 0.06 0.65 -0.18
GA -0.70 -0.70 -0.78 -0.69 0.54 0.87
HSA 0.47 0.36 0.31 0.32 -0.17 0.63
SA 0.19 0.07 0.46 0.40 -0.70 0.40
HHC 0.05 0.05 0.30 0.31 -0.51 0.79
HC -0.19 -0.19 0.43 0.34 -0.36 0.38
R 0.82 0.79 0.54 0.66 0.00 -0.94

Alg.
Mean value correlated with number of requirements

Quality
Diversity Speed

Contrib UContrib Conv HVol
HGA -0.38 -0.60 0.21 0.35 0.85 -0.20
GA -0.80 -0.79 -0.61 -0.50 0.74 0.38
HSA 0.23 -0.02 0.31 0.32 0.27 0.59
SA 0.04 -0.22 0.47 0.51 -0.59 0.62
HHC 0.02 0.05 0.27 0.29 -0.26 0.78
HC -0.21 -0.17 0.34 0.31 -0.45 0.57
R 0.74 0.74 0.42 0.67 0.77 -0.81

Spearman correlation values

Figure 2: Correlations of metrics for quality, diver-
sity and speed with size of problem. Perhaps sur-
prisingly, the speed of Random search (labelled ‘R’
in the table), widely believed to be ‘fast but low
quality’ does not scale well (indicated by a negative
correlation). Also we observe that while the qual-
ity of meta-heuristic NSGA2 (labelled ‘GA’) tends
to degrade with size, the quality of hyper-heuristic
NSGA2 (labelled ‘HGA’) does not.
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Baan Q
u
a
li
ty Contrib 0.83 0.86 0.02 0.00 0.20 0.20 0.00 0.00 0.14 0.13 0.00 0.00 0.00 0.00

UContrib 0.88 0.90 0.03 0.00 0.20 0.18 0.00 0.00 0.13 0.12 0.00 0.00 0.00 0.00
Conv 0.98 0.98 0.79 0.79 0.78 0.79 0.26 0.26 0.71 0.71 0.19 0.19 0.19 0.20
HVol 0.98 0.98 0.75 0.75 0.69 0.69 0.26 0.27 0.62 0.62 0.20 0.21 0.15 0.15

Diversity 0.54 0.54 0.49 0.48 0.17 0.18 0.73 0.75 0.14 0.13 0.57 0.61 0.88 0.88
Speed 0.94 0.95 0.96 0.96 0.37 0.36 0.78 0.78 0.15 0.16 0.67 0.70 0.98 0.98

Stone-

Q
u
a
li
ty Contrib 0.83 0.86 0.18 0.15 0.47 0.46 0.00 0.00 0.37 0.35 0.00 0.00 0.00 0.00

Gate

UContrib 0.86 0.85 0.19 0.15 0.45 0.44 0.00 0.00 0.36 0.32 0.00 0.00 0.00 0.00
Conv 0.96 0.96 0.67 0.68 0.71 0.70 0.16 0.19 0.68 0.68 0.14 0.14 0.21 0.21
HVol 0.96 0.97 0.60 0.58 0.70 0.71 0.23 0.24 0.71 0.72 0.20 0.21 0.29 0.28

Diversity 0.55 0.53 0.48 0.48 0.15 0.15 0.65 0.66 0.14 0.13 0.55 0.59 0.87 0.88
Speed 0.99 0.99 0.99 0.99 0.39 0.39 0.86 0.89 0.16 0.16 0.85 0.85 0.99 0.99

Motorola

Q
u
a
li
ty Contrib 0.81 0.80 0.46 0.47 0.39 0.39 0.00 0.00 0.38 0.39 0.00 0.00 0.00 0.00

UContrib 0.85 0.86 0.49 0.48 0.32 0.31 0.00 0.00 0.31 0.30 0.00 0.00 0.00 0.00
Conv 0.98 0.98 0.94 0.94 0.80 0.81 0.37 0.37 0.79 0.80 0.39 0.40 0.20 0.21
HVol 0.97 0.97 0.91 0.92 0.75 0.74 0.29 0.29 0.74 0.74 0.34 0.33 0.08 0.07

Diversity 0.26 0.23 0.29 0.29 0.28 0.29 0.53 0.53 0.31 0.30 0.45 0.48 0.70 0.69
Speed 0.90 0.90 0.88 0.88 0.25 0.28 0.75 0.78 0.16 0.16 0.71 0.70 0.97 0.97

RalicP Q
u
a
li
ty Contrib 0.75 0.76 0.22 0.21 0.16 0.15 0.00 0.00 0.13 0.12 0.00 0.00 0.00 0.00

UContrib 0.81 0.78 0.26 0.25 0.16 0.15 0.00 0.00 0.12 0.11 0.00 0.00 0.00 0.00
Conv 0.96 0.96 0.85 0.84 0.60 0.61 0.24 0.23 0.55 0.55 0.19 0.18 0.19 0.18
HVol 0.96 0.96 0.75 0.76 0.53 0.52 0.27 0.27 0.51 0.50 0.20 0.19 0.13 0.13

Diversity 0.56 0.57 0.55 0.55 0.50 0.48 0.70 0.77 0.48 0.47 0.66 0.65 0.88 0.89
Speed 0.95 0.96 0.98 0.98 0.25 0.27 0.79 0.82 0.17 0.17 0.76 0.79 0.96 0.96

RalicR Q
u
a
li
ty Contrib 0.84 0.88 0.10 0.07 0.12 0.12 0.00 0.00 0.08 0.08 0.00 0.00 0.00 0.00

UContrib 0.78 0.75 0.10 0.07 0.10 0.10 0.00 0.00 0.07 0.07 0.00 0.00 0.00 0.00
Conv 0.97 0.97 0.80 0.81 0.74 0.74 0.21 0.20 0.67 0.67 0.13 0.13 0.17 0.17
HVol 0.97 0.97 0.71 0.73 0.68 0.68 0.24 0.25 0.61 0.62 0.17 0.18 0.11 0.11

Diversity 0.39 0.42 0.39 0.40 0.18 0.18 0.50 0.54 0.17 0.18 0.47 0.49 0.78 0.76
Speed 0.96 0.96 0.98 0.98 0.38 0.37 0.84 0.84 0.18 0.17 0.71 0.71 0.97 0.97

Ericsson Q
u
a
li
ty Contrib 0.00 0.00 0.01 0.01 0.96 0.96 0.02 0.02 0.97 0.97 0.02 0.02 0.01 0.01

UContrib 0.00 0.00 0.01 0.01 0.94 0.94 0.02 0.02 0.95 0.97 0.02 0.02 0.01 0.01
Conv 0.51 0.50 0.56 0.42 0.99 0.99 0.16 0.15 0.99 0.99 0.19 0.18 0.15 0.15
HVol 0.30 0.41 0.33 0.40 0.96 0.96 0.75 0.74 0.95 0.93 0.76 0.76 0.79 0.80

Diversity 0.44 0.45 0.87 0.88 0.77 0.75 0.64 0.84 0.75 0.77 0.64 0.74 0.85 0.81
Speed 0.98 0.98 0.99 0.99 0.10 0.10 0.72 0.74 0.11 0.10 0.72 0.74 0.88 0.88

MS

Q
u
a
li
ty Contrib 0.62 0.61 0.42 0.41 0.83 0.83 0.00 0.00 0.76 0.76 0.00 0.00 0.00 0.00

Word

UContrib 0.73 0.73 0.49 0.49 0.81 0.80 0.00 0.00 0.73 0.73 0.00 0.00 0.00 0.00
Conv 0.96 0.97 0.88 0.89 0.82 0.82 0.22 0.20 0.82 0.82 0.27 0.28 0.20 0.21
HVol 0.93 0.92 0.81 0.80 0.83 0.84 0.26 0.25 0.84 0.85 0.32 0.30 0.23 0.24

Diversity 0.30 0.32 0.31 0.29 0.14 0.14 0.55 0.62 0.21 0.20 0.51 0.56 0.79 0.79
Speed 0.98 0.98 0.97 0.97 0.27 0.26 0.86 0.90 0.12 0.13 0.84 0.85 0.99 0.99

Eclipse Q
u
a
li
ty Contrib 0.60 0.58 0.00 0.00 0.81 0.82 0.00 0.00 0.58 0.58 0.00 0.00 0.00 0.00

UContrib 0.53 0.53 0.00 0.00 0.73 0.77 0.00 0.00 0.52 0.52 0.00 0.00 0.00 0.00
Conv 0.98 0.99 0.59 0.61 0.92 0.92 0.68 0.68 0.92 0.92 0.63 0.68 0.75 0.75
HVol 0.98 0.98 0.62 0.62 0.92 0.92 0.75 0.75 0.90 0.90 0.59 0.66 0.80 0.80

Diversity 0.69 0.69 0.65 0.65 0.20 0.19 0.45 0.48 0.14 0.14 0.27 0.30 0.93 0.94
Speed 0.95 0.95 0.99 0.98 0.79 0.80 0.96 0.96 0.79 0.80 0.93 0.94 0.05 0.05

Mozilla Q
u
a
li
ty Contrib 0.73 0.73 0.00 0.00 0.85 0.84 0.00 0.00 0.61 0.62 0.00 0.00 0.00 0.00

UContrib 0.63 0.65 0.00 0.00 0.75 0.75 0.00 0.00 0.54 0.53 0.00 0.00 0.00 0.00
Conv 0.97 0.97 0.70 0.72 0.92 0.93 0.72 0.72 0.92 0.92 0.64 0.69 0.77 0.77
HVol 0.98 0.98 0.66 0.68 0.92 0.92 0.75 0.75 0.90 0.90 0.57 0.66 0.80 0.80

Diversity 0.72 0.72 0.64 0.65 0.20 0.20 0.41 0.43 0.14 0.14 0.34 0.36 0.91 0.91
Speed 0.96 0.96 0.99 0.99 0.83 0.83 0.97 0.97 0.83 0.83 0.95 0.96 0.06 0.06

Gnome Q
u
a
li
ty Contrib 0.61 0.64 0.00 0.00 0.84 0.84 0.00 0.00 0.56 0.55 0.00 0.00 0.01 0.01

UContrib 0.48 0.49 0.00 0.00 0.68 0.67 0.00 0.00 0.46 0.45 0.00 0.00 0.01 0.01
Conv 0.98 0.98 0.59 0.58 0.92 0.92 0.67 0.67 0.91 0.91 0.62 0.64 0.74 0.74
HVol 0.97 0.97 0.61 0.61 0.92 0.92 0.74 0.74 0.89 0.90 0.65 0.70 0.80 0.80

Diversity 0.72 0.70 0.68 0.68 0.21 0.22 0.42 0.47 0.15 0.15 0.42 0.45 0.95 0.94
Speed 0.94 0.94 0.98 0.98 0.71 0.72 0.95 0.95 0.71 0.71 0.92 0.93 0.06 0.07

Table 3: The performance (Mean and Median) of the 7 algorithms for the 10 datasets. All metrics reported
in this table are normalised and maximising so the reader can assume that ‘higher numbers mean better
performance’ in all cases. Unsurprisingly, the results show that Random search tends to produce low quality
solutions. A little more surprisingly, the meta-heuristic algorithms (HC and SA) also contribute little to
the best solutions found (as assessed by the metrics ‘Contrib’ and ‘UContrib’ in the table). The results also
show that the Ericsson dataset occasions very different behaviour from the algorithms compared to the other
datasets, indicating that the dataset studied really does matter in empirical studies of release planning.
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