

Research Note
RN/13/22

Correctness of Slicing Finite State Machines

30 December 2013

Torben Amtoft

Kelly Androutsopoulos

David Clark

Abstract

We consider slicing of extended finite state machines. These may be non- deterministic and
hence standard techniques for slicing, developed for control flow graphs, are not immediately
applicable. In this paper we propose ways of expressing the semantic correctness of slicing.
We shall demand that the sliced machine simulates the original machine, so an “observable”
step taken by the latter can also be done by the former. In the other direction, we cannot hope
for a perfect simulation, but demand that for each observable step by the sliced machine,
either the original machine simulates it or (i) it gets stuck, or (ii) it loops. To ensure
correctness, it suffices to demand that the set of transitions in the slice satisfies two
conditions: it must be closed under the well-known notion of data dependence, and it must
have the “weak commitment” property highlighted by Danicic et al. If the slice also has the
“strong commitment” property, the case (ii) above can be ruled out, meaning that the original
machine will simulate the sliced machine except that it may get stuck. We prove that for each
of the properties “weak commitment” and “strong com- mitment”, there exists a least set with
that property; we also give algorithms to compute that least set.

UCL DEPARTMENT OF
COMPUTER SCIENCE

Correctness of Slicing Finite State Machines

Torben Amtoft1, Kelly Androutsopoulos2 and David Clark3,

1Department of Computing and Information Sciences,
Kansas State University, Manhattan KS 66506, USA

2Department of Computer Science,
Middlesex University, London, NW4 4BT, United Kingdom.

3CREST, Department of Computer Science,
University College London, United Kingdom.

December 29, 2013

Abstract
We consider slicing of extended finite state machines. These may be non-

deterministic and hence standard techniques for slicing, developed for control flow
graphs, are not immediately applicable.

In this paper we propose ways of expressing the semantic correctness of slic-
ing. We shall demand that the sliced machine simulates the original machine, in
that each “observable” step by the latter can also be done by the former. In the
other direction, we cannot hope for a perfect simulation, but demand that for each
observable step by the sliced machine, either the original machine simulates it or
(i) it gets stuck, or (ii) it loops.

To ensure correctness, it suffices to demand that the set of transitions in the
slice satisfies two conditions: it must be closed under the well-known notion of
data dependence, and it must have the “weak commitment” property highlighted
by Danicic et al.

If the slice also has the “strong commitment” property, the case (ii) above can
be ruled out, meaning that the original machine will simulate the sliced machine
except that it may get stuck.

We prove that for each of the properties “weak commitment” and “strong com-
mitment”, there exists a least set with that property; we also give algorithms to
compute that least set.

1 Introduction
The goal of program slicing [10, 9] is to remove the parts of a program that are irrel-
evant in a given context. Slicing has been applied for many purposes: compiler op-
timizations, debugging, model checking, protocol understanding, etc. Assuming that

1

the program is represented as a control flow graph (CFG), and that the slicing criterion
(the set of “relevant” nodes) is given, slicing involves the following two steps:

1. compute the slice, a set of nodes which includes the slicing criterion as well as
those nodes that the slicing criterion depends on (directly or indirectly, wrt. data
or wrt. control);

2. create the sliced program, essentially by removing the nodes that are not in the
slice and doing suitable “rewiring”.

Correctness of slicing may be phrased in various ways but will typically involve the
following properties:

1. The sliced program is well-defined; in particular, if a test that determines branch-
ing is removed then the two branches can be combined into one.

2. If the original program can do some observable action then also the sliced pro-
gram can do that action; here an observable action may be defined either as one
that is part of the slicing criterion, or as one that is part of the slice.

3. If the sliced program can do some observable action then also the original pro-
gram can do that action.

The last property (3) is often considered optional since in order to keep the size of the
slices managable one will allow to slice away loops.

Early work on the theoretical foundation of slicing [2, 5] is based on two underlying
assumptions: that the CFG is deterministic, and that it has a unique end node. Then
correctness properties (1) and (2) can be obtained by requiring the slice to be closed
under data dependency and under a carefully defined notion of control dependency. In
order also to have correctness property (3), one needs to employ a stronger version of
control dependency, ironically called “weak control dependence” [6] as it will include
more nodes in the slice.

An early attempt to handle non-determinism is [4] which considers a multi-threaded
language and proposes several kinds of dependencies, and also proposes to phrase cor-
rectness in terms of bisimulation (as is known from concurrency) but does not prove
any correctness results.

More recent work on slicing, while still requiring determinism, has allowed CFGs
with no end nodes so as to help model indefinitely running reactive systems. In [7, 8]
the authors propose a notion of control dependency that does not assume a unique end
node (but if so will coincide with the standard notion), and establish the correctness
properties (1)–(3) by means of a (weak) bisimulation result. That proof only works
for reducible CFGs, however; to ensure correctness for also irreducible CFGs it is
necessary [8] to introduce an additional kind of dependency that the slice must be
closed under. On the other hand, if one doesn’t want to enforce correctness property
(3), the dependency to use (in addition to data dependence) is “weak order dependence”
as introduced in [1].

A reader may by now feel perplexed by the numerous variants of control depen-
dency, but [3] has managed to extract order out of chaos: rather than looking at when

2

one node depends on another node, the authors pinpoint two desirable properties of the
resulting slices:

• Weak Commitment Closure (WCC) means that each node has at most one “next
observable”, where an observable is a node relevant to the slicing criterion.

• Strong Commitment Closure (SCC) in addition demands that from a node that
has a “next observable”, there is no way to infinitely avoid that observable.

[3] goes on to show that WCC is what is required (as already recognized in [1]) to get
correctness properties (1) and (2), while SCC is what is required to also get correct-
ness property (3). Furthermore, [3] shows that previous approaches from the literature
will compute either a slice satisfying WCC (if loops may be sliced away) or a slice
satisfying SCC (if loops may not be sliced away).

In this paper, we shall show that the notions of WCC and SCC are very helpful to
rather smoothly extend slicing to a non-deterministic setting. To make the development
concrete we shall phrase it for Extended Finite State Machines (EFSM). In this setting,
it appears natural to let slices be sets of transitions rather than sets of nodes (states).
After having defined the semantics such that correctness property (1) comes “for free”,
and having defined what constitutes an “observable”, we can go on to prove the desired
correctness properties. But while (2) is easy to prove, it is not as informative as in a
deterministic setting, since it doesn’t exclude the possibility that the sliced machine
have choices not present for the original machine. We would therefore want to modify
(3) so as to state that non-determinism does not increase, that is, if the sliced machine
can do so observable action then also the original machine can — unless one of two
happens: (i) the original machine loops, but that can be excluded by demanding that
the slice satisfies SCC; (ii) the original machine gets stuck (which is a possibility since
the non-determinism may allow not just more than one enabled transition but also zero
enabled transitions).

This paper is organized as follows: In Sect. 2 we shall introduce EFSMs, in Sect. 3
their semantics, in Sect. 4 some basic properties of slices, and in Sect. 5 some properties
of data flow. In Sect. 6 we shall set up the machinery for expressing correctness, with
property (2) being proved in Sect. 7 and property (3) being proved in Sect. 8. In Sect. 9
we shall address how to find the least set that satisfies WCC, and in Sect. 10 how to
find the least set that satisfies SCC.

2 Extended Finite State Machines (EFSMs)
An Extended Finite State Machine (EFSM) M is a tuple (S, T , E, V) where S is a
finite set of states, T is a finite set of transitions, E is a finite set of events, and V is
a finite set of variables. A state n 2 S (we shall also use the letter m to range over
states) is considered atomic, and one state in S may be designated as the initial state.
A transition t 2 T (we shall also use the letter u to range over transitions) has a source
state S(t) 2 S, a target state T(t) 2 S, and a label of the form e[g]/a. Here e 2 E is
an event, g is a guard, and a is an action which we wlog. can assume is an assignment
to a variable in V ; all parts of a label are optional (an omitted guard is the same as the
guard true; an omitted action is the same as the action skip).

3

Figure 1: A simple extended finite state machine.

Figure 2: Our running example EFSM.

Figure 1 shows a graphical representation of a simple EFSM; while Figure 2 depicts
a non-trivial EFSM that shall serve as our running example in this paper. In both cases,
S1 is supposed to be the initial state.

Some terminology about a transition t: it is a self-looping transition if S(t) = T(t);
it is an "-transition if all parts of its label are empty; it is a final transition if T(t) = n
with n an exit state, that is n = S(u) for no transition u.

Some terminology about a pair of transitions t and u: if S(u) = T(t) then u is a
successor of t; if S(t) = S(u) and T(t) = T(u) then t and u are parallel transitions; if
S(t) = S(u) but T(t) 6= T(u) then t and u are siblings.

3 Semantics of EFSMs
A configuration C of an EFSM is a pair (n, s) where n is a state and s is a store which
maps variables v (we shall also use the letter w to range over variables) to values. The
domain of values is unspecified but we assume an expression language with [[A]]s de-
noting the value resulting from evaluating expresion A in store s; similarly we assume a
guard language with [[B]]s 2 {true, false} denoting the value of the boolean expression
B wrt. store s.

We shall present a semantics that facilitates reasoning about slicing. With a slice
set being a set of transitions, our development is relative to a fixed slice set L. Slicing

4

amounts to keeping the transitions in L as they are, whereas transitions not in L are
replaced by "-transitions. In our definitions, we shall use the subscript 1 to refer to the
original machine, and subscript 2 to refer to the sliced machine.

Hence the guard of a transition t as denoted G1(t) which is a boolean expression,
and its “enabling events” is denoted E1(t) which is either a singleton [e] (the transition
consumes e) or [] (the transition is “spontaneous”). If t 2 L we have G2(t) = G1(t)
and E2(t) = E1(t), otherwise G2(t) = true and E2(t) = [].

If enabled, t modifies the variables in D1(t) which we shall assume is either the
empty set or a singleton; in the latter case, with D1(t) = {v}, we shall write A1(t)
for the expression being assigned to v. If t 2 L we have D2(t) = D1(t) and A2(t) =
A1(t), otherwise D2(t) = ; and A2(t) is undefined. For i = 1, 2 we define Ui(t),
the variables used by t, as fv(Gi(t)) [fv(Ai(t)). Observe that we do not allow for
transitions that produce events.

Definition 1 We write i ` t : (n, s) E! (n0, s0) to denote that (n, s) in the i-
semantics (i = 1, 2) through transition t evolves to (n0, s0) while consuming the events
in the list E (which is [] or a singleton). This happens when t is such that S(t) = n,
T(t) = n0, [[Gi(t)]]s = true, E = Ei(t), and either Di(t) = ; and s0 = s or Di(t) is a
singleton {v} and s0 = s[v 7! [[Ai(t)]]s].

Fact 2 If 2 ` t : (n, s) E! (n0, s0) with t /2 L then E = [] and s0 = s.

We say that [t1..tk] (k � 0) is a path if for all j 2 1 . . . k � 1, tj+1 is a successor of
tj . If k � 1, we say that [t1..tk] is a path from S(t1) to T(tk); if k = 0, then [t1..tk] is
a path from n to n for all n. We say that n occurs in [t1..tk] if there exists j 2 1 . . . k
such that n = S(tj) or n = T(tj). We say that a path [t1..tk] is outside L iff tj /2 L
for all j 2 1 . . . k.

We say that [t1..tk] is cycle-free iff for all i, j 2 1 . . . k, S(ti) = T(tj) implies
i = j + 1. We shall often use the following observation: if there exists a path from n
to m then there also exists a cycle-free path from n to m.

We say that [t1..tk..[is an infinite path from S(t1) if tj+1 is a successor of tj for all
j � 1; we say that the path avoids n if n 6= S(tj) for all j � 1.

We say that (n, s) is i-stuck if [[Gi(t)]]s = false for all t with S(t) = n. We say
that (n, s) gets i-stuck avoiding m if for some k � 0 there exists n1..nk, s1..sk, t1..tk,
E1..Ek such that with n0 = n and s0 = s it holds that (nk, sk) is i-stuck with nk 6= m,

and for all j 2 1 . . . k we have i ` tj : (nj�1, sj�1)
Ej! (nj , sj) and nj�1 6= m.

We say that (n, s) i-loops avoiding m if for all j � 1 there exists nj , sj , tj , Ej

such that (with n0 = n and s0 = s) i ` tj : (nj�1, sj�1)
Ej! (nj , sj) and nj�1 6= m.

4 Properties of Slice Sets
We first introduce the standard notion of data dependence:

Definition 3 We say that t0 is data dependent on t (in the i-semantics), written t !ddi

t0, iff there exists a variable v 2 Di(t)\Ui(t0) and a path [t1..tk] (k � 0) from T(t) to
S(t0) such that for all j 2 1 . . . k, v /2 Di(tj).

5

Definition 4 We say that L is closed under !ddi iff t 2 L whenever t !ddi t0 and
t0 2 L.

The following result is not needed for our development, but it is reassuring that it holds.

Lemma 5 Assume that L is closed under !dd1. Then also L is closed under !dd2.

Proof: Assume not. Then there exists t0 2 L and t /2 L such that t !dd2 t0. There thus
exists a variable v 2 D2(t) \ U2(t0) and a path [t1..tk] from T(t) to S(t0) such that for
all j 2 1 . . . k, v /2 D2(tj). From the way the 2-semantics is constructed from the 1-
semantics, we see that v 2 D1(t)\U1(t0). If for all j 2 1 . . . k it holds that v /2 D1(tj)
then t !dd1 t0 which contradicts that L is closed under !dd1. Therefore there exists
j 2 1 . . . k with v 2 D1(tj); choose the largest such j. Thus tj !dd1 t0. From L
being closed under !dd1 we infer tj 2 L. But then D1(tj) = D2(tj), contradicting
v 2 D1(tj) and v /2 D2(tj).

Next we formalize the notion of “next observable state”:

Definition 6 For a slice set L, for each state n we define obsL(n) as the set of states
n0 such that

• there exists t 2 L with S(t) = n0, and

• there exists a path outside L from n to n0.

For example, let us consider the EFSM in Fig. 2. If L = {t5, t6} then obsL(S1) =
{S2, S3}whereas obsL(S2) = {S2} and (since [t4, t1] is a path from S3 to S2 outside
L) obsL(S3) = {S2, S3}.

We shall write obs(n) for obsL(n) when L is given by the context.

Lemma 7 If m 2 obs(n) then m 2 obs(m).

Proof: From m 2 obs(n) we see that there exists t 2 L with S(t) = m. But this shows
m 2 obs(m) as we can use k = 0 in Definition 6.

We can now define the notions of “weak commitment closed” (WCC) and “strong
commitment closed” (SCC):

Definition 8 We say that L satisfies WCC iff for each state n, obsL(n) is either empty
or a singleton.

To motivate why WCC is a desirable property, let us again look at Fig. 2 with L =
{t5, t6} so that obsL(S1) = {S2, S3}. Then the sliced machine may move to S3
and perform the observable transition t6, while such a move may be impossible for the
original machine (for example if G1(t3) is false) which could instead move to S2 (if
G1(t1) is true) and perform t5. This would thus conflict with our goal that for each
observable step by the sliced machine, either the original machine simulates it or (i) it
gets stuck, or (ii) it loops.

To rule out (ii), we need a stronger property:

Definition 9 We say that L satisfies SCC iff for each state n, either

6

• obsL(n) is empty, or

• obsL(n) is a singleton n0, and there does not exist an infinite path from n that
avoids n0.

Clearly a slice set that satisfies SCC will also satisfy WCC. To motivate why SCC
is a desirable property, let us again look at Fig. 2, this time with L = {t9} so that
obsL(S1) = {S5} but there is an infinite path from S1 that avoids S5. Thus the sliced
machine may move to S5 and perform the observable transition t9, while such a move
may be impossible for the original machine (if G1(t2) is false) which could instead (for
certain values of the store) cycle infinitely between S1, S2, and S3.

5 Relevant Variables
In the following, we as usual assume a given slice set L.

Definition 10 We say that v is relevant for t (for the i-semantics), written v 2 Rvi(t),
iff there exists t0 2 L such that v 2 Ui(t0), and there exists a path [t1..tk] with k � 1
and t = t1 and t0 = tk such that for all j 2 1 . . . k � 1, v /2 Di(tj).

Fact 11 If t 2 L then v 2 Rvi(t) for all v 2 Ui(t).

For a state n we define
Rvi(n) =

[

S(t)=n

Rvi(t)

Observe that v 2 Rvi(n) iff there exists a path [t1..tk] with k � 1 from n such that
tk 2 L with v 2 Ui(tk), and for all j 2 1 . . . k � 1 it holds that v /2 Di(tj).

Lemma 12 Assume that for t 2 L we have

1 ` t : (n, s1)
E! (n0, s01) and

2 ` t : (n, s2)
E! (n0, s02)

where s1(v) = s2(v) for all v 2 Rv1(n). Then s01(v) = s02(v) for all v 2 Rv1(n0).

Proof: First observe that D2(t) = D1(t), and A2(t) = A1(t). Let v 2 Rv1(n0) be
given, so as to show s01(v) = s02(v). We split into two cases.

The first case is when v 2 D1(t), where we must prove that [[A1(t)]]s1 = [[A2(t)]]s2.
But this follows since for all w 2 fv(A1(t)) we have w 2 Rv1(n) and thus s1(w) =
s2(w).

The other case is when v /2 D1(t). Then v 2 Rv1(n), implying the desired equality
s01(v) = s1(v) = s2(v) = s02(v).

Lemma 13 Assume that L is closed under !dd1. Then Rv1(t) = Rv2(t) for all t.

7

Proof: First we consider v 2 Rv1(t), so as to show v 2 Rv2(t). There exists t0 2 L
with v 2 U1(t0) and thus v 2 U2(t0), and t1 . . . tk with t = t1 and t0 = tk such that for
all j 2 1 . . . k � 1, v /2 D1(tj) and thus v /2 D2(tj). But this shows v 2 Rv2(t).

Next we consider v 2 Rv2(t) so as to show v 2 Rv1(t). There exists t0 2 L with
v 2 U2(t0) and thus v 2 U1(t0), and t1 . . . tk with t = t1 and t0 = tk such that for
all j 2 1 . . . k � 1, v /2 D2(tj). If v /2 D1(tj) for all j 2 1 . . . k � 1 then v 2 Rv1(t)
so we are left with the case where there exists j 2 1 . . . k � 1 such that v 2 D1(tj);
choose the largest such j. Then tj !dd1 t0 and by assumption hence tj 2 L. But then
D1(tj) = D2(tj), contradicting v 2 D1(tj) and v /2 D2(tj).

For L closed under !dd1, the relevant variables of the sliced machine thus coin-
cides with the relevant variables of the orginal machine. We may therefore write Rv(t)
for Rv1(t) = Rv2(t), and Rv(n) for Rv1(n) = Rv2(n).

Lemma 14 Let n be a state with obs(n) = ;. Then Rv1(n) = ;.

Proof: To get a contradiction, assume that v 2 Rv1(n). That is, there exists a path
[t1..tk] (k � 1) from n with tk 2 L and v 2 U1(tk) where for all j 2 1 . . . k � 1 we
have v /2 D1(tj). There exists q 2 1 . . . k with tq 2 L but tj /2 L for j < q. But then
[t1..tq�1] is a path from n to S(tq) and thus S(tq) 2 obs(n), giving a contradiction.

Lemma 15 Assume that L is closed under !dd1. If obs(n) = {n0} then Rv(n) =
Rv(n0).

Proof: Recall that by Lemma 13, for all n we have Rv(n) = Rv1(n) = Rv2(n).
First consider v 2 Rv(n), so as to prove v 2 Rv(n0). There exists a path [t1..tk]

with k � 1 from n such that tk 2 L with v 2 U1(tk) and such that v /2 D1(tj) for
all j 2 1 . . . k � 1. We can find q with 1  q  k such that tq 2 L but tj /2 L
for 1  j < q. Since obs(n) contains only n0, we infer that n0 = S(tq). But hence
v 2 Rv(n0).

Next consider v 2 Rv(n0), so as to prove v 2 Rv(n). There exists a path [t1..tk]
with k � 1 from n0 such that tk 2 L with v 2 U1(tk) and such that v /2 D1(tj) for all
j 2 1 . . . k � 1. Also, there exists a path [u1..uq] (q � 0) outside L from n to n0. This
will establish v 2 Rv(n), provided that we can show for all j 2 1 . . . q that v /2 D1(uj).
Assume, to get a contradiction, that there exists j 2 1 . . . q with v 2 D1(uj); choose
the largest such j. But then uj !dd1 tk which contradicts tk 2 L and uj /2 L since L
is closed under !dd1.

Lemma 16 Assume that L is closed under !dd1 and satisfies WCC. If obs(n) =
obs(m) then Rv(n) = Rv(m).

Proof: Recall that since L is closed under!dd1, we can omit the subscript to Rv. From
L satisfying WCC we see that there are two cases.

If obs(n) = obs(m) = ;, we see from Lemma 14 that Rv(n) = Rv(m) = ;.
If obs(n) = obs(m) is a singleton, say {n0}, we infer from Lemma 15 that Rv(n) =

Rv(n0) = Rv(m).

8

Lemma 17 Assume that L is closed under !dd1 and satisfies WCC. If for i 2 {1, 2}
we have i ` t : (n, s) E! (n0, s0) with t /2 L and with obs(n0) 6= ;, then for all
v 2 Rv(n) we have s(v) = s0(v).

Proof:. For i = 2, Fact 2 tells us that s0 = s yielding the claim. We can thus assume
that i = 1.

From t /2 L we infer that obs(n0) ✓ obs(n), and from obs(n0) 6= ; and the WCC
assumption there thus exists m such that obs(n0) = obs(n) = {m} and hence by
Lemma 15 Rv(n0) = Rv(n).

Now consider v 2 Rv(n). Since v 2 Rv(n0), there exists a path [t1..tk] (k � 1)
from n0 such that tk 2 L with v 2 U1(tk), and v /2 D1(tj) for j 2 1 . . . k � 1.
Assume, to get a contradiction, that v 2 D1(t). Then t !dd1 tk, which together with
tk 2 L and t /2 L contradicts L being closed under !dd1. Hence v /2 D1(t), and thus
s0(v) = s(v).

6 Correctness Criterion
We define a relation Q between configurations:

Definition 18 (n1, s1) Q (n2, s2) iff n1 = n2 and s1(v) = s2(v) for all v 2 Rv1(n1).

We now introduce a relation i ` C
E) C 0, saying that C in the i-semantics evolves to

C 0 through zero or more non-observable steps while consuming the events in E:

Definition 19 We write i ` C
E) C 0 iff for some k � 1 there exists C1 . . . Ck, with

C = C1 and C 0 = Ck, and E1 . . . Ek�1 with E = E1 . . . Ek�1, such that for all

j 2 1 . . . k � 1 there exists tj /2 L with i ` tj : Cj
Ej! Cj+1.

Using Fact 2, we get:

Lemma 20 If 2 ` (n, s) E) (n0, s0) then E = [] and s0 = s.

Finally, we define the reduction that forms the basic of simulation:

Definition 21 We write i `t C
E) C 0 if t 2 L and there exists C1, and E1, E2 with

E = E1E2, such that i ` C
E1) C1 and i ` t : C1

E2! C 0.

The correctness results now state that the original and the sliced machines should sim-
ulate each other, as specified in the following.

7 Sliced Simulates Original
This is the easier direction. First a few auxiliary results.

Lemma 22 Assume that L is closed under!dd1 and satisfies WCC. If with t /2 L and
obs(n0) 6= ; we have

9

• 1 ` t : (n, s1)
E! (n0, s01) and

• s1(v) = s2(v) for all v 2 Rv1(n)

then

• 2 ` t : (n, s2)
[]! (n0, s2) and

• s01(v) = s2(v) for all v 2 Rv1(n0).

Proof: Since t /2 L, G2(t) = true and E2(t) = [] and D2(t) = ; which yields the first
claim. For the second claim, consider v 2 Rv1(n0). Since t /2 L, also v 2 Rv1(n). By
Lemma 17 we infer s1(v) = s01(v), and since s1(v) = s2(v) holds by assumption, we
can conclude s01(v) = s2(v).

Lemma 23 Assume that L is closed under!dd1 and satisfies WCC. If with obs(n0) 6=
; we have

• 1 ` (n, s1)
E) (n0, s01) and

• s1(v) = s2(v) for all v 2 Rv1(n)

then

• 2 ` (n, s2)
[]) (n0, s2) and

• s01(v) = s2(v) for all v 2 Rv1(n0).

Proof: An easy induction in the “k” of Definition 19, using Lemma 22.

Lemma 24 If with t 2 L we have

• 1 ` t : (n, s1)
E! (n0, s01) and

• s1(v) = s2(v) for all v 2 Rv1(n)

then there exists s02 such that

• 2 ` t : (n, s2)
E! (n0, s02) and

• s01(v) = s02(v) for all v 2 Rv1(n0).

Proof: Our assumptions entail n = S(t), n0 = T(t), G1(t) = G2(t), and [[G1(t)]]s1 =
true. For an arbitrary w 2 fv(G1(t)) we infer by Fact 11 that w 2 Rv1(t) ✓ Rv1(n)
implying s1(w) = s2(w). Hence also [[G1(t)]]s2 = true, implying that there exists s02
such that 2 ` t : (n, s2)

E! (n0, s02). That s01(v) = s02(v) for all v 2 Rv1(n0) now
follows from Lemma 12.

Theorem 1 Assume that L is closed under !dd1 and satisfies WCC. If

• 1 `t C1
E1) C 0

1 and

10

• C1 Q C2

then there exists C 0
2, and E2 which is a subsequence of E1, such that

• 2 `t C2
E2) C 0

2 and

• C 0
1 Q C 0

2

Proof: From C1 Q C2 we see that there exists n, s1, s2 such that C1 = (n, s1) and
C2 = (n, s2) where s1(v) = s2(v) for all v 2 Rv1(n). From 1 `t C1

E1) C 0
1 we see

that t 2 L and that there exists n0, s01, n00, s001 , E0, E2 such that with C 0
1 = (n0, s01) and

E1 = E0E2 we have 1 ` (n, s1)
E0
) (n00, s001) and 1 ` t : (n00, s001) E2! (n0, s01).

Since obs(n00) is not empty (it contains n00) we can apply Lemma 23 to infer that

2 ` (n, s2)
[]) (n00, s2) and s001(v) = s2(v) for all v 2 Rv1(n00). We can now apply

Lemma 24 to find s02 such that 2 ` t : (n00, s2)
E2! (n0, s02) and s01(v) = s02(v) for all

v 2 Rv1(n0).
We conclude that 2 `t (n, s2)

E2) (n0, s02), and that with C 0
2 = (n0, s02) we do

indeed get 2 `t C2
E2) C 0

2 and C 0
1 Q C 0

2 with E2 a subsequence of E1.

8 Original Simulates Sliced
We cannot quite hope for the converse of Theorem 1 in that the original machine may
get stuck, or loop, rather than reach the next observable state. This is formalized by the
following result:

Lemma 25 Let obs(n) = {m}. Given s, one of the 3 cases below applies:

1. there exists E and s0 such that 1 ` (n, s) E) (m, s0)

2. (n, s) gets 1-stuck avoiding m

3. (n, s) 1-loops avoiding m.

Proof: Consider the following iterative algorithm, incrementally constructing nj , sj ,

Ej for j � 1. With n0 = n, s0 = s and E0 = [], the invariant is that 1 ` (n, s)
Ej�1)

(nj�1, sj�1) which trivially holds for j = 1. For each j, there are 3 possible actions:

• if nj�1 = m we exit the loop, and we have established case 1 with E = Ej�1

and s0 = sj�1.

Otherwise, we can conclude that for all t with S(t) = nj�1 it holds that t /2 L
(since it t 2 L then nj�1 2 obs(n) = {m}).

• if there exists t with S(t) = nj�1 such that [[G1(t)]]sj�1 = true we define tj
as one such t (the “smallest”) and define nj = T(tj), Ej = Ej�1E1(tj), and
sj = sj�1 if D1(tj) = ; but sj = sj�1[v 7! [[A1(tj)]]sj�1] if D1(tj) is a
singleton {v}. We then increment j by one and repeat the loop.

11

• otherwise, we exit the loop, concluding that (nj�1, sj�1) is 1-stuck which es-
tablishes case 2.

If we never exit the loop, this will establish case 3.

Theorem 2 Assume that L is closed under !dd1 and satisfies WCC. If with C2 =
(n, s2) we have 2 `t C2

E2) C 0
2 and C1 Q C2 then obs(n) is a singleton {m} and

there are 3 possibilities:

1. there exists C 0
1 with C 0

1 Q C 0
2, and E1 of which E2 is a subsequence, such that

1 `t C1
E1) C 0

1

2. C1 gets 1-stuck avoiding m

3. C1 1-loops avoiding m.

Proof: Let C 0
2 = (n0, s02) and C1 = (n, s1). From Definition 21 and Lemma 20 we

see that there exists t 2 L, and a state m, such that 2 ` (n, s2)
[]) (m, s2) and

2 ` t : (m, s2)
E2! (n0, s02). Thus m 2 obs(n), and from the WCC property we infer

that obs(n) = {m}.
From Lemma 25, we infer that either

1. there exists E and s001 such that 1 ` (n, s1)
E) (m, s001)

2. (n, s1) gets 1-stuck avoiding m

3. (n, s1) 1-loops avoiding m.

If case 2 or case 3 holds, we are done. We thus assume that case 1 holds. That is, for
some k � 1 there exists n1 . . . nk and s1 . . . sk, with n = n1 and nk = m and sk = s001 ,
and E0

1 . . . E0
k�1 with E = E0

1 . . . E0
k�1, such that for all j 2 1 . . . k � 1 there exists

tj /2 L with i ` tj : (nj , sj)
E0

j! (nj+1, sj+1). We infer that for all j 2 1 . . . k we
have obs(nj) = {m} and by Lemma 15 thus Rv(nj) = Rv(m) = Rv(n). By repeated
application of Lemma 17 we now infer that for all v 2 Rv(m) we have s001(v) = s1(v)
and from C1 Q C2 even s001(v) = s2(v).

From t 2 L we have G1(t) = G2(t), and from 2 ` t : (m, s2)
E2! (n0, s02)

we know that [[G1(t)]]s2 = true. For an arbitrary w 2 fv(G1(t)) we infer by Fact 11
that w 2 Rv(t) ✓ Rv(m) implying s001(w) = s2(w). Hence also [[G1(t)]]s001 = true,
implying that there exists s01 such that 1 ` t : (m, s001) E2! (n0, s01), and thus with
C 0

1 = (n0, s01) we have 1 `t C1
EE2) C 0

1. We must also show C 0
1 Q C 0

2, that is
s01(v) = s02(v) for all v 2 Rv(n0), but this follows from Lemma 12.

If L satisfies not just WCC but also SCC, we can rule out case 3. We now state the
resulting theorem.

Theorem 3 Assume that L is closed under !dd1 and satisfies SCC. If with C2 =
(n, s2) we have 2 `t C2

E2) C 0
2 and C1 Q C2 then obs(n) is a singleton {m} and

there are 2 possibilities:

12

1. there exists C 0
1 with C 0

1 Q C 0
2, and E1 of which E2 is a subsequence, such that

1 `t C1
E1) C 0

1

2. C1 gets 1-stuck avoiding m

9 Computing Least WCC-Closed Slices
We shall now present an algorithm that for any L computes the least superset that is
closed under !dd1 and satisfies WCC. First some preparations.

Lemma 26 Assume that for i = 1, 2 there is a cycle-free path ⇡i from n to ni, and a
transition ui with S(ui) = ni; also assume that n1 6= n2, and that n is the only state
that occurs in both ⇡1 and ⇡2.

Let L be a set that satisfies WCC and contains u1, u2. Let i 2 {1, 2} be such that
⇡i is non-empty (there exists at least one such i). Then the first transition in ⇡i will
belong to L.

Proof: For each i = 1, 2, let Ni be the states that occur in ⇡i (if ⇡i is the empty
path we let Ni = {n}); our assumption is that N1 \ N2 = {n}. Since L contains
u1 and u2, it is easy to see that obsL(n) will contain at least one state from N1 and
at least one state from N2; since L satisfies WCC and N1 \ N2 = {n}, we infer that
obsL(n) = {n}.

To show thatLmust contain the first transition in ⇡i, observe that otherwise obsL(n)
would contain a state in Ni different from n.

Lemma 27 Assume that L does not satisfy WCC. Then there exists a state n with the
following properties: for i = 1, 2 there exists ni with n1 6= n2, a cycle-free path ⇡i

outside L from n to ni, a transition ui 2 L with S(ui) = ni; also, n is the only state
that occurs in both ⇡1 and ⇡2.

Proof: Our assumption is that there exists n0, and n1 6= n2, such that n1, n2 2
obsL(n0). Thus for each i = 1, 2 there exists a transition ui 2 L with S(ui) = ni, and
a cycle-free path ⇡0i outside L from n0 to ni.

Now let n be the last state on ⇡01 that occurs also on ⇡02 (it could happen that n =
n0), and for i = 1, 2 let ⇡i be the part of ⇡0i that starts from n.

Theorem 4 Given a slice set L, there is a least superset of L that is closed under!dd1

and satisfies WCC.

Proof: We shall use induction on the number of transitions not in L. If L is closed
under !dd1 and satisfies WCC then L is obviously the least superset of L with these
properties.

Otherwise, we shall establish the following property:

there exists a transition t /2 L such that
if L0 is a superset of L that is closed under !dd1 and satisfies WCC
then t 2 L0.

13

Our claim will then follow if we can show that there exists a least superset ofL[{t} that
is closed under !dd1 and satisfies WCC. But this follows by applying the induction
hypothesis to L [{t}.

To verify the above property, we split into two cases. If L is not closed under!dd1,
there exists t /2 L and t0 2 L such that t !dd1 t0. This t will do the job, for if L0 is a
superset of L that is closed under !dd1 then t0 2 L0 and hence also t 2 L0.

The other case is when L does not satisfy WCC. By Lemma 27, there thus exists
a state n with the following properties: for i = 1, 2 there exists ni with n1 6= n2, a
cycle-free path ⇡i outside L from n to ni, a transition ui 2 L with S(ui) = ni; also,
n is the only state that occurs in both ⇡1 and ⇡2. We can then apply Lemma 26 to see
that there exists a transition t /2 L such that if L0 is a superset of L that satisfies WCC
then L0 contains t.

The proof of Theorem 4 suggests how to compute the least superset of L that sat-
isfies WCC: first find the states that are the source of a transition in L; next find if two
such states are reachable from the same state through a path not in L; if so, add the first
transition of that path to L and repeat, otherwise stop.

An algorithm based on this idea, also ensuring closedness under !dd1, is depicted
in Fig. 3. It assumes a pre-computed table DDstar such that DDstar(t,u) is true
iff t !⇤

dd1 u holds. The current slice set is L to which transitions may be added until
L is stable; the algorithm maintains the invariant that L is closed under !dd1. In each
iteration, the algorithm computes in B the states that are sources of transitions in L, and
does a backwards breadth-first search from B with V being the states that have been
visited so far. For each n 2 V, the array entry obs[n] is defined, and denotes the state
in B that can be reached from n. The current frontier of the search is called C, the
exploration of which builds up Cnew, the next frontier.

Example 1 Let us apply the algorithm in Fig. 3 to the EFSM in Fig. 2, to find the least
set that satisfies WCC and contains t6 and t9.

In the first iteration, B = {S3, S5}. Since S3 can be reached from S4 by t7, and
S5 can be reached from S4 by t8, there is a conflict at S4 so we add t8 (or t7) which
adds S4 to B.

In the subsequent iterations we may add t7, t2, and t3 (the latter two due to conflicts
at S1). We now have B = {S1, S3, S4, S5} and add t4, before the next iteration adds
t1 since from S1 one can reach S3 through the path [t1, t5].

We are left with L = {t1, t2, t3, t4, t6, t7, t8, t9} at which point no new transitions
can be added, since T(t10) /2 B and S(t5) does not have other observables than S3.
And L does indeed satisfy WCC: for all nodes n we have obsL(n) = {n}, except
obsL(S2) = {S3} and obsL(S6) = ;.

Theorem 5 Assuming that the table DDstar is given, the algorithm in Fig. 3 can be
implemented to run in time O(a2) where a is the number of transitions.

Proof: We assume that sets of states and sets of transitions are represented as bitmaps,
allowing one element to be added in constant time. The code before the main loop
obviously runs in time O(a2). The last part of the main loop, the two nested for

loops, will have a total running time in O(a2) since each transition occurs in Lnew at
most once.

14

L := L
for each t 2 L

for each u /2 L

if DDstar(u,t)
L := L [{u}

repeat

Lnew := ;
B := {n | 9t 2 L : n = S(t)}
for each n 2 B do

obs[n] := n
V := B

C := B

while C 6= ; and Lnew = ; do

Cnew := ;
for each m 2 C do

for each transition t /2 L with T(t) = m do

n := S(t)
if n 2 V

if obs[n] 6= obs[m]
Lnew := Lnew [{t}

else

V := V [{n}
Cnew := Cnew [{n}
obs[n] := obs[m]

C := Cnew

L := L [Lnew

for each t 2 Lnew do

for each u /2 L do

if DDstar(u,t)
L := L [{u}

until Lnew = ;

Figure 3: Computing the least superset of L that is closed under data dependence and
satisfies WCC.

The outer loop iterates O(a) times, as each iteration (except the last) will add at
least one transition to L. It is thus sufficient to show that each iteration of the outer
loop, except for the two nested for loops, runs in time O(a). But this follows since
each transition t is processed in constant time and at most once.

10 Computing Least SCC-Closed Slices
We shall now present an algorithm that for any L computes the least superset that is
closed under !dd1 and satisfies SCC. First some preparations.

15

Lemma 28 Assume that there is a cycle-free path ⇡1 = [t1..tk] (k � 1) from n to n1,
and a transition u1 with S(u1) = n1; also assume that ⇡2 is an infinite path from n
that avoids all states in ⇡1 except n.

Let L be a set that satisfies SCC and contains u1. Then t1 will belong to L.

Proof: Assume, to get a contradiction, that t1 /2 L. Then there exists n0 6= n such
that n0 2 obsL(n) and thus (since L satisfies WCC) obsL(n) = {n0}. But since ⇡2 is
an infinite path from n that avoids n0, this contradicts L satisfying SCC.

Lemma 29 Assume that L satisfies WCC but does not satisfy SCC. Then there exists
a state n with the following properties: there is a non-empty cycle-free path ⇡1 from
n to n1 outside L, and a transition u1 2 L with S(u1) = n1; also there is an infinite
path ⇡2 from n that avoids all states in ⇡1 except n.

Proof: Our assumption entails that there exists n0 and n1 such that obsL(n0) =
{n1}, that is there is a cycle-free path ⇡01 outside L from n0 to n1 and a transition
u1 2 L with S(u1) = n1, but also an infinite path ⇡02 from n0 that avoids n1. Now let
n be the last state on ⇡01 that occurs also on ⇡02 (it could happen that n = n0), and for
i = 1, 2 let ⇡i be the part of ⇡0i that starts from n. This will do the job; in particular ⇡1

is non-empty since ⇡02 avoids n1 and thus n 6= n1.

Theorem 6 Given a slice set L, there is a least superset of L that is closed under!dd1

and satisfies SCC.

Proof: We shall use induction on the number of transitions not in L. If L is closed
under !dd1 and satisfies SCC then L is obviously the least superset of L with these
properties.

Otherwise, we shall establish the following property:

there exists a transition t /2 L such that
if L0 is a superset of L that is closed under !dd1 and satisfies SCC
then t 2 L0.

Our claim will then follow if we can show that there exists a least superset of L [{t}
that is closed under!dd1 and satisfies SCC. But this follows by applying the induction
hypothesis to L [{t}.

To verify the above property, we split into three cases. If L is not closed under
!dd1, or if L does not satisfy WCC, we proceed as in the proof of Theorem 4. We
therefore focus on the third case: that L satisfies WCC but not SCC.

By Lemma 29, there thus exists a state n with the following properties: there is a
cycle-free non-empty path ⇡1 outside L from n to n1, and a transition u1 2 L with
S(u1) = n1; also there is an infinite path ⇡2 from n that avoids all states in ⇡1 except
n.

We can then apply Lemma 28 to see that there exists a transition t /2 L such that if
L0 is a superset of L that satisfies SCC then L0 contains t.

The proof of Theorem 6 suggests how to extend the algorithm of Fig. 3 to compute
the least superset of L that satisfies SCC: as we explore each state n from which a
state m0 in B is reachable, we check if there from n is a loop that avoids m0; if that

16

L := L
for each t 2 L

for each u /2 L

if DDstar(u,t)
L := L [{u}

repeat

Lnew := ;
B := {n | 9t 2 L : n = S(t)}
for each n 2 B do

obs[n] := n
V := B

C := B

while C 6= ; and Lnew = ; do

Cnew := ;
for each m 2 C do

for each transition t /2 L with T(t) = m do

n := S(t)
**

if LoopAvoids(n,obs[m])
**

Lnew := Lnew [{t}
if n 2 V

if obs[n] 6= obs[m]
Lnew := Lnew [{t}

else

V := V [{n}
Cnew := Cnew [{n}
obs[n] := obs[m]

C := Cnew

L := L [Lnew

for each t 2 Lnew do

for each u /2 L do

if DDstar(u,t)
L := L [{u}

until Lnew = ;

Figure 4: Computing the least superset of L that is closed under data dependence and
satisfies SCC.

is the case, we can add to L the first transition in the path ⇡ from n to m0, as justified
by Lemma 28 (its condition about the loop avoiding all states in ⇡ but n is fulfilled,
since if the loop doesn’t avoid an intermediate state then the breadth-first search would
already have added a transition to L).

The resulting algorithm is depicted in Fig. 4; it is identical to the algorithm of Fig. 3
except that two lines (marked with “**”) have been added. The algorithm employs a
pre-computed table LoopAvoids such that LoopAvoids(n,m) is true iff there is

17

for each state m do

for each state n do

LoopAvoids(n,m) := false

Tm := the transitions that do not involve m
for each state n except m do

color[n] := white

while (exists n: color[n] = white) do

let n be a node with color[n] = white

call DFS(n)

procedure DFS(n) =

color[n] := gray

for each t 2 Tm with S(t) = n do

n0 := T(t)
if color[n0] = gray

LoopAvoids(n,m) := true

else if color[n0] = black

if LoopAvoids(n0,m)

LoopAvoids(n,m) := true

else // if color[n0] = white

DFS(n0)
if LoopAvoids(n0,m)

LoopAvoids(n,m) := true

color[n] := black

Figure 5: Constructing the table LoopAvoids.

a loop from n that avoids m.
The table LoopAvoids can be constructed by the algorithm in Fig. 5. For each

m, the transitions involving m are ignored, and a depth-first search is made; then
LoopAvoids(n,m) is set to true iff a back edge is reachable from n.

Example 2 Let us apply the algorithm in Fig. 4 to the EFSM in Fig. 2, to find the least
set that satisfies SCC and contains t9.

In the first iteration, B = {S5}. Since t2 has source S1 and target S5, and there is
a loop from S1 that avoids S5, we add t2. Similarly, since t8 has source S4 and target
S5, and there is a loop from S4 that avoids S5, we add t8. Now, B = {S1, S4, S5}.
Since S4 can be reached from S1 by t3, also t3 is added; since S1 can be reached from
S4 by [t7, t4], also t7 is added.

We are left with L = {t2, t3, t7, t8, t9} at which point no new transitions can be
added. And L does indeed satisfy SCC: obsL(S1) = {S1}; obsL(S2) = {S1} but no
infinite path from S2 avoids S1; obsL(S3) = {S1} but no infinite path from S3 avoids
S1; obsL(S4) = {S4}; obsL(S5) = {S5}; obsL(S6) = ;.

18

Theorem 7 Assuming that the table DDstar is given, the algorithm in Fig. 4 can be
implemented to run in time O(a2), including the time for constructing the LoopAvoids
table, where a is the number of transitions.

Proof: To construct the table LoopAvoids, the algorithm in Fig. 5 will for each
m use time in O(a), and hence (since m 2 O(a)) have a total running time in O(a2).
Next the algorithm in Fig. 4 can use that table, and will also run in time O(a2) (by an
analysis almost identical to the one given in the proof of Theorem 5 for the algorithm
in Fig. 3).

11 Conclusion
We have proposed algorithms for slicing extended finite state machines and proved that
the resulting slices have well-defined semantic properties. Our development adapts to
a non-deterministic setting a general methodology for describing the slicing of deter-
ministic programs. It is left to future work to try our approach on realistic EFSMs and
thus measure its practical usefulness. Future work also includes allowing transitions to
produce events.

References
[1] Torben Amtoft. Slicing for modern program structures: a theory for eliminating

irrelevant loops. Inf. Process. Lett., 106(2):45–51, 2008.

[2] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control–flow.
In Peter Fritzson, editor, 1st Conference on Automated Algorithmic Debugging,
pages 206–222, Linköping, Sweden, 1993. Springer. Also available as University
of Wisconsin–Madison, technical report (in extended form), TR-1128, December,
1992.

[3] Sebastian Danicic, Richard W. Barraclough, Mark Harman, John D. Howroyd,
kos Kiss, and Michael R. Laurence. A unifying theory of control dependence and
its application to arbitrary program structures. Theoretical Computer Science,
412(49):6809–6842, 2011.

[4] John Hatcliff, James C. Corbett, Matthew B. Dwyer, Stefan Sokolowski, and
Hongjun Zheng. A formal study of slicing for multi-threaded programs with
JVM concurrency primitives. In Proceedings of the 6th International Symposium
on Static Analysis, volume 1694 of Springer Lecture Notes in Computer Science,
pages 1–18, 1999.

[5] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for
model construction. Higher-Order and Symbolic Computation, 13(4):315–353,
December 2000.

19

[6] A. Podgurski and L.A. Clarke. A formal model of program dependences and its
implications for software testing, debugging, and maintenance. IEEE Transac-
tions on Software Engineering, 16(9):965–979, 1990.

[7] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, Matthew B.
Dwyer, and John Hatcliff. A new foundation for control-dependence and slic-
ing for modern program structures. In European Symposium on Programming,
volume 3444 of LNCS, pages 77–93. Springer-Verlag, 2005.

[8] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff,
and Matthew B. Dwyer. A new foundation for control dependence and slicing for
modern program structures. ACM Transactions on Programming Languages and
Systems, 29(5), 2007.

[9] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, September 1995.

[10] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

20

