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Abstract

Failed error propagation (FEP) is known to hamper software testing, yet it remains poorly
understood. We introduce an information theoretic formulation of FEP that is based on
measures of conditional entropy. This formulation considers the situation in which we are
interested in the potential for an incorrect program state at statement s to fail to propagate
to incorrect output. We define five metrics that di↵er in two ways: whether we only consider
parts of the program that can be reached after executing s and whether we restrict attention
to a single program path of interest. We give the results of experiments in which it was found
that on average one in 10 tests su↵ered from FEP, earlier studies having shown that this figure
can vary significantly between programs. The experiments also showed that our metrics are
well-correlated with FEP. Our empirical study involved 30 programs, for which we executed
a total of 7,140,000 test cases. The results reveal that the metrics di↵er in their performance
but the Spearman rank correlation with failed error propagation is just under 0.95 for one
metric and just over 0.95 for another. These strong correlations in an experimental setting
in which all information about both FEP and conditional entropy is known opens up the
possibility in the longer term of devising inexpensive information theory based metrics that
allow us to minimise the e↵ect of FEP.

1 Introduction

Coincidental correctness occurs when the program happens to produce the correct output for
some input even though it has executed a fault; the program is coincidentally correct rather than
actually correct. One of the causes of coincidental correctness is known as Failed Error Propagation
(FEP) [17, 27, 29]. In this situation, a faulty statement is executed and the resulting internal
computational state becomes faulty, but the di↵erences between the faulty and correct state fail
to be observed at output. We say that the error (the faulty state) has ‘failed to propagate’.

Empirical studies have revealed that failed error propagation inhibits e↵ective software testing
[4, 18, 22, 23, 24, 28] but it remains unclear how software testing could be better designed to
ameliorate the problems it causes. In order to improve software testing, we need to reduce the
probability that test cases will su↵er from failed error propagation. However, in order to do that,
we need metrics that can help us to identify parts of a program that are more likely to lead to
failed error propagation.

Failed error propagation can occur for a number of reasons. For example, it might be that
the faulty state is simply never inspected by the test oracle. In this case, the failure to propagate
the error is caused by an inadequate oracle rather than by any inherent property of the program
under the test. Such failures of error propagation could be addressed by oracle improvement.
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A more interesting class of failed error propagation occurs when the program itself removes
traces of an error before it has had a chance to propagate to a point at which it can be observed.
For this to occur, faulty state changes must become ‘lost’ along some paths through the program
because state update functions along these paths ‘squeeze out’ the faulty information [7]. One
obvious way in which this could occur is when a path contains a ‘killing assignment’, which
overwrites the value of the variable with the constant.

A killing assignment is the most extreme example of a state update function squeezing out
information. In general, any computation that reduces entropy of inputs will have the potential
to ‘squeeze out’ error information and thereby lead to failed error propagation. This loss of error
information suggests a connection between failed error propagation and information theory, but
this relationship has been little explored in the literature.

This paper introduces an information theoretic formulation of failed error propagation. We
introduce five di↵erent metrics, based on the computation of conditional entropy in a program,
with these di↵ering in the parts of the program considered. When considering a statement s, one
natural approach is to examine a single path ⇡ since a test case will lead to a path being followed.
However, a test case might lead to di↵erent paths in some idealised correct program P and the
program under test P 0; by only considering a single path we do not recognise the potential for
FEP associated with this pair of paths to occur. We therefore also consider approaches that look
at the part of the program that ‘follows’ s (the statements that can be reached from s).

In total, we introduce and evaluate five di↵erent metrics, experimentally evaluating each on
30 di↵erent programs. Our results are based on the execution of 7,140,000 test cases over 1,428
original and fault-seeded versions of the programs. In these experiments one in 10 test inputs
su↵ered from FEP; these results are in line with those of Masri et al. [18]. Masri et al. also found
that the potential for FEP di↵ers significantly between programs, with over 60% of tests being
a↵ected by FEP in 13% of the programs studied [18]. For each of the five metrics, we performed
an experimental evaluation of its relationship to failed error propagation. We report Spearman
rank correlations between each of the metrics and failed error propagation.

The results of these experiments are promising, indicating strong Spearman rank correlations
between several of our conditional entropy metrics and failed error propagation.

The primary contributions of this paper are as follows.

1. We introduce an information theoretic approach to failed error propagation, defining asso-
ciated metrics.

2. We experimentally investigate the correlation between the metrics and failed error propa-
gation, using 20 programs, including open source and laboratory benchmarks. The results
reveal a Spearman rank correlation of over 0.95 for one metric and just under 0.95 for
another.

The main motivation for this work is that a better understanding of failed error propagation
has the potential to lead to more e↵ective testing. In particular, the strong correlations in an
experimental setting in which all information about both FEP and conditional entropy is known
opens up the possibility in the longer term of devising inexpensive information theory based metrics
that allow us to minimise the e↵ect of FEP when choosing test cases.

The rest of this paper is organised as follows. In Section 2 we briefly describe related work and
in Section 3 we provide background information regarding program semantics and information
theory. In Section 4 we outline how FEP and conditional entropy relate conceptually, with this
feeding into research questions and associated hypotheses that are given in Section 5. Section 6
outlines the experiments and in Section 7 we give the results of these experiments. Finally, in
Section 8, conclusions are drawn and potential lines of future work described.

2 Related Work

Voas introduced the PIE framework and so explicitly recognised the need for an incorrect program
state to propagate to output in order for a failure to occur [27]. The notion of FEP was also

2



explored by Laski et al. [17], who called this error masking. They explored the concept and
proposed the use of a mutation approach to estimate the sensitivity of a given test suite and
program component C: this is the likelihood of an incorrect value produced by C being masked
through FEP. The approach taken to mutation was to directly mutate the program state (change
it to some randomly generated state).

Masri and Podgurski used experiments to explore variable dependence within a program and
how this relates to (an estimate of) information flow [20]. They found that many cases where
there is a dependence (through a mixture of control and data dependence), there was negligible
information flow. This helps motivate our work, since the lack of true information flow could be one
source of FEP (although FEP can occur even when there is a significant amount of information
flow). It also suggests that if we just use dependence when, for example, choosing test case
to exercise program elements then we are likely to encounter FEP and so there is a need for
alternatives.

Masri et al. explored factors that adversely a↵ect coverage based fault localisation methods
[18]. Such methods assign a ‘suspiciousness’ value to a program element s (such as a statement)
in order to allow the developer to focus on those elements that are most likely to be responsible
for observed failures. They do this based on how many failing tests execute an element s and
how many passing tests execute s. In their study, which used 148 versions of ten Java programs
seeded with faults, they found that FEP (which they called coincidental correctness) was relatively
common but also the rates varied with program: in 13% of programs over 60% of tests that led
to a corrupted state did not produce a failure while in 28% this e↵ect was not observed.

Wang et al. [28] also consider the e↵ect of FEP on fault localisation. However, their approach
is quite di↵erent and involves producing multiple version of each program element by adding in
‘program patterns’. Each context pattern describes aspects of the control flow and data flow after
this element. The results of experiments suggest that this approach reduces the e↵ect of FEP on
fault localisation. This potentially also suggest that there would be value in adopting a similar
approach to define coverage metrics.

In mutation testing we judge the adequacy of a test suite T for program p by executing T on
mutants, which are produced by making small changes to p. A mutant m of program p is weakly
killed by test case t if the executions of m and p produced di↵erent sequences of program states.
In contrast, m is strongly killed by t if the execution of m and p with t lead to di↵erent outputs.
Thus, FEP corresponds to the di↵erence between weak mutation testing and strong mutation
testing; experiments have shown that there are significant di↵erences between weak and strong
mutation testing [22, 23], again indicating that FEP is relatively common.

Masri and Assi consider how test suites can be cleansed of coincidental correctness (FEP)
[19]. Their approach assumes that the test cases have already been applied (and so is suitable
for regression testing) and identifies program elements that appear in all failing runs but also
in a percentage of runs that do not fail (the percentage must be in some threshold): these are
considered to be a potential source of coincidental correctness. Then test cases are removed from
consideration in fault localisation based on which identified elements they contain.

Chen et al. [6] define a measure that aims to approximate the probability of coincidental
correctness using a syntax based metric. The results of experiments with five small programs (for
sorting arrays) were positive and this suggest that such an approach is worth exploring further.

3 Background

3.1 Control Flow Graphs (CFG)

A CFG is an alternative representation of the syntax of a program which makes explicit the
execution paths that may be travelled in a program. We assume for simplicity that all nodes in
the graph are of two types: nodes corresponding to state update which have a single output edge,
and nodes corresponding to control flow decision points which have two output edges, one labelled
T and the other labelled F . Sometimes state update nodes in CFGs are defined in terms of blocks
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of straight line code but we assume that each individual statement or call in the program has its
own node and outgoing edge.

Definition 1 (CFG). For a given programming language, a CFG is a pair, hN, Ei, where N is a
set of nodes that contains a unique start node and two virtual nodes, ns a virtual start node, ne a
virtual exit node with a unique virtual exit edge with no successor node, and E is a set of labelled,
directed edges, so that

Nu = {n|n is an assignment or a function call }
Nc = {n|n is a control (Boolean) expression }
Nv = {ns, ne}
N = Nu [ Nc [ Nv

L = {T, F}
Ea = {(n1, n2)|n1 2 Nu, n2 2 N and an empty label}
Ec = {(n1, n2)|n1 2 Nc, n2 2 N and a label in L}
E = Ea [ Eu

The virtual nodes, {ns, ne}, are merely for convenience and allow the inclusion of edges in the
CFG that are associated with the initial and exit program points.

Definition 2 (CFG paths). A path in the CFG is a sequence of nodes such that any two successive
nodes form an edge in the CFG. An execution path in the CFG is a path whose first node is the
virtual start node and either the path is infinite or it is finite and the final node is the exit node.
A prefix path is any finite path whose first node is the virtual start node.

Note that the set of prefix paths includes the set of finite execution paths.
We will use the notion of a well-formed subgraph of a control flow graph, i.e. a subgraph of

a CFG which is itself a CFG. Not every subgraph of a CFG is well formed. For example, the
subgraph reachable from a control node is not well formed in general as it may lack a unique start
node.

3.2 Program Semantics

We use standard ideas about the behaviour of programs in the course of our explanations of what
we are measuring and why. In what follows we informally set out some concepts from program
semantics.

We assume a deterministic, imperative language such as C, C++, Java, et cetera. We assume
a small step structured operational semantics (SOS) [21] for the programming language. An SOS
formally describes, for a given input state, the sequence of state updates and branching decisions
that occur along the execution path for the input. This sequence corresponds to a sequence of
edges in the CFG that starts with the start node and is either infinite or is finite and terminates
in the exit node, i.e. an execution path. On this basis we can associate each state in the SOS
sequence with an edge in the CFG and each update instruction or branching decision with a node
in the CFG. The SOS for a given program and a given input corresponds to an execution path in
the CFG in which each edge is labelled with the states that occur after the execution or evaluation
of a node in the CFG. We will refer to this set of CFG paths as the Execution Semantics of
the CFG.

To define some notation for this idea we put the emphasis on prefix paths rather than execution
paths in the CFG and informally define a property that relates a program, a path, an input, an
edge on the path and the state reached at that edge using the input. �P (⇡, t, e, x) is the property
that there exists a (possibly incomplete) SOS sequence for input t to program P that corresponds
to the prefix path ⇡ in the CFG for P and e is an edge in ⇡ and x is a state that occurs at e.
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Definition 3 (Execution semantics for a path). Let ⇧ be the set of prefix paths in the CFG of
program P and let ⌃ be the set of all possible states that could occur in the executions of P . The
execution semantics for a path in ⇧ has type:

[[ ]]ex : ⇧ ! E ! ⌃ ! 2⌃

and is defined as
[[⇡]]exe (t) = {x | �P (⇡, t, e, x)}

The set of states is non-empty in the case that e is an edge in ⇡ and ⇡ is a prefix of the
execution path for t; otherwise it is empty.

We define three abstractions of the execution semantics: a Collecting Semantics for prefix
paths, for Control Flow Graphs, and for Programs. These simply collect up sets of states,
arising from the execution semantics, which occur at edges in the CFG.

The collecting semantics for a prefix path in a CFG is given by the set of states that can occur
at each edge in the path over all runs of the program.

Definition 4 (Collecting Semantics for a prefix path).
The collecting semantics for a path in ⇧ and an edge in E has type:

[[ ]]pa : ⇧ ! E ! 2⌃

and is defined as

[[⇡]]pae =
[

t2⌃

[[⇡]]exe (t)

The collecting semantics for a CFG is also defined in terms of edges that occur in the CFG
and collects the sets of states for all paths that pass through an edge.

Definition 5 (Collecting Semantics for a CFG).
The collecting semantics for a CFG (at an edge in E) has type:

[[ ]]cfg : E ! 2⌃

and is defined as

[[e]]cfg =
[

⇡2⇧

[[⇡]]pae

To define the collecting semantics of a program we employ the concept of a program point. In
a formal semantics of a programming language these are taken to be points in the program syntax
before or after the execution of a program construct or statement defined in the grammar of the
language. In what follows we define them in terms of nodes in the CFG: a program point is a
node in the CFG and the set of states that can occur at that program point is the collection of the
CFG semantics of the edges that exit that node, that is, the program point occurs immediately
after any node in the CFG and collects up all states that the program may be in, once control
passes from this node.

This is consistent with Cousot’s reachability semantics [11], an alternative way to present these
semantic concepts, but for a fixed language.

Definition 6 (Collecting Semantics for a Program).
The collecting semantics for a program (at a node in N) has type:

[[ ]]pr : N ! 2⌃

and is defined as

[[n]]pr =
[

{e2E|e=(n, )}

[[e]]cfg
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We define various semantic concepts in terms of these definitions. The set of reachable states
for a prefix path ⇡ is [[⇡]]pa!(⇡) where !(⇡) is the edge following the final state update node of ⇡.

The set of input states for a program is the collecting semantics for the program at the unique
virtual start node, i.e. [[ns]]pr for CFG(P ). The set of output states for a program P is the
collecting semantics at virtual edge following the virtual exit node, i.e. [[ne]]pr.

Let ⌃ be the set of all possible states for a program. The weakest precondition for program P
to terminate and satisfy � is the largest  ✓ ⌃ so that restricting the set of inputs to  produces
a subset of � ✓ ⌃ as the set of output states. We write  = [P ]�. This can be extended to paths
and CFGs in the obvious way.

3.3 Information Theory

We consider total, onto functions with fixed, finite, discrete domains. That is, a function f
is equipped with a fixed input domain, I, and an output range, O, so that f : I ! O and
(overloading f) O = fI and I = f�1O.

We take a probabilistic view of the behaviour of f . We overload I and O to also represent
random variables equipped with probability distributions, �I and �O respectively. Shannon [25]
measured the information content, or entropy, of a random variable X with probability distribution
p as follows.

Definition 7 Entropy of a random variable.

H(X) = �
X

x2X

p(x)log2p(x)

Since random variable O is completely determined by f ’s action on I all the information in O
stems from I [9] so H(I) � H(O) is the amount of information destroyed by f . This is conditional
entropy, the entropy of I conditional on knowledge of O, in the deterministic case. To emphasise
the role that this loss of information is playing we also call this quantity Squeeziness. If the
function is one to one there are no collisions and the Squeeziness of the function is 0 since �I = �O
and H(I) = H(O).

Definition 8 Squeeziness. The Squeeziness of total function f : I ! O, Sq(f), is defined as the
loss of information after applying f to I

Sq(f, I) = H(I) � H(O)

Note that squeeziness considered as a function takes two arguments, a domain (actually a
random variable in the values of the domain) and a function applied to that domain.

The partition property of entropy [12] allows us to reformulate Squeeziness in a more useful way.
Let f�1o be the random variable in the inverse image of o 2 O. The inverse images of elements of
O partition I. For each o 2 O, �O(o) =

P
i2f�1o �I(i) so �O is the probability distribution for the

random variable in the partitions induced by the inverse images. These inverse images partition
the input space. By the partition property

H(I) = H(O) +
X

o2O

p(o) H(f�1o)

hence
Sq(f, I) =

X

o2O

p(o) H(f�1o)

The RHS of the equation is a weighted sum of terms and H(f�1o) is the amount of information
contained in (the random variable in) the set of elements mapped to a single output.

In what follows whenever the distribution on a set is not an induced one, e.g. it is a distribution
on inputs, we always use a uniform distribution. This corresponds to the Maximum Entropy
Principle and can be viewed as producing metrics in which inputs have equal weight.
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Figure 1: Loss of information: squeezing inverse images of outputs.

4 Failed Error Propagation (FEP) and Conditional Entropy

We argue that a very useful way of looking at FEP is to see it in terms of loss of information. This
has been hinted at in studies by Masri, Woodward, and others without any strong conclusions
[20, 29]. The nature of testing software, i.e. lack of knowledge of the error-free program, necessarily
makes any analysis approximate rather than formal. In this case the proof of our analytical pudding
will be experiment rather than proof based. To overcome our ignorance of the ideal, error free
program, from now on referred to as the “ghost” program, we make the following two strong
assumptions

Assumption 1 There is a single error in the program under test.

This is a fairly common, simplifying assumption. In order to state the second assumption we
must first compare execution of a test input using the “ghost” program with execution of the same
input using the Implementation Under Test (IUT).

Suppose the program we intended to write, the “ghost” program, is program P but the program
we actually wrote, the IUT, is another program which we will call P 0. P is a perfect oracle for
P 0 which exhibits not only the desired input-output behaviour of P 0 but allows us to examine the
desired internal states of P 0. The di↵erence between P and P 0 is that P 0 may contain faults. Let
us assume that there is only one fault in P 0 and that it occurs in a single structural component, C 0

which corresponds to its fault-free version, C, in P . This is a scenario similar to mutation testing.
Now consider a test input, t, and the execution of each program on t. This is the situation

illustrated by figure 2. In the CFG corresponding to each program we can break the execution
path into three parts: the upper path that precedes entry to structural component, the structural
component, and the lower path that succeeds the component. Since we assume that there is a
single fault the respective upper paths will be the same, i.e. A and A0 in figure 2 are the same.
Clearly C and C 0 are not the same and, in general, the succeeding or lower paths, B and B0 are
not the same. Let us assume that c is the path through C and that C has a final node, n which
is a state update node. In this case there is a single outgoing edge, e and we expect c0, C 0, n0 and
e0 to play the corresponding roles in P 0. For a covering path ⇡ = A0.c0.B0 in P 0 when describing
the upper path we will mean ⇡u = A0.c0 and by the lower path we mean ⇡l = B0.

The execution semantics in P is then [[A.c.B]]exe (t) and in P 0 is [[A0.c0.B0]]exe0 (t). The path
semantics in P is [[A.c.B]]pae and in P 0 is [[A0.c0.B0]]pae0 . Finally, under the assumption the the final
node of C (and C 0) is a state update node, the CFG collecting semantics at n and n0 respectively
and the program collecting semantics at e and e0 respectively are the same (respectively). That
is [[e]]cfg = [[n]]pr and [[e0]]cfg = [[n0]]pr. In figure 2, e is identified with program point pp and e0 with
program point pp0.

We will use these notations to frame hypotheses and describe the experiments in sections 5
and 6.

7



To return to figure 2, it may be possible that the states associated to each edge in the execu-
tion semantics are the same, i.e. [[A.c]]exe (t) = [[A.c0]]exe0 (t), but in general these will be di↵erent,
corresponding to the Infection phase of the PIE scenario. However when FEP occurs we have that
the output, o, is the same in each case.

Laski et alia observed that it is the behaviour of the subgraph whose input state corresponds
to the edge e0 in figure 2 and which may be described as the subgraph reachable from the target
node of e0 which is somehow failing to Propagate the Infection to the output [17]. In P and P 0

these respective subgraphs are labelled Q and Q0. It is the joint behaviour of these that cause
FEP. Laski and others further noted that these sub graphs are exactly the same except in the case
that the component C 0 is within a loop. Then C may occur many times in Q corresponding to C 0

occurring many times in Q0 but the CFG context in which they occur will be the same. In the
case that the fault occurs in a node, n, which is a control expression there is no unique outward
edge as per our earlier assumption and the subgraph is not a well formed CFG. This case did
not occur in the paper by Laski et alia as they assumed that the fault was within a well formed
program construct.

Suppose that the two subgraphs are the same (Q = Q0), then the collision where two di↵erent
inputs produce the same output is an example of loss of information (conditional entropy) between
inputs and outputs as discussed in a previous paper [7] and above in section 3.3, so even if they
are not the same but their information flow behaviour is very similar we can use the information
flow behaviour of Q0 to estimate how likely it is that FEP occurs. This is the key idea in this
paper and our second assumption.

Assumption 2 The sub programs Q and Q0 following the error point in the “ghost” program and
the IUT are essentially the same from information flow quantity perspective.

n’

t

CFG(P’)

A A’

C C’

Q

o o

B

B’

Q’

t

CFG(P)

pp pp’

n

Figure 2: FEP scenario.

5 The Research Question

Our long term aim (beyond the scope of this paper) is to produce a set of lightweight, information
flow based metrics which can support both coverage based testing and mutation based testing in
generating test suites that minimally su↵er from FEP. As Masri et alia have observed, di↵erent
programs su↵er from coincidental correctness to di↵erent extents [19]. However we can attempt to
optimise for a particular program. In what follows we consider the question of useful correlations
from a coverage testing perspective.

There is only one research question:
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Research Question 1 What are the useful correlations between the conditional entropies of dif-
ferent information flow channels in the IUT and the probability of FEP for a given, erroneous,
program construct?

In what follows we propose six answers to this research question in the form of hypotheses.
In subsequent sections we will evaluate these answers experimentally. It will be useful to refer to
figure 2 when interpreting the hypotheses.

5.1 Hypothesis 1

Consider an incorrect program construct, C 0 in an IUT P 0 containing program point pp0 corre-
sponding to edge e0 as above, immediately following C 0. Let ⌃I be the set of inputs to P 0 and let
Q0 be the sub program of P 0 reachable from pp0 and the collecting semantics at pp0 be the set of
states ⌃pp0 = [[e0]]cfg. Let [[Q0]] be the functional semantics of Q0.

Hypothesis 1 There is a correlation between the probability of FEP for all input states whose
execution path includes e0 and

sq([[Q0]], [Q0]([[Q0]]⌃pp0))

We unpack and motivate the metric. Laski et al have observed that failed error propagation is
due to the behaviour of Q0. We propose that, given our assumptions, the more squeezy [[Q0]] is on
states that get mapped to the output of Q0 applied to ⌃pp0 , i.e. the higher the conditional entropy
of [[Q0]] on that domain, the higher the probability that any internal state chosen at pp0 su↵ers
from FEP. But what should we estimate as the domain for the function [[Q0]]? It has to be larger
than ⌃pp0 as it needs to contain states that could occur at pp in P , the “ghost” program, i.e. states
in ⌃pp. One way of estimating ⌃pp [ ⌃pp0 is to consider the weakest precondition of the outputs
of the IUT for all execution paths through pp0 under [[Q0]]. This is the domain [Q0]([[Q0]]⌃pp0).

The consequence of a strong correlation here is that the squeeziness based metric would tell
the tester whether or not it is necessary to use optimisation to minimise the probability of FEP.

5.2 Hypothesis 2

Consider the same setup as for the previous hypothesis. Similarly, let R0 be the sub program of
P 0 which is backwardly reachable from pp0 so that ⌃pp0 is also the set of outputs from applying
[[R0]] to ⌃I .

Hypothesis 2 There is a correlation between the probability of FEP for all input states that reach
pp0 via the execution of R0 and

sq([[R0]], [R0]⌃pp0) + sq([[Q0]], [Q0]([[Q0]]⌃pp0))

except when sq([[Q0]], [Q0]([[Q0]]⌃pp0)) = 0.

This is the same as hypothesis 1 but addition we consider the sub program R0. This may
potentially squeeze multiple input states in ⌃I onto states in ⌃pp0 that in turn su↵er from FEP,
multiplying the e↵ect of Q0. To account for this we add the conditional entropy of [[R0]] on the
input states that get mapped to ⌃pp0 . If [[Q0]] has zero squeeziness on [Q0]([[Q0]]⌃pp0) there should
be no possibility of FEP and no need to consider the multiplier e↵ect.

The consequences of a strong correlation are the same as for Hypothesis 1. In this case we
are merely interested in which correlation is the stronger. In the next two hypotheses we examine
how we can provide an optimisation when the squeeziness metric is relatively high.
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5.3 Hypothesis 3

Consider an execution path, ⇡, in P 0 that covers the faulty component C 0. In general there may
be many inputs to P 0 that follow ⇡ and correspond to states at both pp0 and the exit point for P 0.
Let the outputs that reach the exit point for P 0 along ⇡ be [[⇡]](⌃I).

Hypothesis 3 There is a correlation between the probability of FEP for all states that reach pp0

via execution along ⇡, i.e. [[⇡]]pae0 , and

sq([[Q0]], [Q0]([[⇡]]⌃I))

Again, we unpack and motivate the conditional entropy metric. Previously we considered all
states that reach the program point pp0 immediately after executing the potentially faulty program
component C 0. Here we consider the states that reach the program point only via a single covering
path for C 0, ⇡. Examining figure 2, an input to both P and P 0 will reach pp and pp0 respectively
via the same upper path (modulo C/C 0) but may have di↵erent lower paths. Under Assumption
2, both of the lower paths are paths in Q0 so the degree of FEP for inputs to P 0 that reach [[⇡]]pae0
depends on the degree to which Q0 is colliding states at pp and pp0 to produce states in ⇡⌃I . We
estimate the states in ⌃pp [ ⌃pp0 that are mapped onto ⇡⌃I by considering weakest precondition
for Q0 but this time with a post condition of ⇡⌃I .

The consequence of a strong correlation in this case is that it gives us a means to rank covering
paths for C 0 using squeeziness. We can choose the least squeezy path and have confidence that, by
using that path to generate a test input that covers C 0, we have maximised, or at least improved,
the probability that our choice of test input will produce a failing test output in the case that C 0

has a bug.

5.4 Hypothesis 4

Let a path ⇡ covering a construct C 0 be expressed as the concatenation of two paths so that
⇡ = ⇡u⇡l as above in section 4 , where ⇡u is the upper path that terminates at pp0 (e0) and ⇡l
is the lower path that follows pp0 (part of ⇡ beginning at the target node of e0). There is the
possibility that ⇡u squeezes inputs onto states at pp0 which magnifies the degree of FEP caused
by the squeeziness of Q0 on ⌃pp0 [ ⌃pp. In a way similar to hypothesis 2 we add the conditional
entropy of the upper path to improve the correlation.

Hypothesis 4 There is a correlation between the probability of FEP for all states that reach pp0

via execution along ⇡, i.e. [[⇡]]pae0 , and

sq([[⇡u]], [⇡u][[⇡]]pae0 ) + sq([[Q0]], [Q0]([[⇡]]⌃I))

As in Hypothesis 2, our aim is to test whether the addition of this upper path conditional
entropy improves the correlation.

5.5 Hypothesis 5

In a previous paper we speculated that the squeeziness of ⇡l on ⌃pp0 would be correlated with the
probability of fault masking for inputs that reach pp0 [7].

Hypothesis 5 There is a correlation between the probability of FEP for all input states that reach
pp0 via execution along ⇡ and

sq([[⇡l]], [[⇡]]pae0 ))

The consequences of this correlation are that we would only need to rank covering paths for a
construct on the basis of the squeeziness of the lower path on the states that occur at pp0 along
path ⇡. In comparison to metrics in earlier hypotheses this would be comparatively cheap to
estimate.
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5.6 Hypothesis 6

We know that for a function f and domain D where sq(f, D) = 0 that f must be one to one.
So we expect that if a squeeziness metric is zero then f must propagate error states in D to the
output of the function without any collisions, i.e. that the probability of FEP is zero. That is the
theory. However assumption 2 may weaken this so we need to test the hypothesis experimentally.

Hypothesis 6 Let ✏ > 0 be a small number arbitrarily close to 0. Whenever sq([[Q0]], [Q0]([[⇡]]⌃I)) 
✏ then p(FEP )  ✏.

The consequence of this hypothesis being validated is that a squeeziness close to zero for a path
means that we don’t need to rank the covering paths but can simply use that path to generate a
test input to cover the program construct.

6 Experimental Setup

6.1 Subjects and Mutants

We used three sources of subject programs as shown in Table 1 where we aggregate lines of code
for each project, with all programs being written in C. The toy project contains 17 small programs
that we implemented based on designs that aimed to demonstrate squeeziness. The other subject
programs were taken from two real-world projects: the R project [14] for statistical computing
and graphics, and the open source statistical package GRETL (Gnu Regression, Econometrics and
Time-series Library) [10].

Table 1: Projects under investigation
Project Function total LoC Mutants
Toy 17 810 383
R 10 221k 953
GRETL 3 286k 72

The two real-world projects contain many functions and so we chose entrance functions: those
directly called by a user or a program from outside of the project. For R, as shown in Column 2 of
Table 2, we selected the 10 functions with the most Lines of Code (LoCs) from the nmath library
of R, a C Library of special mathematical functions. However, to simplify the experiments, we did
not use functions that contained array variables. To add variety, another three subject programs
were chosen from the cephes library of GRETL (see Table 2).

The functions from R and GRETL require other functions from their libraries. We therefore
formed subject programs by (recursively) including the required functions, with Column 3 of
Table 2 giving the numbers of functions involved. Columns 4 and 5 give the LoC and physically
executable lines of code (SLoC) of the subject programs.

We generated di↵erent versions of programs by seeding a fault into each original subject pro-
gram as done in mutation testing [16]. The faults were introduced by using the C mutation
operator OAAN [3] that replaces an arithmetic operator with another, for example, - with +,
or / with +. We used the mutation tool SMT-C to generate the mutants (mutated programs)
and to run the mutation analysis [13]. Some of the mutants could not be compiled and so were
not used in the experiments. To calculate FEP, both strong and weak mutation analysis were
applied1. Finally, several subject programs (rhyper, ptukey, qgamma, psi and qt) led to too many
mutants and in these cases we randomly selected 100 mutants. The numbers of mutants used in
the experiment are given in Table 1.

1
See section 2 for a description of weak and strong mutation testing
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Table 2: Real world statistical subject programs
Project Function C Files LoC SLoC

R

bratio 4 1667 1573
rhyper 2 338 260
gamma cody 2 137 116
ptukey 7 1360 674
qgamma 14 2397 1312
psi 2 261 119
pnorm both 1 315 178
pnchisq raw 1 275 181
gammafn 5 527 264

GRETL

qt 1 234 124

i0 2 270 108
k0 5 688 267
unity 3 335 147

6.2 Experimental Design

In the experiments we used randomly chosen inputs sampled from a uniform distribution. This
allowed us to estimate quantities. We have not checked the statistical significance of our sampling
but the sample size is fairly large over all programs. Also, the sample for a given program can be
viewed as “all inputs” for a restricted input domain.

As all subject programs have numeric inputs, we used the RngPack library to generate the
random numbers [2]. Initially, we generated inputs from the complete ranges of the input param-
eters but we found that most inputs led to special numbers (0, NAN and INFINITE ) as output.
To address this problem, for each program we limited the input domain from which inputs were
chosen based on the first level guards of that program. This led to smaller input domains but
useful test cases. For example, inputs for gamma cody were drawn from [�200, 200].

We then ran strong/weak mutation analysis using SMT-C and the randomly generated inputs.
As the weak mutation analysis functionality of SMT-C is implemented based on the GNU Debugger
(GDB) [1], it was possible to use GDB commands to extract the runtime program states, and this
allowed us to extend SMT-C to support information flow analysis. We executed each subject
program and each of its mutants with the same 5000 inputs and recorded the state after the
mutation point (at program point pp in the original program P and pp0 in the mutant P 0 in
Figure 2), the state at the end of the program (o in the original program P and o0 in the mutant
P 0 in Figure 2), and the execution path taken by the mutant. We ignored any inputs that led to
invalid outputs, such as those that are not a number, are infinite or that cause an exception. The
executions of the more than 7 million test cases generated more than 7 gigabytes of raw result
files. Given mutant P 0, the following shows how we calculated the probability of fault masking
p(FEP) on the inputs used.

p(FEP) =

# of tests that weakly kill P 0

but do not strongly kill P 0

# of tests that reach pp’ and have an output

Note that the way we count the total number of tests in the denominator varies between
experiments. In EXP1 and EXP2 we count the tests that reach pp0 via any execution path
through C 0. In experiment EXP3, EXP4 and EXP5 we count the number of tests that reach pp0

by following a single execution path to output.
For a test input to weakly kill a mutant, it must lead to di↵erent program states for the mutant

and the original program after the mutation point (in Figure 2 the states at pp in P and pp0 in P 0

should be di↵erent). A test input strongly kills a mutant if it leads to this di↵erence in program
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state propagating to the program’s output (in Figure 2 o in P and o in P 0 are di↵erent). Therefore,
p(FEP) computes the proportion of tests that cause a di↵erent program state after the mutation
point at pp in P and pp0 in P 0 but do not lead to a di↵erent output.

We classified tests according to whether they are able to propagate the seeded fault to the
output. The tests that successfully propagate faults have the property EP (error propagation).
The rest of the tests su↵er from failed error propagation (FEP) and other coincidental correctness
(CC1). Tests classified as CC2 su↵ered from anomalies. Table 3 lists the proportion of tests
that have these properties. The significant statistic is that approximately 10% of tests across all
program-mutant pairs su↵ered from FEP.

Table 3: The proportion of randomly generated tests for all subject programs that are weakly and
strongly killed.

Weakly Killed Strongly Killed Proportion
EP Yes Yes 84.73 %
FEP Yes No 9.85 %
CC1 No No 4.89 %
CC2 No Yes 0.44 %

Given our complete knowledge in the mutation testing scenario of the experiments we can
replace [Q0]([[Q0]]⌃pp0) with the quantity it estimates, namely ⌃pp [ ⌃pp0 in EXP1 and EXP2.
Similarly we can use find the appropriate subset of ⌃pp [ ⌃pp0 , calculated by direct examination
of the data, to replace its estimation, [Q0](⇡⌃I) in EXP3, EXP4 and EXP5. This gives a maximal
correlation, useful when when seeking to compare correlations and rate the strength of correlations.

We now outline the experiments performed.

6.2.1 Experiment 1 (EXP1)

This experiment explored the strength of the correlation suggested in Hypothesis 1 by estimating
the correlation between the probability of FEP for inputs reaching pp0 and sq([[Q0]], ⌃pp [ ⌃pp0).

For each mutant, sq([[Q0]], ⌃pp [ ⌃pp0) can be calculated as follows. First, we set

s =
1

|⌃pp [ ⌃pp0 |
Then we set S = |⌃pp [ ⌃pp0 |s log2(s) = log2(s). Given output o, the probability for o given
⌃pp [ ⌃pp0 is

t(o) =
# of states in ⌃pp [ ⌃pp0that lead to o

|⌃pp [ ⌃pp0 |
and consequently T =

P
o t(o)⇤ log2(t(o)) and the squeeziness for Q0 on ⌃pp[⌃pp0 is sq([[Q0]], ⌃pp[

⌃pp0) = �S + T

6.2.2 Experiment 2 (EXP2)

This experiment explored the strength of the correlation suggested in Hypothesis 2. The experi-
ment is the same as EXP1 with the di↵erence being that if sq([[Q0]], ⌃pp [ ⌃pp0) 6= 0 we add to it
sq([[R0]], [R0]⌃pp0), i.e. the squeeziness or R0 on the inputs that R0 maps to states at pp0.

For each mutant, the squeeziness of R0 on the domain can be calculated as follows. The
probability assigned to the inputs is I = log2(|⌃I |) (recall that ⌃I is the set of inputs used). The
probability assigned to a state ⇢ 2 ⌃pp0 is:

u(⇢) =
# of inputs that get mapped to ⇢ by R0

|⌃I |
and we let U =

P
⇢ u(⇢)⇤log2(u(⇢)). Then the squeeziness of R0 is: sq([[R0]], [R0]⌃pp0) = �I+U .

If the squeeziness of Q0 is non-zero, then the squeeziness of R0 is added to it.
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6.2.3 Experiment 3 (EXP3)

For a given path ⇡, which executes the component of interest, p(FEP) for states occurring on the
path at pp0 correlates with sq([[Q0]], [Q0](⇡⌃)). Given path ⇡ we will let ⌃⇡

pp0 and ⌃⇡
pp be the sets of

states occurring on the path at pp0 and pp respectively when following ⇡ in P 0 and its equivalent
in P respectively.

For each path ⇡ in a mutant, associated values of p(FEP) and the squeeziness of Q0, sq(Q0, [Q0](⇡⌃)),
can be calculated using an approach similar to that in the description of experiment EXP1 except
that the values used are specific to ⇡. Thus, we assign the probability

s =
1

|⌃⇡
pp [ ⌃⇡

pp0 |

Then we set S =
P

s ⇤ log2(s). The probability for the corresponding outputs for ⇡ is given by:

t(o) =
# of states in ⌃⇡

pp [ ⌃⇡
pp0 that lead to o

|⌃⇡
pp [ ⌃⇡

pp0 |

and consequently, T =
P

o t(o) ⇤ log2(t(o)). The squeeziness for Q0 with respect to ⇡ at ⌃⇡
pp [⌃⇡

pp0

is then given by: sq([[Q0]], ⌃⇡
pp [ ⌃⇡

pp0) = �S + T .

6.2.4 Experiment 4 (EXP4)

This experiment explored the strength of the correlation suggested in Hypothesis 4. The experi-
ment is the same as EXP3 except that we add to sq([[Q0]], ⌃⇡

pp[⌃⇡
pp0)) the squeeziness of the upper

path, ⇡u, on the inputs to the program that follow execution path ⇡. The latter can be expressed
as sq([[⇡u]], [⇡]([[⇡]]⌃)) since [⇡u][[⇡]]pae0 = [⇡]([[⇡]]⌃).

Let ⌃⇡ = [⇡]([[⇡]]⌃). The information content of the inputs that travel down path ⇡ is I =
log2(|⌃⇡|). The probability assigned at pp0 is:

r(⇢) =
# of times that 9s 2 ⌃⇡ . [[⇡]](s) = ⇢

|⌃⇡|
and this leads to the term U = �P

⇢ r(⇢) ⇤ log2(r(⇢)). Then the squeeziness of ⇡u is given by
sq([[⇡u]], ⌃⇡) = I � U .

6.2.5 Experiment 5 (EXP5)

This experiment assesses the correlation between the probability of FEP on states in [[⇡]]pae0 and
the squeeziness of ⇡l on these states.

For each path ⇡ in mutant P 0, p(FEP) for states that occur on ⇡ at pp0, [[⇡]]pae0 , can be calculated
as in Experiments EXP3 and EXP4. To calculate squeeziness sq([[⇡l]], [⇡l](⇡⌃)) we have to calculate
the probability distributions on [[⇡]]pae0 at pp0 and [[⇡]]⌃I at the end of the program. To calculate
the latter, let ⌃⇡ = [⇡]([[⇡]]⌃I). it is su�cient to determine, for each output o, how many inputs
that follow ⇡ lead to o.

The probability assigned to o in [[⇡]]⌃I for a given path is:

m(o) =
# of inputs from ⌃⇡ that lead to o

|⌃⇡|
and we set M = �P

o m(o) ⇤ log2(m(o)). The probability assigned to state ⇢ at pp0 for ⇡ is:

l(⇢) =
# of inputs from ⌃⇡ that lead to ⇢

|⌃⇡|
and we set L = �P

⇢ l(⇢)⇤log2(l(⇢)). Then the squeeziness is calculated as: sq([[⇡l]], [⇡l](⇡⌃)) =
L � M .
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Table 4: Spearman’s Rank Correlation Coe�cient for all programs.
Experiment Correlation
EXP1 0.715267
EXP2 0.699165
EXP3 0.955647
EXP4 0.948299
EXP5 0.031510

6.2.6 Experiment 6 (EXP6)

We examined various upper bounds “near zero” and found the maximum observed value for
sq([[Q0]], ⌃pp [ ⌃pp0)) less than the bound and its corresponding value for p(FEP) using the pairs
calculated for EXP1. We looked at a small sample of three bounds: 0.1, 0.01 and 0.001, but
examined a large number of pairs for each bound.

7 Results

The experiments, inevitably, have limitations. We do not use a variety of mutation operators
that, for example, delete statements, replace boolean relations with others, or replace boolean
subexpressions with true or false. However, our approach is independent of types of faults as it is
semantics based and considers program points and incorrect states. We do only generate mutants
with a single fault while in practise programs may contain multiple faults but this is a common
assumption in testing. We aim to address this in future work.

We sample inputs rather than considering all inputs. This was the only way to make the exper-
iments practical. This necessity may serendipitously be the foundation of a sampling approach to
estimating squeeziness metrics in the future. Although we have not considered formal statistical
guarantees, the sample size across all programs is large.

We use information from both pp from P and pp0 from P 0, when in practice we would only
have pp0 from P 0. When testing a program P 0, p(FEP) can never be known in practice as we
don’t have P . However our experiments could replicated but would be very expensive. Since our
objective in this paper was to use strength of correlation to find the most suitable metrics using
knowledge of pp was not a drawback.

Consider the correlations found in Experiments 1-4. The experiments computed the di↵erent
metrics and Table 4 gives the Spearman’s Rank Correlation Coe�cient for all programs. In order
to understand the contributions from the small set of toy programs we wrote ourselves and the
real world programs we looked at the correlations for these two groups separately. Table 5 gives
the results for the statistical programs, and Table 6 gives the results for the small programs.
Interestingly, we have very strong correlations for Experiments 1-4 and these are particularly
strong for the larger, real world, programs. Experiments 2 and 4 had lower correlation values
than experiments 1 and 3, suggesting that the important correlations are with squeeziness of
Q0 on di↵erent domains and that contributions from the upper program are not significant, in
fact retrograde. In contrast, Experiment 5 did not reveal a correlation, rather invalidating the
suggestion of this metric in our IPL paper [7]. These results give a very strong correlation for
between information theoretic metrics and both FEP and FEP along a particular path.

We reproduce here the three plots of rank correlations corresponding to the table entries
for Experiment 2. Figure 3 plots the ranks given to squeeziness and p(FEP) when calculating
Spearman’s Rank Correlation Coe�cient. Figure 4 plots the ranks given to squeeziness and
p(FEP) for the statistical programs. Figure 5 plots the ranks given to squeeziness and p(FEP) for
small programs.

The plots show that the strong correlation for EXP2 is in the most part derived from the
larger, real world statistical programs.
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Table 5: Spearman’s Rank Correlation Coe�cient for statistical programs.
Experiment Correlation
EXP1 0.974459
EXP2 0.974459
EXP3 0.998526
EXP4 0.998526
EXP5 -0.001361

Table 6: Spearman’s Rank Correlation Coe�cient for small programs.
Experiment Correlation
EXP1 0.705367
EXP2 0.686284
EXP3 0.761889
EXP4 0.666140
EXP5 0.005787

Figure 3: The rank correlation of p(FEP) and Squeeziness for all programs (EXP2).

Figure 4: The rank correlation of p(FEP) and Squeeziness for statistical programs (EXP2).
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Figure 5: The rank correlation of p(FEP) and Squeeziness for small programs (EXP2).

Table 7: Maximum p(FEP) for all programs
sq(Q0) Range Max sq(Q) Max p(FEP)
 0.1 0.090683 0.090683
 0.01 0.001120 0.001120
 0.001 0.000800 0.000200

Table 7 gives the maximum values for squeeziness of Q and p(FEP) for a given “small” bound
on sq(Q) values over all programs using information from EXP1. The results validate theory and
could be used to identify program constructs in an implementation under test that are highly
unlikely to su↵er from FEP.

8 Conclusions and Further Work

Our analysis and the results of our experiments have shown that we can interpret Failed Error
Propagation during software testing using conditional entropy based metrics on the Implementa-
tion Under Test. This is a novel use of Quantified Information Flow, a concept whose applications
have to date been in the area of secure information flow [8, 15]. The results point the way towards
the possibility of a practical method for minimising the e↵ects of FEP during white box testing.
This could significantly improve the quality of test suites given what we know about the prevalence
of FEP in testing.

An enormous vista of possible future work now beckons. Having identified useful metrics, the
next task is to repeat the experiments using estimates of the weakest preconditions that appear
in the metrics. We expect that the rank correlations will be weaker but still highly significant.
The success of these experiments would put the utility of the approach beyond doubt. Beyond
that lies the problem of estimating the metrics. It is likely that the sampling approach used in
this paper can be put on a firmer statistical footing for the ranking metrics. Estimating entropy
for the absolute values used in the final experiment will be more di�cult but not impossible [5].

We have examined a narrow class of seeded errors and further theory and experimentation
will be necessary to extend the ideas, for example to branch coverage. It is easy to foresee a
possible tool for optimising the e↵ectiveness of coverage based testing but also possible to imagine
application to the problem of equivalent mutants in mutation testing. An interesting challenge
in the long run would be application in a concolic testing scenario such as that o↵ered by Pex
[26]. We believe this paper lays the foundation for a revolutionary improvement in test suite
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e↵ectiveness.
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