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ABSTRACT
Two decades of bespoke Combinatorial Interaction Test-
ing (CIT) algorithm development have left software engi-
neers with a bewildering choice of configurable system test-
ing techniques. This paper introduces a single hyperheuris-
tic algorithm that learns CIT strategies, providing a single
generalist approach. We report experiments that show that
our algorithm competes with known best solutions across
constrained and unconstrained problems. For all 26 real
world subjects and 29 of the 30 constrained benchmark prob-
lems studied, it equals or improves upon the best known re-
sult. We also present evidence that our algorithm’s strong
generic performance is caused by its e↵ective unsupervised
learning. Hyperheuristic search is thus a promising way to
relocate CIT design intelligence from human to machine.
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D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification
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1. INTRODUCTION
Combinatorial Interaction Testing (CIT) is important be-

cause of the increasing reliance on configurable systems. CIT
aims to generate samples that cover all possible value com-
binations between any set of t parameters, where t is fixed
(usually between 2 and 6). Software product lines, operating
systems, development environments and many other systems
are typically governed by large configuration parameter and
feature spaces for which CIT has proved useful [30].
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Over two decades of research has gone into the develop-
ment of bespoke CIT test generation techniques, each of
which is tailored and tuned to a specific problem. For ex-
ample, some CIT algorithms have been tuned and evalu-
ated only on unconstrained problems [8, 12, 24, 27], while
others have been specifically tuned for constrained interac-
tion testing [4, 19], which prohibits certain configurations.
Still other CIT approaches target specific problem struc-
tures, such as parameter spaces with few available parame-
ter value choices [28,31], or are tuned to work on a particular
set of real world problems [36].

The tester is therefore presented with many di↵erent tech-
niques and implementations from which to choose, each of
which has its own special properties. Unfortunately, this
choice can be a bewildering one, because an algorithm de-
signed for one CIT instance may perform poorly when ap-
plied to another (or may even be inapplicable). It may not
be reasonable to expect a practicing software tester to per-
form their own experiments to decide on the best CIT algo-
rithm choice for each and every testing problem. It would
be equally unreasonable to expect every organisation to hire
an algorithm designer to build bespoke CIT testing imple-
mentations for each testing scenario the organisation faces.

To overcome some of the practical di�culties in choos-
ing among available implementations, there has been an at-
tempt to collate algorithms into a common framework with a
single unified interface [6]. This framework seeks to ensure
that all implementations ought to be at least easily appli-
cable. However, it cannot help the tester to choose which
algorithm to apply to each CIT problem instance. Instead,
he or she must run experiments to gather this data.

To address this problem we introduce a simulated anneal-
ing hyperheuristic search based algorithm. Hyperheuristics
are a new class of Search Based Software Engineering al-
gorithms, the members of which use dynamic adaptive op-
timisation to learn optimisation strategies without supervi-
sion [3, 22]. Our hyperheuristic algorithm learns the CIT
strategy to apply dynamically, as it is executed. This single
algorithm can be applied to a wide range of CIT problem
instances, regardless of their structure and characteristics.

For our new algorithm to be acceptable as a generic so-
lution to the CIT problem, we need to demonstrate that it
is e↵ective and e�cient across a wide range of CIT prob-
lem instances, when compared to other possible algorithm
choices. To assess the e↵ectiveness of CIT solutions we use
the size of the final sample.
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Garvin et al. [19] have demonstrated that this size has
the greatest impact on the overall e�cacy of CIT. To assess
e�ciency we report computational time (as is standard in
CIT experiments), but we also deploy the algorithms in the
cloud. Cloud deployment provides an unequivocal supple-
mental assessment of monetary cost (as has been done in
recent software engineering studies [25]).

We compare our hyperheuristic algorithm, not only against
results from other state-of-the-art CIT techniques, but also
against the best known results in the literature, garnered
over 20 years of analysis of CIT. This is a particularly chal-
lenging ‘quality comparison’ for any algorithm, because some
of these best known results are the product of many years
of careful analysis by mathematicians, not machines.

We show that our hyperheuristic algorithm performs well
on both constrained and unconstrained problems and across
a wide range of parameter sizes and data sets that includes
both two and three-way coverage. Like the best known
results, some of these data sets have been designed using
human ingenuity. Human design ensures that these bench-
marks capture especially pathological ‘corner cases’ and prob-
lems with specific structures that are known to pose chal-
lenges to the CIT algorithms.

Overall, our results provide evidence to support the claim
that hyperheuristic search is a promising solution to CIT,
potentially replacing the current bewildering range of choices
with a single, generic solution that learns to tailor itself to
the configuration testing problem to which it is applied.

The primary contributions of this paper are:

1. The formulation of CIT as a hyperheuristic search prob-
lem and the introduction of the first hyperheuristic al-
gorithm for solving this problem. This work is also
the first use of hyperheuristic learning in the Software
Engineering literature.

2. A comprehensive empirical study showing that this
approach is both e↵ective and e�cient. The study
reports results across a wide range of 59 previously
studied benchmarks that include known pathological
and corner cases. We also study 26 problem instances
from two previous studies where each of the 26 CIT
problems is drawn from a real world configurable sys-
tem testing problem. These study subjects cover both
constrained and unconstrained CIT problems, and we
report results for both 2-way and 3-way interaction
coverage for a subset of these.

3. We use the Amazon EC2 cloud to measure the real
computational cost (in US dollars) of the algorithms
studied. These results indicate that, with default set-
tings, our hyperheuristic algorithm can produce com-
petitive results to state-of-the-art tools at a reasonable
cost. For example, our algorithm produces all the pair-
wise interaction tests reported in the paper for all 26
real world problems and the 44 pairwise benchmarks
for a total cost of only $2.09.

4. A further empirical study is used to explore the nature
of online learning employed by our algorithm. The re-
sults of this study show that the hyperheuristic search
productively combines heuristic operators that would
have proved to be unproductive in isolation. Our re-
sults also demonstrate how the hyperheuristic adapts
its choice of operators to the specific problem to which
it is applied.

2. PRELIMINARIES
In this section we will give a quick overview of the nota-

tion used throughout the paper. CIT produces a Covering
Array (CA), which is typically represented as follows in the
literature:

CA(N ; t, vk1
1 v

k2
2 ...v

km
m )

where N is the size of the array, the sum of k1, ..., km is
the number of parameters (or factors), each vi stands for
the number of values for each of the ki parameters in turn
and t is the strength of the array; a t-way interaction test
suite aims to cover all possible t-way combinations of values
between any t parameters.

Suppose we want to generate a pairwise (aka 2-way) in-
teraction test suite for an instance with 3 parameters, where
the first and third parameter can take 4 di↵erent values and
the second one can only take 3 di↵erent values. Then the
problem can be formulated as: CA(N ; 2, 413141) and the
model of the problem is 413141.

Furthermore, in order to test all combinations one would
need 4 ⇤ 3 ⇤ 4 = 48 test cases, pairwise coverage reduces
this number to 16. Suppose that we have the following con-
straints: only the first value for the first parameter can ever
be combined with values for the other parameters, and the
last value for the second parameter can never be combined
with values for all the other parameters. Introducing these
constraints reduces the size of the test suite further; only
8 test cases are now required to cover all feasible interac-
tions. Since constraints reduce test suite size and naturally
occur in real-world problems, constrained CIT is well-fitted
for industrial applications [33].

Many di↵erent algorithms have been introduced to gener-
ate covering arrays. Each of these algorithms is customised
for specific problem instances. For example, there have been
greedy algorithms, such as the Automatic E�cient Test Case
Generator, AETG [8] , the ‘In Parameter Order’ algorithm
(IPO) [26] and PICT [15]. These methods either generate a
new test case on-the-fly, seeking to cover the largest number
of uncovered t-way interactions, or start with a small num-
ber of parameters and iteratively add new columns and rows
to fill in the missing coverage.

Other approaches include metaheuristic search algorithms,
such as simulated annealing [12, 19, 28] or tabu search [31].
These metaheuristics are usually divided into two phases or
stages. In the first stage, binary search, for instance, is used
to generate a random test suite, r of fixed size n. In the sec-
ond stage, metaheuristic search is used to search for a test
suite of size n, starting with r, that covers as many inter-
actions as possible. And there are other unique algorithms,
such as those that use constraint solving or logic techniques
as the core of their approach [6, 24].

3. HYPERHEURISTIC CIT ALGORITHM
Hyperheuristic search is a new class of optimisation al-

gorithms for Search Based Software Engineering [21]. Hy-
perheuristics have been successfully applied to many opera-
tional research problems outside of software engineering [3].
However, though they have been advocated as a possible
solution to dynamic adaptive optimisation for software en-
gineering [22], they have not, hitherto, been applied to any
software engineering problem [1,23,34]. There are two sub-
classes of hyperheuristic algorithms: generative and selec-
tive. Generative hyperheuristics combine low level heuristics
to generate new higher level heuristics.
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Selective hyperheuristics select from a set of low level
heuristics. In this paper we use a selective hyperheuristic
algorithm. Selective hyperheuristic algorithms can be fur-
ther divided into two classes, depending upon whether they
are online or o✏ine. We use online selective hyperheuris-
tics, since we want a solution that can learn to select the
best CIT heuristic to apply, unsupervised, as it executes.

The hyperheuristic algorithm takes the set of lower level
heuristics as input, and layers the heuristic search into two
levels that work together to produce the overall solution.
The first (or outer) layer uses a normal metaheuristic search
to find solutions directly from the solution space of the prob-
lem. The inner layer heuristic, searches for the best candi-
date lower heuristics for the outer layer heuristics in the
current problem state. As a result, the inner search adap-
tively identifies and exploits di↵erent strategies according to
the characteristics of the problems it faces.

Our algorithm uses Simulated Annealing (SA) as the outer
search. We choose SA because it has been successfully ap-
plied to CIT problems, yet, even within this class of algo-
rithms, there is a wide choice of available approaches and
implementations [11, 12, 19, 20, 28]. We use a reinforcement
learning agent to perform the inner layer selection to heuris-
tics. Our overall Hyper Heuristic Simulated Annealing al-
gorithm (HHSA) is depicted in Figure 1 and set out more
formally as Algorithm 1.

Simulated Annealing

Outer search

Get next operator

Apply the operator to 
current solution

Send the delta 
fitness value

Reinforcement 
Learning Agent

Inner search

Operator Selection
Soft max 

Reward Assignment
Action value 

Random init solution Navigation 
Operators

Operator 1

Operator 2

Operator 3

. .
 . 

Update solution  with

Update temperature

fitness / T e

Figure 1: Hyper Heuristic Simulated Annealing

3.1 The Outer Layer: Simulated Annealing
A standard Simulated Annealing (SA) algorithm is used

as the outer layer search. The SA algorithm starts with a
randomly generated Nxk array as an initial solution. The
fitness value for each solution is the number of uncovered t-
tuples present in the current array. The fitness value is also
used to represent the current state of the problem (i.e. how
many tuples remain to be covered). This ‘problem state’
is used to understand how our algorithm learns throughout
di↵erent stages of the problem.

In each annealing iteration, the SA algorithm asks the
reinforcement learning agent to choose a best operator for
the current problem state. It then applies the operator and
passes the change in fitness value (delta fitness) back to the
agent. The SA algorithm accepts the new solution if its fit-
ness is the same or better than the fitness of the previous
solution. Otherwise it uses a probability, e

�fitness/T , for
accepting the current solution based on the current temper-
ature T .

As the SA algorithm proceeds, the temperature, T , is pro-
gressively decreased according to a cooling schedule. De-
creasing the temperature reduces the probability of SA ac-
cepting a move that reduces fitness. The SA algorithm stops
when the current array covers all t-tuples or it reaches a pre-
set maximum number of non-improving moves.

To incorporate constraints between parameters, the outer
SA first preprocesses the constraints and identifies all in-
valid tuples which must not be covered. Since previous
work [11,19,20] used a SAT-solver, MiniSAT, for constraint
solving, we also use it in our implementation. Other con-
straint solvers could be used, but we wish to be able to
compare e↵ectiveness to these existing state-of-the-art CIT
systems and the best results reported for them.

The outer SA checks constraint violations after applying
each operator and proposes a repair if there are any vio-
lations. The constraint fixing algorithm is a simple greedy
approach that checks each row of covering array, one at a
time. The algorithm is set out formally as Algorithm 2. If
the outer SA fails to fix the array, it reapplies the current
heuristic operator to generate a new solution.

Input : t, k, v, c, N, MaxNoImprovment

Output: covering array A

A  initial_array (t,k,v,N)
no improvement  0
curr missing  countMissingTuples (A )
while curr missing 6= 0 and MaxNoImprovment 6=
no improvement do

op  rl_agent_choose_action ( curr missing )
A

0 = local_move (op, A )
while fix_cons_violation (A0, c ) do

A

0 = local_move (op, A )
end
new missing  countMissingTuples (A0 )
�fitness = curr missing � new missing

rl_agent_set_reward ( op, �fitness )
if e

�fitness/Temp
> rand_0_to_1 () then

if �fitness = 0 then
no improvement  no improvement + 1

end
A  A

0

curr missing  new missing

end
Temp  cool ( Temp )

end
Algorithm 1: HHSA

We enclose the SA in a binary search procedure to deter-
mine the array size N . This outer binary search procedure is
a commonly used solution to iteratively direct an algorithm
to CIT problems for di↵erent values of N , until a smallest
covering array of size N can be found [12]. The outer binary
search takes an upper and lower bound on the size of array
as input, and returns the covering array with the smallest
possible size.

The CASA tool for CIT [19,20] uses a more sophisticated
version of the binary search. It first tries the same size
multiple times and then does a greedy one sided narrowing
to improve the final array size. Our implementation also
performs this ‘CASA-style’ greedy approach to finding the
array size, but the use of this approach is tunable (i.e. we
use this when we want to search ‘harder’).
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Input : constraints c, row R

Output: has violation

has violation  False

fix time  0
recheck: foreach clause in c do

foreach term in clause do
if R has term then

has violation  True

else
has violation  False

break

end
end
if has violation then

if fix time = MaxFixT ime then
break

end
term =clause_get_random_term (clause )
R = random_fix_term (R, term )
fix time = fix time +1
go to recheck

end
end

Algorithm 2: Constraint Violation Fixing

3.2 The Reinforcement Learning Agent
The goal of the inner layer is to select the best operator at

the current problem state. This operator selection problem
can be considered an n-Armed Bandit Problem, in which the
n arms are the n available heuristics and the machine learner
needs to determine which of these heuristics o↵ers the best
reward at each problem state. We designed a Reinforcement
Learning (RL) agent for the the inner search, as RL agents
are known to provide generally good solutions to this kind
of so-called ‘Bandit Problem’ [38].

As shown in Figure 1, the RL agent takes a set of oper-
ators as input. In each annealing iteration, the RL agent
repeatedly chooses the best fit operator, a, based on the ex-
pected reward of applying operators at current state of the
problem.

After applying the operator a, the RL agent receives a
reward value from the outer layer SA algorithm, based on
performance. At the end of the iteration, the RL agent
updates the expected reward for the chosen operator with
the reward value returned.

The goal of the RL agent is to maximise the expected
total reward that accrues over the entire running time of
the algorithm. Because the reward returned by SA is the
improvement of SA’s fitness value, the RL agent will thus
‘learn’ to choose the operators that tend to maximise the
SA’s fitness improvement, adapting to changes in problem
characteristics.

Our RL agent uses an action-value method [38] to estimate
the expected rewards for each of the operators available to
it at a given problem state. That is, given a set of opera-
tors A = {a1, a2, . . . , ai}, let Ri = {ri1, ri2, . . . , rik}, be the
returned reward values of operator ai at the k

th iteration at
which ai is applied.
The estimated reward ai is defined as the mean reward

value, ri1+ri2+···+rik
ka

, received from SA. We balance the twin
learning objectives of exploration and exploitation, the RL
agent uses a softmax selection rule [38].

The softmax selection rule is a greedy approach that
gives the operator with the best estimated reward the high-
est selection probability. For each operator ai, the selec-
tion probability is defined based on the Gibbs distribution:

e
Rai/T

Pn
j=1 e

Raj /T . A higher value of temperature T makes the se-

lection of all operators more equal while a lower value makes
a greater di↵erence in selection probability.

3.3 Search Space Navigation Operators
We have selected a set of six operators to investigate the

performance and feasibility of this approach to adaptive
learning for CIT. Like any general process, we choose op-
erators that can be widely applicable and which the learner
might be able to combine in productive ways. Since we must
be general, we cannot exploit specific problem characteris-
tics, leaving it to the learner to find ways to do this through
the smart combination of the low level heuristics we define.

We have based our operator selection on the previous algo-
rithms for CIT. None of the operators considers constraints
directly, but some have been used for constrained and some
for unconstrained problems. Like other machine learning
approaches we need a combination of ‘smart’ heuristic and
‘standard’ heuristics, since each can act as an enabler for
the other. The first three operators are ones we deem to
be entirely standard; they do not require book keeping or
search for particular properties before application. The sec-
ond set are ones that we deem to be somewhat smart; these
use information that one might expect could potentially help
guide the outer search. The operators are as follows:

1. Single Mutation (Std): Randomly select a row r and
a column c, change the value at r, c to a random valid
value. This operator matches the neighbourhood trans-
formation in the unconstrained simulated annealing al-
gorithm [12].

2. Add/Del: (Std): Randomly delete a row r and add a
new row r

0 randomly generated. While CASA includes
a row replacement operator, that one uses intelligence
(i.e. the row is not just randomly generated).

3. Multiple Mutation (Std): Randomly select two rows,
r1 and r2, and crossover each column of r1 and r2 with
a probability of 0.2.

4. Single Mutation (Smart): Randomly select a miss-
ing tuple, m, which is the combination of columns
c1, . . . , cn. Go through each row in the covering ar-
ray, if there exists a duplicated tuple constructed by
the same combination of columns c1, . . . , cn, find a row
containing the duplication randomly and change the
row to cover the missing tuple m. Otherwise randomly
select a row r and change the row to cover the missing
tuple m.

5. Add/Del: (Smart): Randomly delete a row r, and add
a new row r

0 to cover n missing tuples. We define n as
the smaller value from k/2 (where k is the number of
parameters) and the number of missing tuples. This
is a simple form of constructing a new row used by
AETG [8].

6. Multiple Mutation (Smart): Randomly select two rows,
r1 and r2, and compare the frequency of a value at each
column, fc1 and fc2. With probability of 0.2, the col-
umn with high frequency will be mutated to a random
value.
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4. EXPERIMENTS
In order to assess the usefulness of using our hyperheuris-

tic algorithm as a general approach to CIT, we built our
version of the hyperheuristic simulated annealing algorithm
and posed the following research questions:1

RQ1 What is the quality of the test suites generated
using the hyperheuristic approach?

One of the primary goals of CIT is to find the smallest
test suite (defined by the covering array) that achieves the
desired strength coverage. It is trivial to generate an ar-
bitrarily large covering test suite - simply include one test
case for each interaction to be covered. However, such a
näıve approach to test generation would yield exponentially
many test cases. All CIT approaches therefore work around
problem of finding a minimal size covering array for testing.
The goal of CIT is to try to find the smallest test suite that
achieves 100% t-way interaction coverage for some chosen
strength of interaction t. In our experiment, we compare
the size of the test suites generated by the Hyperheuristic
Simulated Annealing Algorithm (HSSA) in three di↵erent
ways. We compare against the

1. Best known results reported in the literature, produced
by any approach, including analysis and construction
by mathematicians.

2. Best known (i.e. published) results produced by auto-
mated tools.

3. A state-of-the-art SA-based tool that was designed to
run on unconstrained problems and a state-of-the-art
SA-based tool that was designed to handle constrained
problems well, CASA.

RQ2 How e�cient is the hyperheuristic approach
and what is the trade o↵ between the quality
of the results and the running time?

Another important issue in CIT is the time to find a test
suite that is as close to the minimal one as possible given
time budgeted for the search. Depending on the applica-
tion, one might want to sacrifice minimality for e�ciency
(and vice-versa). This research question therefore inves-
tigates whether the hyperheuristic approach can generate
small test suites in reasonable time.

If the answers to the first two research questions are favour-
able to our hyperheuristic algorithm, then we will have ev-
idence that it can be useful. However, usefulness on our
set of problems, wide and varied though it is, may not be
su�cient for our algorithm to be actually used. We seek to
further explore whether its value is merely an artefact of the
operators we chose for low level heuristics. We also want
to check whether the algorithm is really ‘learning’. If not,
then it might prove to be insu�ciently adaptive to changing
problem characteristics. The next two research questions
seek to test our algorithms further, by investigating these
questions.

RQ3 How e�cient and e↵ective is each search nav-
igation operator in isolation?

In order to collect baseline results for each of the operators
that the hyperheuristic approach can choose, we study the
e↵ects of each operator in isolation. That is, we ask how
well each operator can perform on its own.

1Supplementary data, models and results, can be found on
our website (http://cse.unl.edu/~myra/artifacts/HHSA).

Should it turn out that there is a single operator that
performs very well, then there would be no need for further
study; we could simply use the high performing operator in
isolation. Similarly, should one operator prove to perform
poorly and to be expensive then we might consider removing
it from further study.

RQ4 Do we see evidence that the hyperheuristic ap-
proach is learning?

Should it turn out that the hyperheuristic approach per-
forms well, finding competitively sized covering arrays in
reasonable time, then we have evidence to suggest that the
adaptive learning used by the hyperheuristic approach is
able to learn which operator to deploy. However, is it really
learning? This RQ investigates, in more detail, the nature
of the learning taking place as the algorithm searches for in-
teraction test suites. We explore how the problem di�culty
varies over time for each of the CIT problems we study,
and then ask which operators are chosen at each stage of
di�culty; is there evidence that the algorithm is selecting
di↵erent operators for di↵erent types of problems?

4.1 Experimental Setup
In this section we present the experiments conducted.

Subjects Studied. There are five subject sets used in our
experiments. The details are summarised below:

[Syn-2] contains 14 di↵erent pairwise (2-way) synthetic
models without constraints. These are shown in the leftmost
column of Table 1. These models are benchmarks that have
been used both to compare mathematical constructions as
well as search based techniques [12, 19, 27, 37, 39]. We take
these from Table 7 from the paper by Garvin et al. [19].

[Syn-3] contains 15 di↵erent 3-way synthetic models with-
out constraints. These are shown in the second column of
Table 1. These models are benchmarks that have been used
for mathematical constructions and search [7, 10, 12]. We
take these from Table 7 from the paper by Garvin et al. [19].

[Syn-C2] contains 30 di↵erent 2-way synthetic models
with constraints (see Table 1, rightmost two columns). These
models were designed to simulate configurations with con-
straints in real world programs, generated by Cohen et al. [9]
and adopted in follow-up research by Garvin et al. [19, 20].

[Real-1] contains real world models from a recent bench-
mark created by Segall et al. [36], shown in Table 2. There
are 20 CIT problems in this subject set, generated by or
for IBM customers. The 20 problems cover a wide range
of applications, including telecommunications, healthcare,
storage and banking systems.

[Real-2] contains 6 real world constrained subjects shown
in Table 2, which have been widely studied in the literature
[9, 11, 19, 20, 35]. The TCAS model was first presented by
Kuhn et al. [35]. TCAS is a tra�c collision avoidance system
from the ‘Siemens’ suite [16]. The rest of the models in this
subject set were introduced by Cohen et al. [9, 11]. SPIN-S
and SPIN-V are two components for model simulation and
model verification. GCC is a well known compiler system
from the GNU Project. Apache is a web server application
and Bugzilla is a web-based bug tracking system.
Methodology: All experiments but one are carried out on
a desktop computer with a 6 core 3.2GHz Intel CPU and
8GB memory. To answer the last part of RQ2 we used the
Amazon EC2 Cloud. All experiments are repeated five times
and the results are averaged over these five runs.
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Table 1: Synthetic Subjects Syn-2, Syn-3 and Syn-C2. The first subject set contains 2-way synthetic models
without constraints from [12, 19, 27, 37, 39]. The second subject set contains 3-way synthetic models without
constraints from [7, 10, 12]. The last subject set contains synthetic models designed to simulate real world
programs used in [9, 19,20].

Subject Set: Syn-2 Subject Set: Syn-3 Subject Set: Syn-C2 Subject Set: Syn-C2
Subjects Model Subjects Model Subjects Unconstr. Param. Constr. Param. Subjects Unconstr. Param. Constr. Param.

S2-1 34 S3-1 36 C2-S1 28633415562 2203341 C2-S16 281334261 23034

S2-3 513822 S3-2 46 C2-S2 2863
3435161 21933 C2-S17 212833425163 222534

S2-3 313 S3-3 324252 C2-S3 22742 2931 C2-S18 212732425163 2233441

S2-4 41339235 S3-4 56 C2-S4 251344251 21532 C2-S19 217239495364 23835

S2-5 514431125 S3-5 57 C2-S5 215537435564 2323641 C2-S20 213834455467 24236

S2-6 415317229 S3-6 66 C2-S6 2734361 22634 C2-S21 27633425163 24036

S2-7 6151463823 S3-7 664222 C2-S7 22931 21332 C2-S22 2733343 23134

S2-8 716151453823 S3-8 101624331 C2-S8 210932425363 2323441 C2-S23 2253161 21332

S2-9 4100 S3-9 88 C2-S9 25731415161 23037 C2-S24 2110325364 22534

S2-10 616 S3-10 77 C2-S10 213036455264 24037 C2-S25 211836425266 2233341

S2-11 716 S3-11 99 C2-S11 28434425264 22834 C2-S26 287314354 22834

S2-12 816 S3-12 106 C2-S12 213634435163 22334 C2-S27 25532425162 21733

S2-13 817 S3-13 1010 C2-S13 212434415262 22234 C2-S28 2167316425366 23136

S2-14 1020 S3-14 1212 C2-S14 281354363 21332 C2-S29 21343753 21933

S3-15 1414 C2-S15 25034415261 22032 C2-S30 272344162 22032

Table 2: Real World Subject Sets. Real-1 (top) con-
tains 20 models from [36]. Real-2 (bottom) contains
6 models with constraints from [9,11,19,20,35].
Subjects Unconstrained Parameters Constrained Param.

Real-1: 2-way

Concurrency 25 243152

Storage1 21314151 495

Banking1 3441 5112

Storage2 3461 -

CommProtocol 21071 210310412596

SystemMgmt 253451 21334

Healthcare1 26325161 23318

Telecom 2531425161 2113149

Banking2 21441 23

Healthcare2 253641 2136518

NetworkMgmt 224153102111 220

Storage3 2931536181 238310

Proc.Comm1 233646 213

Services 23345282102 338642

Insurance 26315162111131171311 -

Storage4 25374152627191131 224

Healthcare3 21636455161 231

Proc.Comm2 233124852 142121

Storage5 253853628191102111 2151

Healthcare4 21331246526171 222

Real-2: 2,3-way

TCAS 273241102 23

Spin-S 21345 213

Spin-V 24232411 24732

GCC 2189310 23733

Apache 215838445161 23314251

Bugzilla 2493142 2431

Table 3: Settings for the HHSA-L, HHSA-M and
HHSA-H configurations.
Config. Search InitT Co-Rate Co-Step MaxNo-Imp

HHSA-L binary 0.3 0.98 2,000 50,000

HHSA-M binary 0.3 0.998 10,000 50,000

HHSA-H
binary 0.3 0.998 10,000 50,000

greedy 0.5 0.9998 10,000 100,000

4.2 HHSA Configuration
There are four parameters that impact the computational

resources used by our hyperheuristic algorithm, HHSA: the
initial temperature, the cooling rate, the cooling step func-
tion, and maximum number of non-improvements allowed
before termination is forced. A higher initial temperature
allows HHSA to spend more e↵ort in exploring the search
space. The cooling rate and cooling step function work to-
gether to control the cooling schedule for HHSA.

To understand the trade-o↵ between the quality of the re-
sults and the e�ciency of the hyperheuristic algorithm, we
use three di↵erent configurations for our hyperheuristic al-
gorithm: HHSA-L (Low), HHSA-M (Medium) and HHSA-
H (High). The HHSA-L and HHSA-M configurations only
apply the outer binary search to guide HHSA to search for
the smallest test suite while the HHSA-H configuration addi-
tionally applies the greedy search conducted after the binary
search. The settings for these three configurations are shown
in Table 3.

We chose these setting after some experimentation be-
cause all can be executed in reasonable time for one or more
use-cases for CIT. In the low setting, the time taken is low,
but the expected result quality is consequently equally low,
whereas in the higher settings, we can explore what addi-
tional benefits are gained from the allocation of extra com-
putational resource.

5. RESULTS
In this section we provide results aimed at answering each

of our research questions.

5.1 RQ1: Quality of Hyperheuristic Search
We begin by looking at the set of unconstrained synthetic

problems (Table 4) for 2- (top) and 3-way (bottom) CIT. In
this table, we include the best reported solution from the lit-
erature followed by the smallest CIT sample and its running
time for each of the three settings of the HHSA. The best
column follows the format of Table 7 from Garvin et al. [19]
and includes results obtained by mathematical or construc-
tive methods as well as search. We also include the size
reported in that paper both for the unconstrained SA and
CASA tool, which is optimized for constrained problems.
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Table 4: Sizes and times (seconds) for Syn-2 (top) and Syn-3 (bottom). The Best column reports the best
known results as given in [19]. The SA and CASA columns report the size of the unconstrained simulated
annealing algorithm and the CASA algorithm. The Di↵-Best column indicates the di↵erence between the
smallest HHSA variant and the Best column.

Subject Best SA CASA
HHSA-L HHSA-M HHSA-H

Di↵-Best Di↵-SA Di↵-CASA
Size Time Size Time Size Time

S2-1 9 9 9 9 1 9 12 9 44 0 0 0
S2-2 15 15 15 15 1 15 14 15 120 0 0 0
S2-3 15 15 15 15 1 15 14 15 101 0 0 0
S2-4 21 21 22 22 6 21 92 21 1,086 0 0 -1
S2-5 21 21 23 22 1 22 21 21 241 0 0 -2
S2-6 30 30 30 31 4 29 212 29 961 -1 -1 -1
S2-7 30 30 30 30 1 30 41 30 177 0 0 0
S2-8 42 42 46 42 1 42 22 42 175 0 0 -4
S2-9 45 45 46 47 41 46 259 45 2,647 0 0 -1
S2-10 62 62 64 66 2 64 31 63 293 1 1 -1
S2-11 84 87 86 88 3 87 43 86 315 2 -1 0
S2-12 110 112 112 115 6 112 54 111 581 1 -1 -1
S2-13 111 114 114 117 7 115 62 113 644 2 -1 -1
S2-14 162 183 185 195 15 194 98 189 1,201 27 6 4

Overall 757 786 797 814 90 801 975 789 8,586 32 3 -8

S3-1 33 33 33 33 0 33 2 33 5 0 0 0
S2-2 64 64 96 64 0 64 1 64 1 0 0 -32
S3-3 100 100 100 101 1 100 31 100 153 0 0 0
S3-4 125 152 185 176 2 161 21 125 78 0 -27 -60
S3-5 180 201 213 211 3 205 40 202 473 22 1 -11
S3-6 258 300 318 316 4 315 56 308 875 50 8 10
S3-7 272 317 383 345 11 329 123 319 1,893 47 2 -64
S3-8 360 360 360 360 6 360 138 360 498 0 0 0
S3-9 512 918 942 958 39 1,000 187 994 6,966 446 40 16
S3-10 545 552 573 595 14 595 99 575 2,309 30 23 2
S3-11 729 1,426 1,422 1,520 112 1,637 351 1,600 7,206 791 94 98
S3-12 1,100 1,426 1,462 1,440 44 1,530 329 1,496 10,921 340 14 -22
S3-13 1,219 2,163 2,175 2,190 231 2,440 543 2,453 11,138 971 27 15
S3-14 2,190 4,422 4,262 4,760 831 5,080 1,634 5,080 17,679 2,570 338 498
S3-15 3,654 8,092 8,103 9,195 3,684 9,040 5,748 9,039 30,611 5,385 947 936

Overall 11,341 20,526 20,627 22,264 4,982 22,889 9,303 22,748 90,807 10,652 1467 1366

The size and time columns give the smallest size of the
CIT sample found by HHSA, and the average running time
in seconds over five runs. The Di↵-Best column reports the
di↵erence between the best known results (first column) and
HHSA’s best results. We have also reported HHSA vs. SA
(Di↵-SA) and HHSA vs. CASA (Di↵-CASA). A negative
value indicates that HHSA found a smaller sample.

The sizes of test suites found by HHSA are very close to
the benchmarks for all but one of the 2-way unconstrained
synthetic models. In fact, in benchmark S2-6, both the
medium and high settings of HHSA find a lower bound. The
last subject, S2-14 is interesting because it is pathological
and has been studied extensively by mathematicians. The
model 1020, has 20 parameters, each with 10 values. The use
of customizations for this particular problem, such as sym-
metry has led to both constructions and post-optimizations.

The discussion of this single model consumes more than
half a page in a recent dissertation which is credited with the
bound2 of 162 [29]. The best simulated annealing bound, of
183, is close to the high setting of HHSA (189).

There is a larger gap between the results generated by
HHSA and best known results on 3-way synthetic models.
On the smaller models, HHSA seems to generate sample
sizes between the unconstrained SA technique and CASA.
However, on the larger size models HHSA does not fare as
well, but we do see improvement as we increase from low to
high settings and these are all very large search spaces; we
explore this cost-e↵ectiveness trade-o↵ for HHSA in RQ2.

2This bound was recently reduced by others to 155.

We now turn to the constrained synthetic models seen in
Table 5. In this table the column labelled ‘Best’ represents
the best known results for CASA (the only tool on which
these synthetic benchmarks have been reported to date). For
the constrained problems HHSA performs as well or better
than the best known results (except in one case) despite
the fact that CASA is optimized for these subjects. HHSA
requires 39 fewer rows overall than the best reported results.

The last comparison we make is with the Real bench-
marks. Table 6 shows a comparison for all of our real sub-
jects against a set of existing tools which were reported in
the literature (references provided in the table). Again we
see that the HHSA algorithm performs as well or better than
all of the other tools. For the IBM benchmarks HHSA re-
duces the overall number of rows in our samples by 52, and
for the open source applications HHSA reduces the 2-way
by 3 rows, and the 3-way by 54 rows.
Summary of RQ1. We conclude that the quality of results
obtained by using HHSA is high. While we do not produce
the best results on every model, we are quite competitive and
for all of the real subjects we are as good as, or improve upon
the best known results.

5.2 RQ2: Efficiency of Hyperheuristic HHSA
Table 7 summarizes the average execution time in seconds

per subject within each group of benchmarks, using the three
configurations of HHSA. The average execution time for the
experiments with low configuration is about 1000 seconds
(or 17 minutes).
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Table 5: Sizes and times (seconds) for Syn-C2. The Best column reports the best results from CASA. The
Df column is the di↵erence between the best HHSA setting and the Best.

Sub. Best
HHSA-L HHSA-M HHSA-H

Df Sub. Best
HHSA-L HHSA-M HHSA-H

Df
Size Time Size Time Size Time Size Time Size Time Size Time

CS1 38 39 16 37 563 36 3,093 -2 CS16 19 24 27 24 177 24 689 5
CS2 30 30 30 30 391 30 1,074 0 CS17 39 41 16 36 575 36 2,648 -3
CS3 18 18 2 18 24 18 130 0 CS18 43 44 31 41 397 39 5,779 -4
CS4 20 20 7 20 164 20 448 0 CS19 47 50 96 46 1,134 44 10,685 -3
CS5 47 49 59 45 894 44 8,731 -3 CS20 53 55 90 52 1,286 50 12,622 -3
CS6 24 24 16 24 149 24 1,248 0 CS21 36 36 23 36 411 36 2,513 0
CS7 9 9 3 9 74 9 364 0 CS22 36 36 12 36 345 36 2,234 0
CS8 39 41 22 38 875 37 5,362 -2 CS23 12 12 2 12 11 12 188 0
CS9 20 20 27 20 253 20 682 0 CS24 44 46 18 41 283 40 3,909 -4
CS10 43 46 53 43 611 40 8,902 -3 CS25 49 51 37 47 748 46 6,399 -3
CS11 41 43 21 39 222 38 3,096 -3 CS26 30 31 17 28 348 27 1,927 -3
CS12 40 40 32 37 952 36 4,097 -4 CS27 36 36 8 36 151 36 671 0
CS13 36 36 45 36 598 36 3,309 0 CS28 50 53 77 50 902 48 10,709 -2
CS14 36 37 20 36 304 36 1,780 0 CS29 27 30 32 26 528 26 2,995 -1
CS15 30 30 11 30 239 30 628 0 CS30 17 19 12 17 158 16 1,405 -1

Ov. 1,009 1,046 862 990 13,767 970 108,317 -39

Table 6: Three tables giving the sizes and times
(seconds) for Real-1 2-way (top table), Real-2 2-
way (middle table) and Real-2 3-way (bottom table).
The Best Known column shows the best known re-
sults in the literature, and the tools that produced
the results. References to the papers where these
results are reported are listed.

Sub.
Best Known HHSA-L HHSA-M HHSA-H

Di↵
Size Tools Size Time Size Time Size Time

Tools: A-ACTS, F-FoCuS, J-Jenny, P-PICT, C-CASA, T-Ttools
Subject set: Real-1, 2-way [36]

Con. 5 A,J 5 0 5 9 5 76 0

Sto.1 17 F 17 2 17 67 17 396 0

Ban.1 14 F 13 1 13 24 13 205 -1

Sto.2 18 F 18 1 18 23 18 100 0

Com. 16 F 16 3 16 86 16 898 0

Sys. 16 F 15 1 15 16 15 103 -1

Hea.1 30 A,F 30 2 30 49 30 193 0

Tel. 30 F 30 2 30 40 30 163 0

Ban.2 10 A 10 1 10 28 10 96 0

Hea.2 18 A,P,F 14 1 14 17 14 143 -4

Net. 115 F 110 2 110 63 110 229 -5

Sto.3 52 A,F 50 5 50 136 50 578 -2

Pro.1 28 J 23 1 22 14 22 123 -6

Ser. 102 F 100 10 100 266 100 1,008 -2

Ins. 527 A,P,F 527 13 527 411 527 1,549 0

Sto.4 130 P,F 117 3 117 80 117 345 -13

Hea.3 35 F 34 2 34 34 34 189 -1

Pro.2 32 A 28 5 27 54 27 66 -5

Sto.5 226 F 215 17 215 415 215 1,501 -11

Hea.4 47 F 46 3 46 45 46 230 -1

Overall 1,468 - 1,418 75 1,416 1,877 1,416 8,191 - 52

Subject set: Real-2, 2-way [5] [20]
TCAS 100 C,T 100 6 100 166 100 578 0

SPIN-S 19 C 19 1 19 27 19 144 0

SPIN-V 32 C 33 11 31 212 31 1,725 -1

GCC 19 C 19 43 17 578 18 2,552 -2

Apache 30 C,T 31 71 30 656 30 3,676 0

Bugzilla 16 C,T 16 3 16 28 16 119 0

Overall 216 - 218 135 213 1,667 214 8,794 -3

Subject set: Real-2, 3-way [5] [19]
TCAS 401 T 400 141 400 4,636 400 13,808 -1

SPIN-S 95 C 95 14 80 200 80 680 -15

SPIN-V 232 C 217 818 202 7,942 195 37,309 -37

GCC 94 C 102 7,562 94 83,324 - - 0

Apache 177 C 193 25,258 176 191,630 - - -1

Bugzilla 59 C,T 61 156 59 1,769 60 1,726 0

Overall 1,058 - 1,068 33,949 1,011 289,501 - - -54

Despite the overall average of 17 minutes, the majority
of the executions require fewer than 5 minutes. The 3-way
experiments running GCC and Apache in the Real-2 bench-
marks take the longest (1.6 hours on average). The high set-
ting for this subject set was not finished after 3 days so we
terminated it (indicated by ’-’). HHSA-M is about 12 times
slower overall than HHSA-L. However, most of the subjects
still run within 10 minutes. The runtime for HHSA-H is
about 7 times slower than for HHSA-M and takes at most
1.5 hours for the majority of the subjects.

On the right side of this table we see the ‘Time Ratio’ be-
tween the HHSA-L vs. HHSA-M and HHSA-M and HHSA-
H, as well as the ‘Size Improvement’ which indicates how
much smaller the second variant is. As we can see, while
it costs us 12 times more to run the HHSA-M variant, it
improves our sample sizes by almost 3 percent.

Moving from HHSA-M to HHSA-H improves our results
by another 1%, while the cost is 7 times more in algorithm
runtime. If we also consider the time to run test suites for
this sample (see [19]), then this may make a practical di↵er-
ence. Consider if it takes overnight to run a full test suite
for each configuration in our sample. The extra computation
time for construction may pay o↵.

We next examine the practical implications of running the
di↵erent variants of our algorithm. For this experiment we
run all of the 2-way subjects in the Amazon EC2 (Elastic
Compute Cloud) with the High-CPU On-Demand Instance
(c1.medium) [2], and record not only the time, but the actual
cost for obtaining our results.

We run the CASA tool as a baseline and the HHSA-L and
HHSA-M settings. The results are shown in Table 8. The
times shown represent the total time for all programs in the
respective benchmarks (averaged over 5 runs). The HHSA-
L setting took about 8 tenths of an hour to run all of the
benchmarks, but cost only 13 cents. CASA took more time
than the HHSA-L variant (2.9 hours) and cost $0.49. The
medium variant of HHSA required the longest runtime (12.7
hours), but still only cost us $2.09.

Summary of RQ2. We conclude that the HHSA algorithm
is e�cient when run at the lowest level (HHSA-low). When
run at the higher levels we see a cost-quality tradeo↵. In
practice, however, the monetary cost of running these algo-
rithms is very small.
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Table 7: Running times (seconds) of the di↵erent levels of HHSA. Each time represents the average time
for each individual model within the benchmark. Time Ratio and Size Impr. show the ratio and percent
(respectively) between the L/M and M/H settings. ’-’ indicates that no result was obtained after 3 days.

Subject Sets HHSA-L Time HHSA-M Time HHSA-H Time
HHSA-L vs. HHSA-M HHSA-M vs. HHSA-H

Time Ratio Size Impr. Time Ratio Size Impr.
Syn-2 6 70 613 11 2.6% 9 1.6%
Real-1 4 94 409 25 0.3% 4 0.1%
Real-2 23 278 1,466 12 2.5% 5 0.9%
Syn-C2 29 459 3,611 16 6.1% 8 1.8%
Syn-3 332 620 6,054 2 -0.6% 10 0.4%
Real-2(3way) 5,658 37,007 - 7 5.4% - -

Average 1,009 6,421 2,431 12 2.7% 7 1.0%

Table 8: Sizes and times (seconds) and dollar cost for running each of the benchmark sets to completion in
the Amazon EC2 Cloud with the High-CPU On-Demand Instance (c1.medium) [2].

Subjects
CASA HHSA-L HHSA-M

Time (s) Cost$ Size Time (s) Cost $ Size Time (s) Cost$ Size
Syn-S2 5,777 0.26 808 220 0.01 820 2,350 0.11 805
Real-2 119 0.01 1,451 185 0.01 1,421 4,660 0.21 1,417
Real-1 265 0.01 233 383 0.02 222 3,971 0.18 216
Syn-C2 4,440 0.20 1,053 2,029 0.09 1,067 34,736 1.59 1,005

Overall 10,601 0.49 3,545 2,817 0.13 3,530 45,717 2.09 3,443

5.3 RQ3: Search Navigation Operator Com-
parison

We now examine how e�cient and e↵ective each of the
search navigation operators are in isolation. To answer this
question, we built seven versions of the simulated anneal-
ing algorithm, all using the HHSA-L settings. Each of the
first six versions contains a single operator. For the seventh
version, HH-Random, we include all operators, but the op-
erator to use at each stage is chosen at random (with no
intelligence).

The overall results for operator comparison are shown in
Table 9. Each of the operators is listed in a row (Op1-
Op6). The numbers correspond to their earlier descriptions
(see Section 3.3). The next row is HH-Random, followed by
the HHSA-L variant. The best operators on their own ap-
pear to be the “mutation” operators. Operator 4 (multiple
mutation) seems to work relatively well on its own as does
Operator 1 (single mutation). The HH-Rand variant per-
forms second best which indicates that the combination of
operators is helping the search, and it runs relatively fast,
however without the guidance from learning it appears not
do quite as well as the HHSA-L algorithm.

Summary of RQ3. We conclude that there is a di↵er-
ence between e↵ectiveness of each of the operators and that
combining them contributes to a better quality solution.

Table 9: “Navigation operator” comparison. Op1
to Op6 uses the standard SA with and individual
search operator. HH-Rand makes a random choice
at each evaluation. All variants are run using the
low configuration. Time is in seconds.

Subjects
Syn-S2 Real-1 Real-2 (2-way) Syn-C2

Size Time Size Time Size Time Size Time
Op1 841 68 227 117 1,461 35 1,117 862
Op2 1,333 113 263 248 1,500 111 1,376 2,033
Op3 1,235 359 726 868 2,715 90 3,298 5,055
Op4 816 208 227 179 1,420 159 1,070 1,639
Op5 981 254 237 282 1,432 294 1,198 2,884
Op6 880 383 221 562 1,454 97 1,042 3,133
HH-Rand 812 321 218 441 1,419 113 1,024 2,903
HHSA-L 806 975 216 1,666 1,418 1,876 1,003 13,768

5.4 RQ4: Does the Hyperheuristic Algorithm
Learn?

To determine if the operators that are selected by the
hyperheuristic SA algorithm are learned we examine Table
10 and Figure 2. We first look at the graphs. The x-axis

represents the di↵erent problem states which is the number
of missing tuples that the problem has left to cover. On
the left part of the graph, there are many tuples remaining
uncovered, and towards the right, very few. We plot the
reward scores from our learning algorithm for each operator
at each stage (a higher reward score means the operator
is more likely to be selected). We show this data for one
synthetic and one real subject (due to space limitations), S2-
8 (top), and TCAS (bottom). As we can see, early on when
the problem is easier, most of the operators are close to the
same reward value with one or two standing out (Operator 4
in S2-8 and Operator 5 in TCAS). This changes as we have
fewer tuples to cover; most of the operators move towards a
negative reward with a few remaining the most useful. Not
only do we see di↵erent “stages” of operator selection, but
we also see two di↵erent patterns.

We examine this further by breaking down data from each
benchmark set into stages. We evenly split our data by
iteration into an early (S1), middle (S2) and late (S3) stage
of the search. For each, we select the pairs of operators
that are selected most often across each benchmark set. For
instance, Op1+Op4 is selected most often at stage S1 for 6
subjects in the set Syn-2 (see Table 10). In stage 1 we see
that Op4+Op5 is selected most often overall, while in stage 2
it is Op1+Op4 and in stage 3 it is Op1+Op6. Within each
benchmark we see di↵erent patterns. For instance, in the
first stage Op1+Op5 is selected most often by the Syn-C2
(constrained synthetic) which is di↵erent from the others. In
stage 2 again we see that the Syn-C2 has a di↵erent pattern
of operator selection with Op1+Op4 being selected 14 times.
In other sets such as the Real 1 we see that the Op4+Op6
combination is chosen most often.

Summary of RQ4. We see evidence that the Hyperheuris-
tic algorithm is learning both at di↵erent stages of search
and across di↵erent types of subjects.
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Figure 2: Subject: S2-8 (top) and TCAS (bottom).
X-axis shows number of tuples left to cover. Y-axis
shows the learning algorithm’s reward scores.

6. RELATED WORK
Research on the generation of covering arrays has a long

history [13,30]. Many of the original tools were developed to
work on unconstrained problems (or require manual remod-
eling) [8, 12, 27, 31], while more recent ones are specialized
for constrained problems [4,19,36], or higher strengths [26].

Another classification is the type of algorithm used. In
general the greedy approaches such as AETG, IPO and
PICT are fastest, but may create larger sized samples [8,
15, 27] while heuristic search produces smaller array sizes,
but requires longer running times [12,19,28,31].

Garvin et al. [19] present a break-even approach to quan-
tify the true cost between algorithms, which considers the
time it costs to test the software as well as the time to build
the arrays (i.e. this includes the impact of sample size as
well as the generation time), and conclude that size tends to
be the limiting factor for systems with even a short testing
time per element in the covering array.

The mathematics community has developed both mathe-
matical (constructive) and probabilistic proofs of bounds for
a wide range of problems (see [14]), but these are synthetic
models which may or may not be consistent with practice.
We compare against some of these in this paper.

Another trend in CIT has been to specialize the construc-
tion for a particular process (incremental or adaptive) [17,18]
which either builds covering arrays in stages to map to a par-
ticular test process, or iteratively modifies the model as it
uncovers unknown constraints. But these techniques use a
standard CIT algorithm as a primitive core, and are there-
fore orthogonal to our work.

Finally there are algorithms that are devised to work on
very large models (such as the complete Linux kernel with
6,000+ factors) [32]. Our use of tunable settings for HHSA
is consistent with this potential need.

Given the large mix of approaches to date, Calvagna et al.
built CITLAB [6], a tool and language that brings together
many other di↵erent tools for CIT into a single interface and
framework. This allows the tester to execute di↵erent tools
on the same benchmarks where the goal is to determine the
“best” choice.

Table 10: Learning Strategies. Three stages of
the algorithm (S1-early), (S2-middle) and (S3-late)
showing the pairs of operators chosen the most often
by stage and subject set.

Strategies
Syn-2 Syn-C2 Real-1 Real-2 Ov.

Stage Operators

S1

Op1 + Op4 6 2 2 0 10
Op1 + Op5 0 11 1 1 13
Op4 + Op5 6 4 13 12 35
Op4 + Op6 1 1 0 2 4
Op5 + Op6 1 0 4 3 8

S2

Op1 + Op3 0 1 0 0 1
Op1 + Op4 0 14 1 2 17
Op1 + Op5 1 2 2 1 6
Op1 + Op6 6 6 2 1 15
Op3 + Op4 0 1 1 0 2
Op3 + Op5 1 0 3 0 4
Op3 + Op6 0 1 0 0 1
Op4 + Op5 0 1 0 0 1
Op4 + Op6 5 3 7 1 16
Op5 + Op6 1 1 4 1 7

S3

Op1 + Op3 2 3 2 1 8
Op1 + Op4 1 2 3 0 6
Op1 + Op5 0 0 1 1 2
Op1 + Op6 3 10 6 3 22
Op2 + Op3 0 0 1 0 1
Op3 + Op5 0 0 1 0 1
Op3 + Op6 7 3 3 1 14
Op4 + Op6 0 10 1 0 11
Op5 + Op6 1 2 2 0 5

However, this framework does not remove the limitation
that we are trying to solve – the tester still has to decide
which algorithm works on which problem. Our approach
di↵ers from these approaches because our aim is not to be
the “best” for any particular problem type, but to provide
a generalist tool armed with online learning, that automat-
ically adapts to each di↵erent problem model it encounters.

7. CONCLUSIONS
In this paper we have presented a hyperheuristic algorithm

for constructing CIT samples. We have shown that the al-
gorithm is general and learns as the problem set changes
through a large empirical study on a broad set of bench-
marks. We have shown that the algorithm is e↵ective when
we compare it across the benchmarks and other algorithms
and results from the literature.

We have also seen that the use of di↵erent tunings for the
algorithm (low, medium and high) will provide a quality-cost
tradeo↵ with the higher setting producing better results, but
taking longer to run. When we examine the practicality of
such an algorithm, we see that the monetary cost for run-
ning the algorithm is quite small when using today’s cloud
($2.09).

Finally, we have examined the various stages of learning of
our algorithm and see that the di↵erent heuristic operators
are more e↵ective at di↵erent stages (early, middle, late)
and that they vary across programs and benchmarks. It is
this ability to learn and adapt that we believe is the most
important aspect of this search.

As future work we will look at alternative tunings for the
algorithm so that we can scale to very large problems (a very
low setting) and can find even smaller sample sizes (a very
high setting). We will also incorporate new operators and
will look at alternative algorithms for the outer layer, such
as genetic algorithms.
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