
UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/13/14

Cyclic Abduction of Inductively Defined

Safety and Termination Preconditions

July 12, 2013

James Brotherston Nikos Gorogiannis

Abstract

We describe a new method, called cyclic abduction, for automatically inferring
safety and/or termination preconditions for heap-manipulating while programs,
expressed as inductive definitions in separation logic. Cyclic abduction essen-
tially works by searching for a cyclic proof of memory safety and/or termina-
tion, abducing definitional clauses of the precondition as necessary in order to
advance the proof search process. This is achieved via a suite of heuristically
guided automatic tactics.

We have implemented our cyclic abduction procedure as an automatic tool,
Caber, that automatically infers the correct safety and termination precondi-
tions for a range of common small programs manipulating lists and trees, and
can also abduce the definitions of more exotic data structures such as cyclic or
segmented lists, or trees of linked lists. To our knowledge, cyclic abduction is
the first technique for automatically abducing such inductive definitions from
pointer programs.

Cyclic Abduction of Inductively Defined
Safety and Termination Preconditions

James Brotherston ∗ Nikos Gorogiannis †

Dept. of Computer Science, University College London, UK

Abstract
We describe a new method, called cyclic abduction, for automat-
ically inferring safety and/or termination preconditions for heap-
manipulating while programs, expressed as inductive definitions
in separation logic. Cyclic abduction essentially works by search-
ing for a cyclic proof of memory safety and/or termination, abduc-
ing definitional clauses of the precondition as necessary in order to
advance the proof search process. This is achieved via a suite of
heuristically guided automatic tactics.

We have implemented our cyclic abduction procedure as an au-
tomatic tool, CABER, that automatically infers the correct safety
and termination preconditions for a range of common small pro-
grams manipulating lists and trees, and can also abduce the defi-
nitions of more exotic data structures such as cyclic or segmented
lists, or trees of linked lists. To our knowledge, cyclic abduction is
the first technique for automatically abducing such inductive defi-
nitions from pointer programs.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of programs, pre- and post-conditions

General Terms Verification, theory

Keywords abduction, shape analysis, cyclic proof, separation
logic, inductive definitions, program verification

1. Introduction
In the last few years, a number of program analyses have appeared
that employ separation logic [24] to establish safety and/or termi-
nation properties of heap-manipulating programs, in some cases ex-
tending to substantial code bases (see e.g. [25, 16, 21, 23]). All of
these analyses rely on the use of inductive predicates to specify
the shape of data structures stored in memory and manipulated by
the program, e.g., lists or trees. However, such predicates must typ-
ically be hard-coded into the analysis (or in some cases must be
provided by the user). This means that the analysis must either fail
or ask the user for advice when it encounters a data structure not

∗Research supported by an EPSRC Career Acceleration Fellowship.
†Research supported by EPSRC grant EP/H008373/1.

[Copyright notice will appear here once ’preprint’ option is removed.]

described by the provided definitions. For example, the well known
SPACEINVADER [25] and SLAYER [5] analysers perform accu-
rately on programs using combinations of linked lists, as found with
device drivers, but report a false bug if they encounter a tree. Thus
the ability to mechanically infer, or abduce, the inductive predicates
needed to analyse individual procedures has the potential to greatly
boost the automation of such verification tools.

In this paper, we consider the following form of the above
synthesis or abduction problem: given a heap-manipulating while
program P , can we define an inductive predicate in separation logic
such that, given this predicate as a precondition,

• P runs without encountering a memory error (safety); or
• P eventually terminates safely (termination)?

These are highly non-trivial questions. On the one hand, the
weakest (liberal) precondition (cf. Dijkstra [15]) can straightfor-
wardly be extracted from P , but is useless for analysis: Deciding
which program states satisfy this precondition is as hard as decid-
ing from which states P runs safely and/or terminates! On the other
hand, many preconditions (e.g.⊥) may be correct but too strong be-
cause they rule out the execution of some of the program. Ideally,
we would like to find the weakest precondition that is expressible
inside some fairly natural, “positive” class of inductive definitions
and that ensures maximal program coverage. For computability rea-
sons, we cannot hope to obtain such a precondition in general, so
we must instead look for reasonable approximating heuristics.

Our main contribution is a new method, cyclic abduction, for
inferring safety and/or termination preconditions for while pro-
grams, expressed as inductive definitions in separation logic. Our
approach is based upon heuristic proof search in a formal system
of cyclic proofs, adapted from the cyclic termination proofs in [8].

Here, the core of a cyclic proof is a derivation tree built from
symbolic execution rules capturing the effect of program com-
mands (cf. [3]), and logical rules that manipulate the precondition.
Cyclic proofs are so named because this derivation tree is allowed
to contain back-links identifying leaves of the tree with arbitrary
interior nodes, potentially creating cycles in the proof. Because
such structures do not in general correspond to sound proofs, an
additional (decidable) global soundness condition must be imposed
upon these graphs to qualify them as genuine proofs. The difference
between cyclic proofs of memory safety and those of termination
is entirely a matter of the choice of soundness condition.

Given a program, our cyclic abduction procedure aims to si-
multaneously construct the inductive definition of a precondition in
separation logic, under which this program is memory safe and/or
terminating. Broadly speaking, we search for a cyclic proof that the
program has the desired property, and when the proof search gets
stuck, we abduce (i.e., guess) part of the precondition in order to
proceed. Approximately, the main abduction principles are:

1 2013/7/12

• symbolically executing branching commands in the derivation
leads to conditional disjunction in the definitions;
• symbolically executing dereferencing commands in the deriva-

tion forces us to include pointer formulas in the definitions;
• forming back-links in the derivation leads to the instantiation of

recursion in the definitions; and
• encountering a loop in the program alerts us to the possibility

that we may need to generalise the precondition.

We have implemented our abduction procedure as an automatic
tool, CABER, that builds on the generic cyclic theorem prover
CYCLIST [10]. This tool essentially comprises a number of low-
level tactics implementing the abduction principles above, heuristi-
cally guided by a high-level proof search strategy. CABER is able to
automatically abduce safety and/or termination preconditions for a
fairly wide variety of common small programs. The abduced induc-
tive predicates include definitions of segmented, cyclic, nested and
mutually defined data structures (over any number of parameters).

The remainder of this paper is structured as follows. Section 2
introduces the programming language and the fragment of separa-
tion logic preconditions we use to express program preconditions.
Section 3 presents the formal system of cyclic safety/termination
proofs on which our abduction technique is based. In Section 4 we
present an overview of the cyclic abduction strategy, and then de-
scribe in detail the various abductive tactics from which it is built.
Section 5 describes the implementation of our cyclic abduction tool
CABER and our experimental evaluation of this tool. Section 6 ex-
amines related work and Section 7 concludes.

2. Programs and preconditions
In this section we present a basic language of while programs with
heap pointers (similar to the language in [26]) and the fragment of
separation logic we used to express program preconditions, based
upon the symbolic heaps of [3].

We often use vector notation to abbreviate tuples or lists, e.g. x
for (x1, . . . , xk). We write xi for the ith element of the tuple x.

2.1 Syntax of programs.
We assume infinite sets Var of variables and of field names. An
expression is either a variable or the constant nil. Branching condi-
tions B and command sequences C are defined as follows, where
x, y range over Var, f over field names and E over expressions:

B ::= ? | E = E | E 6= E
C ::= ε | x := E; C | y := x.f ; C | x.f := E; C |

free(x); C | x := new(); C |
ifB thenC elseC fi; C | whileB doC od; C

where y := x.f and x.f := E′ respectively read from and write
to field f of the heap cell with address x, and ? represents a non-
deterministic condition. A program is a list of the field names of
heap records followed by a command sequence:

fields f1, . . . , fk; C

2.2 Semantics of programs
We use a typical RAM model employing heaps of records. We
fix a set Val of values, of which an infinite subset Loc ⊂ Val
are locations, i.e., the addresses of heap cells. We also assume a
“nullary” value nil ∈ Val \ Loc which is not the address of any
heap cell. A stack is a function s : Var→ Val. The semantics [[E]]s
of expressionE in stack s is defined as usual: [[x]]s =def s(x) for all
x ∈ Var, and [[nil]]s =def nil . The semantics [[B]]s ⊆ {true, false}
of a branching condition B in stack s is defined in the obvious way
for equalities and disequalities, and [[?]]s =def {true, false}.

A heap is a partial function h : Loc ⇀fin (Val List) mapping
finitely many locations to tuples of values (i.e. records); we write
dom(h) for the domain of heap h, i.e. the set of locations on which
h is defined, and e for the empty heap that is undefined everywhere.
If h1 and h2 are heaps with dom(h1) ∩ dom(h2) = ∅, we define
h1◦h2 to be the union of h1 and h2; otherwise, h1◦h2 is undefined.

We write s[x 7→ v] for the stack defined exactly as s except that
(s[x 7→ v])(x) = v, and adopt a similar update notation for heaps.

We employ a standard small-step operational semantics of our
programs (Fig. 1). A (program) state is either a triple (C, s, h)
where C is a command sequence, s a stack and h a heap, or the
special state fault , used to catch memory errors. Given a program
fields f1, . . . , fk; C, we map the field names f1, . . . , fk onto
elements of heap records by fj =def j. The small-step semantics
of our programs is then as usual given by a binary relation on
states, presented in Figure 1. We write n for the n-step variant of
 , and ∗ for its reflexive-transitive closure. We say that a state
(C, s, h) is safe if there is no computation (C, s, h) ∗ fault , i.e.
if running the program from (C, s, h) cannot result in a memory
error. We say that (C, s, h) is terminating if it is safe and there is
no infinite -computation starting from (C, s, h).

Proposition 2.1 (Safety / termination monotonicity). If (C, s, h)
is safe (resp. terminating) and h ◦ h′ is defined then (C, s, h ◦ h′)
is also safe (terminating).

Essentially, Proposition 2.1 holds for the same reason as in [26],
i.e., extending the memory cannot lead to new memory faults. It is
possible that extending the memory might lead to non-termination
where previously there was a memory fault, but this is not problem-
atic since terminating states are also required to be safe.

2.3 Syntax of logical preconditions
We express program preconditions using a simple fragment of
separation logic with inductive definitions, based on the symbolic
heaps of [3]. We assume an infinite set of predicate symbols, each
with an associated arity.

Definition 2.2. Formulas are given by the following grammar:

F ::= > | ⊥ | E = E | E 6= E | emp | x 7→ E | P (E) | F ∗ F

where x ranges over Var, E ranges over expressions, P over pred-
icate symbols and E over tuples of expressions (matching the arity
of P in P (E)). We write F [E/x] for the result of replacing all oc-
currences of the variable x by the expression E in the formula F .
Substitution is extended pointwise to tuples; but when we write an
expression of the form F [E/xi], we mean that E should be substi-
tuted for the ith component of x only.

We define ≡ to be the least equivalence on formulas closed
under associativity and commutativity of ∗ and F ∗ emp ≡ F .

Definition 2.3. An inductive rule set is a finite set of inductive rules
each of the form F ⇒ P (E), where F and P (E) are formulas. We
sometimes write an inductive rule as F z⇒ P (E), where z is a tuple
listing the set of all variables appearing in F and E.

If Φ is an inductive rule set we define ΦP to be the set of all
inductive rules for P in Φ, i.e. those of the form F ⇒ P (E). We
say P is undefined if ΦP is empty.

Inductive rules for a predicate P are understood as disjunctive
clauses of the definition of P (cf. [8]).

2 2013/7/12

2.4 Semantics of logical preconditions
The forcing relation s, h |=Φ F for satisfaction of the formula F
by the stack s and heap h under inductive rule set Φ is defined by

s, h |=Φ > ⇔ always
s, h |=Φ ⊥ ⇔ never
s, h |=Φ E1 = E2 ⇔ [[E1]]s = [[E2]]s and h = e
s, h |=Φ E1 6= E2 ⇔ [[E1]]s 6= [[E2]]s and h = e
s, h |=Φ emp ⇔ h = e
s, h |=Φ E 7→ E ⇔ dom(h) = {[[E]]s} and h([[E]]s) = [[E]]s
s, h |=Φ P (E) ⇔ (h, [[E]]s) ∈ [[P]]Φ

s, h |=Φ F1 ∗ F2 ⇔ h = h1 ◦ h2 and s, h1 |=Φ F1

and s, h2 |=Φ F2

In order to remove the need for standard conjunction ∧ in our logic
fragment, it is convenient to interpret equalities and disequalities
as holding in the empty heap. (This does not result in a loss of
expressivity, since, e.g., arbitrary s, h satisfying s(x) = s(y) can
be represented as x = y ∗ >.

The semantics [[P]]Φ of the predicate P under Φ is, as usual, the
least prefixed point of a monotone operator constructed from Φ:

Definition 2.4. Assume that Φ defines n predicates P1, . . . , Pn.
Partition Φ into Φ1, . . . ,Φn, where Φi ⊆ Φ is the set of inductive
rules of the form F ⇒ Pix. We let each Φi be indexed by j, and
for each inductive rule Φi,j of the form F ⇒ Pix, we define the
operator ϕi,j by:

ϕi,j(X) =def {(s(x), h) | s, h |=X F}
where |=X is the satisfaction relation defined above, except that
[[Pi]]

X =def Xi, where X = (X1, . . . , Xn) is a tuple of pairs of
the appropriate type. We then define [[P]]Φ by:

[[P]]Φ =def µX. (
⋃

j ϕ1,j(X), . . . ,
⋃

j ϕn,j(X))

We write [[Pi]]
Φ for the ith component of [[P]]Φ.

An extremely useful fact about the fragment of separation logic
we consider is that, for any given inductive rule set, it is decidable
whether a formula in the fragment is consistent, i.e., whether or not
the formula is semantically equivalent to ⊥. The proof of this fact,
which is very helpful in simplifying abduced preconditions as well
as assessing their quality, appears in [9].

3. Formal cyclic safety/termination proofs
In this section we present a formal cyclic proof system for proving
memory safety and/or termination of programs. The system here
is adapted from the system of cyclic termination proofs in [8],
with the following main differences: (i) we treat while programs
rather than goto programs; and (ii) we are additionally able to
consider memory safety only by imposing an alternative soundness
condition on the proof graph.

A proof judgement is given by F ` C, where C is a command
sequence and F is a formula.

Definition 3.1 (Validity). Let Φ be an inductive rule set. The
judgement F ` C is valid (resp. termination-valid) w.r.t. Φ if
s, h |=Φ F implies (C, s, h) is safe (resp. terminating).

The proof rules for judgements are given in Fig. 2. Our nota-
tional convention is that the primed variables x′, x′′ etc. appearing
in the premises of rules are chosen fresh, and we write B to mean
E 6= E′ if B is (E = E′), and vice versa. The symbolic ex-
ecution rules for commands are adaptations of standard rules for
separation logic [3]. The logical rules manipulate the precondition
without advancing the program. In particular, the rule (Frame) can
be seen as a special case of the general frame rule of separation
logic (see e.g. [26]), where the postcondition is omitted. Crucially,

we include an unfolding (or “case analysis”) rule for inductively
defined predicates that unfolds a formula P (E) in the conclusion
according to the definition of P in an inductive definition set Φ:

Example 3.2. Define a unary inductive predicate bt(x), denoting
those heaps structured as a binary tree with head pointer x, by

x = nil⇒ bt(x)

x 6= nil ∗ x 7→ (y, z) ∗ bt(y) ∗ bt(z)⇒ bt(x)

The unfolding rule for bt is the following:

E = nil ∗ F ` C
E 6= nil ∗ E 7→ (y′, z′) ∗ bt(y′) ∗ bt(z′) ∗ F ` C

(bt)
bt(E) ∗ F ` C

where y′ and z′ are fresh variables.

Definition 3.3 (Pre-proof). A pre-proof of F ` C is a pair (D,L),
whereD is a finite derivation tree whose root is labelled by F ` C,
and L is a back-link function assigning to every open leaf ` of
D a node L(`) of D such that the judgements at ` and L(`) are
syntactically identical.

Any pre-proof P = (D,L) can be understood as a graph, with
an edge from the conclusion of any rule instance to each of its
premises, by identifying each open leaf ` of D with L(`). A path
in P is then understood in the obvious way.

Lemma 3.4. Let Φ be an inductive rule set. Suppose the conclu-
sion F ` C of an instance of a rule R is invalid w.r.t. Φ, so
that there exist a stack s and heap h such that s, h |=Φ F but
(C, s, h) n fault .

Then there is a premise F ′ ` C′ of this rule instance that
is invalid w.r.t. Φ, i.e. there exist stack s′ and heap h′ such that
s′, h′ |=Φ F ′, but (C′, s′, h′) m fault . Moreover, m ≤ n, and if
R is a symbolic execution rule then m < n.

Proof. A straightforward verification for each proof rule in Fig-
ure 2. The case of (Frame) relies upon Proposition 2.1.

Definition 3.5 (Cyclic proof). A pre-proof P is a cyclic (safety)
proof if for every infinite path in P , there are infinitely many
symbolic execution rule applications along this path.

Theorem 3.6. For any inductive rule set Φ, if there is a cyclic
safety proof of F ` C, then F ` C is valid w.r.t Φ.

Proof. Suppose for contradiction that F ` C has a cyclic safety
proof P but is invalid. Using Lemma 3.4, we can construct an
infinite path (Fk ` Ck)k≥0 in P , and an an infinite sequence
(nk)k≥0 of natural numbers such that nk+1 < nk whenever
Fk ` Ck is the conclusion of a symbolic execution rule instance,
and nk+1 = nk otherwise.

Since P is a cyclic safety proof, there are infinitely many sym-
bolic executions along the path (Fk ` Ck)k≥0. This implies the
existence of an infinite descending chain of natural numbers, which
is impossible. Hence F ` C must be valid.

We can consider cyclic proofs of termination rather than mem-
ory safety simply by replacing the soundness condition of 3.5 with
the trace-based soundness condition of [8], which essentially de-
mands that some inductive predicate be unfolded infinitely often
along every infinite path in the pre-proof. Thus, by a simple adap-
tation of the soundness result in [8], we also have:

Theorem 3.7. For any inductive rule set Φ, if there is a cyclic
termination proof of F ` C — i.e., a pre-proof of F ` C satisfying
the soundness condition of [8] — then F ` C is termination-valid
w.r.t Φ.

3 2013/7/12

(x := E; C, s, h) (C, s[x 7→ [[E]]s], h)

[[y]]s ∈ dom(h)

(x := y.f ; C, s, h) (C, s[x 7→ h([[y]]s).f], h)

[[x]]s ∈ dom(h)

(x.f := E; C, s, h) (C, s, h[[[x]]s.f 7→ [[E]]s])

` ∈ Loc \ dom(h) v1, . . . , vk ∈ Val

(x := new(); C, s, h) (C, s[x 7→ `], h[` 7→ (v1, . . . , vk)]

[[x]]s ∈ dom(h)

(free(x); C, s, h) (C, s, (h � (dom(h) \ {[[x]]s}))

[[y]]s 6∈ dom(h)

(x := y.f ; C, s, h) fault

[[x]]s /∈ dom(h)

(x.f := E; C, s, h) fault

[[x]]s /∈ dom(h)

(free(x); C, s, h) fault

true ∈ [[B]]s

(ifB thenC elseC′ fi; C′′, s, h) (C; C′′, s, h)

false ∈ [[B]]s

(ifB thenC elseC′ fi; C′′, s, h) (C′; C′′, s, h)

true ∈ [[B]]s

(whileB doC od; C′, s, h) (C; whileB doC od; C′, s, h)

false ∈ [[B]]s

(whileB doC od; C′, s, h) (C′, s, h)

Figure 1. Small-step operational semantics of programs, given by the binary relation over program states.

Symbolic execution rules:

F ` ε

x = E[x′/x] ∗ F [x′/x] ` C

F ` x := E; C

x = Ef [x′/x] ∗ (y 7→ E ∗ F)[x′/x] ` C
|E| ≥ f

y 7→ E ∗ F ` x := y.f ; C

x 7→ E[E/Ef] ∗ F ` C
|E| ≥ f

x 7→ E ∗ F ` x.f := E; C

x 7→ (x′1, . . . , x
′
k) ∗ F [x′/x] ` C

F ` x := new(); C

F ` C

x 7→ E ∗ F ` free(x); C

B ∗ F ` C; C′′

B ∗ F ` ifB thenC elseC′ fi; C′′

B ∗ F ` C′; C′′

B ∗ F ` ifB thenC elseC′ fi; C′′

F ` C; C′′ F ` C′; C′′

F ` if ? thenC elseC′ fi; C′′

B ∗ F ` C; whileB doC od; C′

B ∗ F ` whileB doC od; C′

B ∗ F ` C′

B ∗ F ` whileB doC od; C′

F ` C; whileB doC od; C′ F ` C′

F ` while ? doC od; C′

Logical rules:

F ` C
(Frame)

F ∗G ` C

F ` C x not a program
variable

(Subst)
F [E/x] ` C

F ′ ` C
F ≡ F ′ (Equiv)

F ` C

G′ ∗ F ` C
G ` G′ (Cut)

G ∗ F ` C

(t1 = t2 ∗ F)[t2/x, t1/y] ` C
(=)

(t1 = t2 ∗ F)[t1/x, t2/y] ` C
(6=)

t1 = t2 ∗ t1 6= t2 ∗ F ` C
(7→)

x 7→ E ∗ x 7→ E′ ∗ F ` C

Predicate unfolding rule:

(E = Ej[xj/zj] ∗ Fj [xj/zj] ∗ F ` C)1≤j≤k ΦP = {F1
z1⇒ P (E1), . . . , Fk

zk⇒ P (Ek)}
∀xj ∈ {xj}. xj is fresh

(P)
P (E) ∗ F ` C

Figure 2. Hoare logic rules for proof judgements.

4 2013/7/12

4. Cyclic abduction: basic strategy & tactics
We now turn to the main contribution of this paper: our cyclic ab-
duction method for inferring inductive safety and/or termination
preconditions of programs. Here, we first explain the high-level
strategy for abducing such preconditions, and then develop a num-
ber of automatic, abductive tactics used in implementing this strat-
egy. Then, in Section 5, we describe how these tactics are imple-
mented and combined into an abductive proof search algorithm.

4.1 Overview of abduction strategy
The typical initial problem we are faced with is: given a program
with code C and input variables x, find an inductive definition set
Φ such that the judgement P (x) ` C is (termination-)valid wrt. Φ,
where P is a fresh predicate symbol.

Our strategy for finding such a Φ is to search for a cyclic proof
of the judgement P (x) ` C (with respect to safety or termination
as desired). Almost invariably, this search process will become
“stuck” at some point, e.g., because the precondition does not
contain enough information for a symbolic execution rule to fire.
When this happens, we may abduce one or more new inductive
rules to enable the search to proceed. In the following, we set out
informally the main principles governing this process.

Principle 1. The first priority of the search procedure is to close
the current branch of the derivation tree, preferably by applying
an axiom, or else by forming a back-link to some other node.
(The formation of back-links must respect the relevant soundness
condition on cyclic proofs.)

If closing the branch is not possible, the second priority is to
apply the symbolic execution rule for the command appearing at
the current subgoal.

That is, if we can close the current branch somehow then we
do so, otherwise we try to advance the program along this branch
via symbolic execution. (Note that when we attempt to form a
back-link in the proof, violations of the soundness condition can be
detected automatically by appealing to a model checker.) However,
it often happens that neither of these is possible. When this situation
occurs, we are allowed to use the logical rules and/or to abduce
inductive rules in order to enable the proof search to make progress,
as described by our second principle.

Principle 2. We may abduce inductive rules and/or deploy the log-
ical and predicate unfolding rules in the following circumstances:

(a) in order to symbolically execute a branching command;
(b) in order to symbolically execute a dereferencing command;
(c) in order to form a back-link;
(d) as part of a generalisation attempt.

When we abduce inductive rules for a predicate occurring in the
current subgoal, we always immediately apply the unfolding rule
for that predicate to the subgoal.

We may abduce inductive rules only for predicate symbols that
are currently undefined.

We explain in the following subsections exactly how induc-
tive rules are abduced in the situations (a), (b), and (c) described
by Principle 2 (generalisation (d) being covered in Section 4.6).
The reason for restricting abduction to undefined predicates is that
adding inductive rules to ΦP adds new premises to the unfold-
ing rule (P), rendering any existing applications of (P) in the
derivation unsound. We will indicate a combined abduction-and-
unfolding step in our derivations with A(P).

Our final principle sets out the general idea behind performing
generalisation in a proof search.

Principle 3. Before applying symbolic execution to a while loop,
one should normally attempt to generalise the precondition F ap-
pearing at the subgoal in question. That is to say, we should attempt
to find some weaker precondition F ′ such that F ′ ` F is a valid
entailment, and, by applying (Cut), proceed with the proof search
using the precondition F ′ in place of F . If necessary, we may ab-
duce inductive rules in order to obtain this more general F ′.

Generalisation is well known to be a necessary (and difficult)
step in inductive theorem proving [11], and unsurprisingly it shows
up in our abduction proofs also. Section 4.6 presents tactics for
generalising the precondition when we encounter a while loop.

4.2 Tactics: an overview
A tactic in our setting is a more general version of a tactic as it
usually appears in automated theorem proving. Here, a tactic is
essentially a general proof transformer: it updates the current proof
state by applying some (possibly nondeterministic) combination of
atomic inferences. The differences between our setting and that
of a traditional theorem prover reside in the underlying notions
of “proof state” and “atomic inference”. First, since we employ a
cyclic notion of proof, with back-links joining leaves to arbitrary
proof nodes, it is not sufficient to restrict our attention to the
current subgoal only: our proof state must reflect the entire pre-
proof, and forming a back-link between nodes must count as a valid
atomic inference step. Second, since we are allowed to abduce new
inductive rules in the proof search, the current inductive rule set
must form part of the proof state, and adding new inductive rules to
this set must also count as a valid inference step. (As usual, all proof
rules of our system, in Figure 2, are also valid atomic inferences.)

Taking the above into account, our formal proof states are triples
comprised of the following elements:

P: A partial pre-proof, representing the portion of proof con-
structed so far. By “partial”, we mean that some of the leaves
of P may be open; we call these the open subgoals of P .

Φ: An inductive rule set, containing all the inductive rules abduced
so far in the proof search.

`: A distinguished open leaf of the pre-proof P , representing the
subgoal on which the next step of the proof search is to operate.

A tactic is then simply a transformer on proof states.

Example 4.1. In order to demonstrate how our abductive tactics
are applied in practice, we will frequently refer to the following
running example in the remainder of this section. Figure 3 shows
an abductive cyclic proof of the following program:

fields l, r;
while x 6= nil do
if ? then x := x.l else x := x.r fi

od

The proof in Figure 3 abduces the binary tree predicate from Exam-
ple 3.2 as a safety and termination precondition for this program.
For ease of presentation, we number each individual command (se-
quence) in the program, and we write the judgements in the proof
by referring to these indices rather than the commands themselves.

4.3 Abductive tactic for deterministic branching commands
Our proof rules for deterministic if and while commands (Fig. 2)
mirror the operational semantics in that they require the precondi-
tion to determine the status of the branching condition. We intro-
duce an abductive tactic, abduce branch, enabling us to proceed
whenever the symbolic execution of such a rule fails.

Suppose abduce branch is applied to the proof state (P,Φ, `)
where the command sequence C in the judgement appearing at

5 2013/7/12

ε
x = nil ∗ P1(x) ` ε

while x 6= nil
x = nil ∗ P1(x) ` 0

P0(x) ` 0
(Frame)

x′ 6= nil ∗
x′ 7→ (x, z) ∗ P0(x) ∗ P4(x′, x, z)

` 0

A(P3)
x′ 6= nil ∗
x′ 7→ (x, z) ∗ P3(x′, x, z)

` 0

x := x.l
x 6= nil ∗
x 7→ (y, z) ∗ P3(x, y, z)

` 2

A(P2)
x 6= nil ∗ P2(x) ` 2

P0(x) ` 0
(Frame)

x′ 6= nil ∗
x′ 7→ (y, x) ∗ P0(y) ∗ P0(x) ∗ P5(x′, y, x)

` 0

A(P4)
x′ 6= nil ∗
x′ 7→ (y, x) ∗ P0(y) ∗ P4(x′, y, x)

` 0

(P3)
x′ 6= nil ∗
x′ 7→ (y, x) ∗ P3(x′, y, x)

` 0

x := x.r
x 6= nil ∗
x 7→ (y, z) ∗ P3(x, y, z)

` 3

(P2)
x 6= nil ∗ P2(x) ` 3

if ? . . .
x 6= nil ∗ P2(x) ` 1

while x 6= nil
x 6= nil ∗ P2(x) ` 0

A(P0)
P0(x) ` 0

fields l, r;
0 : while x 6= nil do
1 : if ? then
2 : x := x.l

else
3 : x := x.r

fi od

x = nil ∗ P1(x)⇒ P0(x)

x 6= nil ∗ P2(x)⇒ P0(x)

x 7→ (y, z) ∗ P3(x, y, z)⇒ P2(x)

P0(y) ∗ P4(x, y, z)⇒ P3(x, y, z)

P0(z) ∗ P5(x, y, z)⇒ P4(x, y, z)

x = nil ∗ emp⇒ P0(x)

x 6= nil ∗ x 7→ (y, z) ∗ P0(y) ∗ P0(z)⇒ P0(x)

Figure 3. Top: abductive proof for a binary tree search program (shown bottom left). Bottom center: inductive rules abduced during the
proof. Bottom right: simplified inductive rules.

the current subgoal ` is of the form whileB doC od;C′ or
ifB thenC elseC′ fi;C′′ (where B 6= ?). For simplicity we
assume B is an equality or disequality between two program vari-
ables x, y (the case where one of the two terms is nil is very simi-
lar). First, abduce branch selects a subformula of the form P (E)
appearing in ` such that the predicate symbol P is currently unde-
fined in Φ, and such that x and y occur in the tuple E. Thus, we
may write the judgement appearing at ` as F ∗ P (E) ` C where
x = Ek and y = Ej (where k 6= j). Then, abduce branch adds
the following inductive rules for P to Φ:

B[zk/x, z`/y] ∗ P ′(z) ⇒ P (z)

B[zk/x, z`/y] ∗ P ′′(z) ⇒ P (z)

where P ′, P ′′ are fresh predicate symbols and z is a tuple of
appropriately many arbitrary variables. Next, the tactic unfolds the
indicated occurrence of P (E) in ` as follows:

B ∗ F ∗ P ′(E) ` C B ∗ F ∗ P ′′(E) ` C
A(P)

F ∗ P (E) ` C
Finally, the tactic applies the appropriate symbolic execution rule
for C to each of the new subgoals (note that this step is now
guaranteed to succeed).

The choice of subformula P (E) and indices k, j is nondeter-
ministic; abduce branch returns the results of all such choices.

Example 4.2. When searching for a proof of the program in Ex-
ample 4.1, our initial goal is of the form

P0(x) ` while x 6= nil do . . .

where P0 is undefined. As the symbolic execution of the while
command fails, we can call abduce branch which selects P0(x)
as the only viable subformula of the goal and abduces the following

inductive rules for P0:

x = nil ∗ P1(x) ⇒ P0(x)

x 6= nil ∗ P2(x) ⇒ P0(x)

The tactic then unfolds P0(x) and applies symbolic execution for
the while command in the two resulting subgoals. This is shown in
Fig. 3 as the application ofA(P0) followed by the normal symbolic
executions for while).

4.4 Abductive tactic for dereferencing assignments
The symbolic execution rules for commands that dereference a
memory address (Fig. 2) require the precondition to guarantee
that this address is indeed allocated (otherwise the program will
encounter a memory fault, as per the operational semantics in
Fig. 1). Here we present an abductive tactic, abduce deref, that
enables the symbolic execution of such commands to proceed by
abducing the allocation of the appropriate address.

Formally, suppose abduce deref is applied to the proof state
(P,Φ, `), where the command C in the judgement labelling the
current subgoal ` is of the form free(x); C, x.f := E; C or
y := x.f ; C. First, abduce deref non-deterministically selects a
subformula of the form P (E) appearing at `, where P is currently
undefined in Φ, and such that x occurs in the tuple E. Thus, we
may write the judgement appearing at ` as F ∗ P (E) ` C where
x = Ek (for some k). Then abduce branch adds the following
inductive rule for P to Φ:

P ′(x t y) ∗ xk 7→ y⇒ P (x)

where t is tuple concatenation, P ′ is a fresh predicate symbol,
and x and y are tuples of distinct, arbitrary variables such that
|x| = |E|, and |y| is the number of fields in the program. The

6 2013/7/12

tactic then unfolds the selected occurrence of P (E) in ` as follows:

F ∗ x 7→ y′ ∗ P ′(E t y′) ` C
A(P)

F ∗ P (E) ` C

where y′ is a tuple of |y| fresh variables. Finally, abduce deref
updates P again by applying the symbolic execution rule for C
(which is now guaranteed to succeed).

Similarly to abduce branch in the previous subsection, the
selection of subformula P (E) and index k is essentially non-
deterministic, so abduce deref returns the list of proof states
corresponding to the results of all such selections.

Example 4.3. When searching for an abductive proof of the bi-
nary tree traversal program in Example 4.1, after applying the
abduce branch tactic we arrive at the following subgoal on the
middle branch (see Figure 3):

x 6= nil ∗ P2(x) ` x := x.l; . . .

where P2 is undefined (at the current proof state). We cannot
apply the symbolic execution rule for the dereferencing assignment
x := x.l, as it would require a formula of the form x 7→ (E,E′)
to appear in the precondition. Thus we call abduce deref, which
selects the only suitable formula P2(x) in the precondition and
abduces the following inductive rule for P2:

x 7→ (y, z) ∗ P3(x, y, z)⇒ P2(x).

The tactic then unfolds P2(x) and applies the symbolic execution
rule for the command x := x.l as shown in Figure 3.

A similar situation occurs when we reach the similar subgoal on
the right hand branch:

x 6= nil ∗ P2(x) ` x := x.r

However, there is one crucial difference: having already abduced
a definition for P2 when tackling the left-hand subgoal, it is no
longer undefined. In such situations, when no suitable undefined
predicate is available, abduce deref attempts to apply symbolic
execution for x := x.r by first unfolding a previously defined
predicate instance, in this case P2(x). (Calcagno et al. [12] employ
a similar abduction tactic for their fixed inductive predicates.)

4.5 Abductive tactic for forming back-links
In principle, we may attempt to form a back-link from an open
subgoal labelled by F ` C to any other node in the current pre-
proof labelled by a judgement of the form F ′ ` C, provided that:

1. the judgement F ` C is derivable from F ′ ` C, so that the
source and target of the back-link can be made syntactically
identical as required by Definition 3.3; and

2. the addition of this back-link does not create an infinite path
violating the soundness condition on cyclic proofs (for safety
or termination, as appropriate).

Here we present a tactic, abduce backlink, that attempts to form
such back-links automatically during the proof search.

Formally, suppose that abduce backlink is applied to the
proof state (P,Φ, `). First, the tactic selects a node n of P , distinct
from `, such that the commands in the judgements labelling n and
` are identical. Then it tries to manipulate ` using logical rules so
as to obtain a precondition identical to the one at n. More precisely,
for any predicate P in ` that is undefined in Φ, abduce backlink
attempts to abduce inductive rules for P such that after unfolding
P , the logical rules (Frame) and (Subst) can be used to obtain a
copy of n.

We write ` as F1∗P (E) ` C, where P is undefined in Φ, and n
as F2 ` C. Then abduce backlink will abduce an inductive rule

of the following form:

F ′ ∗ P ′(z)⇒ P (z)

where P ′ is a fresh predicate, and F ′ is chosen so as to satisfy

F2[θ] ⊆multiset F1 ∗ F ′[E/z]

for some substitution θ of expressions for non-program variables
only, where we view spatial formulas as ∗-separated multisets. Pro-
viding we can find suitable F ′ — which is essentially a unification
problem — abduce backlink transforms P by applying rules to
` and inserting a new back-link as follows:

...

F2 ` C

...

F2 ` C
(Subst)

F2[θ] ` C
(Frame)

F1 ∗ F ′[E/z] ∗ P ′(E) ` C
A(P)

F1 ∗ P (E) ` C
The role of the fresh predicate P ′ is to allow a part of the heap to be
abduced at a later stage, possibly on a completely different branch
of the proof (see the second part of Example 4.4).

As with our other abductive tactics, abduce backlink acts
nondeterministically: there may be several viable choices of un-
defined predicate P , “matching formula” F ′ and substitution θ.

Two further caveats apply. First, according to Principle 1, we
must ensure that the proposed back-link does not violate the rel-
evant soundness condition on cyclic proofs. We verify this is the
case by calling a model checker when abduce backlink attempts
to form a back-link. Second, abduce backlink is also allowed to
try unfolding a defined predicate in the subgoal ` if no undefined
predicates are available (similarly to abduce deref).

Example 4.4. In Example 4.1, upon reaching the subgoal

x′ 6= nil ∗ x′ 7→ (x, z) ∗ P3(x′, x, z) ` 0

on the middle branch of the proof in Fig. 3, we notice that the
while command in the subgoal matches that in earlier nodes, so we
decide to try to form a back-link. Thus we call abduce backlink,
which selects the only suitable formula P3(x′, x, z) in the subgoal
and abduces the following inductive rule for P3:

P0(y) ∗ P4(x, y, z)⇒ P3(x, y, z)

The tactic then unfolds P3(x′, x, z), applies (Frame) and forms a
back-link from the resulting subgoal to the root node of the proof
as shown in Fig. 3. Note that, in this case, the use of substitution is
not required and the chosen “matching formula” F ′ is P0(y).

When we arrive at a similar subgoal on the rightmost branch,

x′ 6= nil ∗ x′ 7→ (y, x) ∗ P3(x′, y, x) ` 0

the situation is slightly different because P3 is no longer undefined.
In this situation, abduce backlink first unfolds P3 according
to its existing definition, and then proceeds in the usual way by
abducing a suitable inductive rule for the undefinedP4. (It is for this
reason that it was essential to abduce the fresh predicate component
P4(x, y, z) of the previous inductive rule for P3, even though on
the middle branch this component was discarded by (Frame).)

We observe that abduce backlink is “forgetful” in that it uses
the frame rule to discard parts of the precondition. Another alter-
native would instead be to use the (Cut) rule to establish logical
entailments enabling the current subgoal to be identified with the
desired target node. In some cases, such reasoning is necessary
in order to abduce the “ideal” predicate as precondition. We im-
plemented an alternative back-linking tactic that attempts to apply
(Cut) in order to unify the current subgoal with a chosen target
node. The resulting logical entailments are passed to the separation

7 2013/7/12

logic instantiation of CYCLIST (described in [10]) which attempts
to discharge them. Unfortunately, because such entailments might
be invalid, and often require inductive reasoning to establish even
in the case that they are valid, such calls to CYCLIST are extremely
expensive (many such calls might be made during a proof attempt
and any of them might time-out). Thus, at the time of writing, we
have found the computational cost of this tactic to be prohibitive.

4.6 Existential generalisation
Symbolically executing while loops creates a potentially infinite
branch of the proof search, unless it can be closed either by an ax-
iom or, more commonly, by forming a back-link. However, naive
attempts to back-link to a specified target judgement often fail be-
cause the judgement specifies a too-precise relationship between
program variables which is not preserved by the body of the loop.
One possible solution, which is typical of inductive theorem prov-
ing in general, is to generalise the precondition upon encountering
the while loop so as to “forget” such variable relationships. Here
we present a tactic, ex gen, that implements this principle.

Formally, suppose ex gen is applied to the proof state (P,Φ, `),
where the judgement labelling current subgoal ` is of the form

F ` while B do C od; C′

Then for every program variable x modified by the loop body C,
ex gen replaces every occurrence of x in a subformula of F of
the form E = E′ or y 7→ E by a fresh (implicitly existentially
quantified) variable w. (This step implicitly uses an application of
(Cut), and is easily seen to be sound.) This tactic also exhibits non-
determinism in that it may generalise over any subset of variables
modified by the loop body, and present in the precondition.

Example 4.5. Figure 4 shows an abductive cyclic proof of the
following program, which traverses a list of lists:

fields next, down;
while x 6= nil do
z := x.down ;
while z 6= nil do z := z.down od;
x := x.next

od

When the proof search for this program reaches the subgoal

x 6= nil ∗ x 7→ (y, z) ∗ P3(x, y, z) `
while z 6= nil do z := z.down od

we call the tactic ex gen. Since z is modified by the body of
the while loop, and the precondition contains the subformula
x 7→ (y, z), the tactic replaces the z in this subformula by the
fresh variable w, as shown in the application of EX-GEN in Fig. 4.
Observe that this generalisation step is needed in order to form the
back-link on the right-hand branch (as x 7→ (y, z) does not hold
after execution of the loop body, but x 7→ (y, w) does).

Other, more complex types of generalisation are also possible
(and indeed might be needed for some proofs). For example, we
implemented a “segmenting” generalisation tactic, seg gen, that
identifies a “cursor” variable in the loop body and abduces induc-
tive rules for an undefined predicate in the precondition, based on
forming segments from this predicate with this cursor as a mid-
point. Figure 5 shows an application of this tactic in the context of
an abductive cyclic proof of the following program, which traverses
a list from y after initially assigning x to y:

fields next ;
y := x; while y 6= nil do y := y.next od

After symbolically executing y := x we arrive at the subgoal:

x = y ∗ P0(x) ` while y 6= nil do y := y.next od

Our tactic seg gen identifies y as a potential cursor variable, since
it is modified by the loop body and appears in the loop guard, and
abduces the following inductive rule for the undefined P0:

P1(x, x) ∗ P1(x, nil)⇒ P0(x)

The tactic then unfolds P0(x) and rewrites using the equality x = y
as shown by the application of SEG-GEN in Fig. 5. This enables us
to later form a back-link with the more general P1(x, y)∗P1(y, nil)
as the precondition which describes the general invariant of the
while loop (i.e., a list segment from x to y together with a list
segment from y to nil). However, this requires us to establish the
entailment P1(x, y′) ∗ y′ 7→ y ` P1(x, y), as shown by the
application of (Cut) on branch, which requires inductive reasoning.
In order to find the proof in Fig. 5 automatically in reasonable time,
we require a better lemma speculation mechanism, as discussed in
the previous subsection.

4.7 Simplification of inductive rule sets
When an abductive proof search using the tactics above succeeds,
the returned set of abduced inductive rules will typically be too
large and unwieldy for human consumption. We can apply some
fairly straightforward simplifications to our abduced rule sets in or-
der to make them more easily readable. Our simplification method,
outlined below, is used to produce the simplified inductive rules
shown in Figures 3–5.

1. Elimination of undefined predicates. When our search tactics
abduce inductive rules, these rules always contain an undefined
component involving a fresh predicate symbol. Thus, the final set
of abduced inductive rules will typically contain several undefined
predicates. Clearly, such predicates may be interpreted however we
wish; thus we interpret them all as the empty heap emp.

For example, during the abductive proof in Figure 3 we ab-
duce the inductive rule P0(z) ∗ P5(x, y, z) ⇒ P4(x, y, z), where
P5 is still undefined at the end of the proof. Thus we instantiate
P5(x, y, z) to emp whereby, taking into account that F ∗emp ≡ F ,
we obtain the simplified rule P0(z)⇒ P4(x, y, z).

2. In-lining. In most cases, our abductive tactics abduce a single
inductive rule for an undefined predicate. Consequently, the final
inductive rule set typically contains many mutually recursive pred-
icates, many of which can be straightforwardly eliminating by in-
lining. First, we order the predicate symbols by the order in which
their definitions were abduced during the proof search. Then, for
any predicateQwith only a single inductive rule, wheneverQ > P
according to our ordering, we replace all subformulas of the form
Q(E) in the inductive rules for P by the definition of Q(E).

For example, in the abductive proof in Figure 3, the predicate
P2 is defined by a single inductive rule,

x 7→ (y, z) ∗ P3(x, y, z)⇒ P2(x)

and P2 > P0 according to the abduction order. Thus, we replace
P2(x) by its definition in the second inductive rule for P0 to obtain
the in-lined inductive rule

x 6= nil ∗ x 7→ (y, z) ∗ P3(x, y, z)⇒ P0(x)

Repeating this process for the predicates P3 and P4 produces the
inductive rule shown in Figure 3,

x 6= nil ∗ x 7→ (y, z) ∗ P0(y) ∗ P0(z)⇒ P0(x).

3. Elimination of redundant parameters. A parameter of a predicate
P is said to be redundant (in the inductive rule set Φ) if it does not
occur on the left hand side of any inductive rule in ΦP , except
possibly as the same parameter of P itself. Our final simplification
step is to remove any such redundant parameters from the inductive
rule set.

8 2013/7/12

ε

x = nil ∗ P1(x) ` ε
while x 6= nil

x = nil ∗ P1(x) ` 0

P0(x) ` 0
(Frame)

x′ 6= nil ∗ z = nil ∗
x′ 7→ (x,w) ∗ P0(x) ∗ P6(x′, x, z)

` 0

A(P4)
x′ 6= nil ∗ z = nil ∗
x′ 7→ (x,w) ∗ P4(x′, x, z)

` 0

x := x.next
x 6= nil ∗ z = nil ∗
x 7→ (y, w) ∗ P4(x, y, z)

` 4

while z 6= nil
x 6= nil ∗ z = nil ∗
x 7→ (y, w) ∗ P4(x, y, z)

` 2

x 6= nil ∗ x 7→ (y, w) ∗ P3(x, y, z) ` 2
(Frame)

x 6= nil ∗ z′ 6= nil ∗
x 7→ (y, w) ∗ z′ 7→ (v, z) ∗ P3(x, y, z) ∗ P8(x, y, z′, v, z)

` 2

A(P7)
x 6= nil ∗ z′ 6= nil ∗
x 7→ (y, w) ∗ z′ 7→ (v, z) ∗ P7(x, y, z′, v, z)

` 2

z := z.down
x 6= nil ∗ z 6= nil ∗
x 7→ (y, w) ∗ z 7→ (v, v′) ∗ P7(x, y, z, v, v′)

` 3

A(P5)
x 6= nil ∗ z 6= nil ∗
x 7→ (y, w) ∗ P5(x, y, z)

` 3

while z 6= nil
x 6= nil ∗ z 6= nil ∗
x 7→ (y, w) ∗ P5(x, y, z)

` 2

A(P3)
x 6= nil ∗ x 7→ (y, w) ∗ P3(x, y, z) ` 2

EX-GEN
x 6= nil ∗ x 7→ (y, z) ∗ P3(x, y, z) ` 2

z := x.down

x 6= nil ∗ x 7→ (y, y′) ∗ P3(x, y, y′) ` 1
A(P2)

x 6= nil ∗ P2(x) ` 1
while x 6= nil

x 6= nil ∗ P2(x) ` 0
A(P0)

P0(x) ` 0

fields next, down
0 : while x 6= nil do
1 : z := x.down ;
2 : while z 6= nil do
3 : z := z.down od;
4 : x := x.next

od

x = nil ∗ P1(x)⇒ P0(x)

x 6= nil ∗ P2(x)⇒ P0(x)

x 7→ (y, y′) ∗ P3(x, y, y′)⇒ P2(x)

z = nil ∗ P4(x, y, z)⇒ P3(x, y, z)

z 6= nil ∗ P5(x, y, z)⇒ P3(x, y, z)

P0(y) ∗ P6(x, y, z)⇒ P4(x, y, z)

z 7→ (v, v′) ∗ P7(x, y, z, v, v′)⇒ P5(x, y, z)

P3(x, y, w) ∗ P8(x, y, z, v, w)⇒ P7(x, y, z, v, w)

x = nil⇒ P0(x)

x 6= nil ∗ x 7→ (y, y′) ∗ P3(y, y′)⇒ P0(x)

z = nil ∗ P0(y)⇒ P3(y, z)

z 6= nil ∗ z 7→ (v, v′) ∗ P3(y, v′)⇒ P3(y, z)

Figure 4. Top: abductive proof for list-of-lists traversal. Bottom, left to right: program; predicates found; simplified predicates.

ε
y = nil ∗ P1(x, y) ∗ P2(y, nil) ` ε

while y 6= nil
y = nil ∗ P1(x, y) ∗ P2(y, nil) ` 1

P1(x, y) ∗ P1(y, nil) ` 1
(Cut)

y′ 6= nil ∗ P1(x, y′) ∗ y′ 7→ y ∗ P1(y, nil) ∗ P5(x, y, z) ` 1
A(P4)

y′ 6= nil ∗ P1(x, y′) ∗ y′ 7→ y ∗ P4(y′, nil, y) ` 1
y := y.next

y 6= nil ∗ P1(x, y) ∗ y 7→ z ∗ P4(y, nil, z) ` 2
A(P3)

y 6= nil ∗ P1(x, y) ∗ P3(y, nil) ` 2
while y 6= nil

y 6= nil ∗ P1(x, y) ∗ P3(y, nil) ` 1
A(P1)

P1(x, y) ∗ P1(y, nil) ` 1
SEG-GEN

x = y ∗ P0(x) ` 1
y := x

P0(x) ` 0

fields next ;
0 : y := x;
1 : while y 6= nil do
2 : y := y.next

od

P1(x, x) ∗ P1(x, nil)⇒ P0(x)

x = y ∗ P2(x, y)⇒ P1(x, y)

x 6= y ∗ P3(x, y)⇒ P1(x, y)

x 7→ z ∗ P4(x, y, z)⇒ P3(x, y)

P1(z, y) ∗ P5(x, y, z)⇒ P4(x, y, z)

P1(x, x) ∗ P1(x, nil)⇒ P0(x)

x = y ∗ emp⇒ P1(x, y)

x 6= y ∗ x 7→ z ∗ P1(z, y)⇒ P1(x, y)

Figure 5. Top: abductive proof for list traversal program (bottom left) employing segment generalisation. Bottom centre: inductive rules
abduced during the proof. Bottom right: the simplified predicates.

9 2013/7/12

For example, given an inductive rule of the form

y 6= nil ∗ x 7→ x′ ∗ P (y, x′, z)⇒ P (x, y, z)

the third parameter (z) of P is redundant, and thus we eliminate
this parameter to obtain the simplified

y 6= nil ∗ x 7→ x′ ∗ P (y, x′)⇒ P (x, y).

5. Implementation and evaluation
In this section, we describe our automatic tool, CABER (from
“Cyclic ABducER”), that implements our cyclic abduction strat-
egy and the individual tactics described in the previous section, and
we report on its performance on a variety of example programs.

5.1 Implementation platform
CABER is built on top of the open-source theorem prover CYCLIST,
a generic framework (written in OCaml and C++) for constructing
cyclic theorem provers [10]. One of its existing instantiations is a
prover for a simpler version of the system in [8] which, given a
precondition in separation logic with (fixed) inductive predicates,
searches for termination proofs for pointer programs. CABER ex-
tends this prover with the abductive tactics described in Sec. 4, and
modifies the proof search algorithm in CYCLIST in the following
ways: First, we incorporated the set of inductive definitions into the
proof search state, allowing it to be modified during proof search.
This also enables CABER to back-track over different choices of
inductive rules, as required by our non-deterministic abductive tac-
tics. Second, when the CYCLIST prover forms a back-link it checks
that the soundness condition has not been violated (Def. 3.5) and,
if so back-tracks. In order to check for safety and, optionally, for
termination, CABER provides a different soundness check for each
one as detailed in Section 3. Third, our abduction method requires
that when a closed proof is found, the inductive rules found are
checked for satisfiability through the algorithm detailed in [9], and
if found to be unsatisfiable to trigger back-tracking in the proof
search. The implementation of CABER amounts to about 3000 lines
of OCaml code, excluding other minor changes to CYCLIST.

5.2 Proof search algorithm
Algorithm 6 gives an overview of the abductive proof search, sup-
pressing the boundary between theorem prover and tactics. The in-
puts to procedure prove are: P , a (partial) cyclic pre-proof; Φ, a
set of inductive rules; and S, the list of open subgoals in P . A
successful call prove(P , Φ, S) returns (P ′,Φ′) where P ′ is a
proof that extends P , and which is valid w.r.t. the inductive rule
set Φ′ ⊇ Φ. To search for a proof of a program C with pre-
condition Px, we would make the call prove(P0, ∅, [n]) where
P0 =def {n : Px ` C} is the partial proof with just the sequent n.

Procedures abduce backlink and abduce symex implement
the tactics described in Sec. 4.5 and Secs. 4.3/4.4 (abduce symex
combines tactics abduce branch and abduce deref into one),
inventing new inductive rules and subsequently unfolding a pred-
icate P in the current subgoal. They all return a list of pairs of
a proof and an inductive rule set, representing alternative ways to
progress the search. Procedure ex gen, which implements the gen-
eralisation tactic described in Sec. 4.6, does not define new predi-
cates, so returns a list of pairs of a proof and a new subgoal. Pro-
cedure sound uses CYCLIST’s model checker to ensure that the
introduction of a back-link has not violated the soundness condi-
tion (Sec. 3). Procedure sat uses the algorithm described in [9] to
decide if a set of inductive rules is satisfiable.

5.3 Experimental evaluation
We ran CABER on a set of test programs, listed in Fig. 7. The test
suite includes programs manipulating lists, trees, cyclic structures

sym exec(P: proof, Φ: inductive rules, S: open goals of P) :
begin

(g, T) := (head(S), tail(S)) if rule for cmd(g) cannot fire at g
then return nil (P ′, S′) := symex rule(P , g) return prove(P ′,
Φ, concat(S′, T))

prove(P: proof, Φ: inductive rules, S: open goals of P) :
begin

if S = [] then
if sat(Φ) then return (P , Φ) else return nil

(g, T) := (head(S), tail(S)) if axiom applies to g then
return prove(close by axiom(P , g), Φ, T)

foreach g′ ∈ P such that cmd(g)=cmd(g′) do
foreach (P ′,Φ′) ∈ abduce backlink(P , Φ, g, g′) do

if sound(P ′) then
r := prove(P ′, Φ′, T) if r 6= nil then return r

r := sym exec(P , Φ, S) if r 6= nil then return r foreach
(P ′,Φ′, g′) ∈ abduce symex(P , Φ, g) do

r := sym exec(P ′, Φ′, concat(g′,T)) if r 6= nil then return
r

if cmd(g) = while then
foreach (P ′, g′) ∈ ex gen(P , g) do

r := prove(P ′, Φ, concat(g′, T)) if r 6= nil then return
r

return nil

Figure 6. Abductive proof search algorithm. Procedure cmd(g)
returns the command in goal g; symex rule(P , g) applies the
appropriate symbolic execution rule to goal g and returns a proof
that extends P with that application, plus a new list of subgoals.

and higher-order structures, like lists-of-lists and trees-of-lists. Ad-
ditionally, we obtained under permission the programs used to test
the MUTANT termination checker [4]. The MUTANT programs are
loops extracted from the Windows kernel that manipulate list-like
structures of varying complexity. We run the abductive prover twice
on each program, using the safety soundness condition and the ter-
mination soundness condition respectively.

Our tests were performed on a x64 Linux system with an Intel
i5 CPU at 3.4GHz and 4Gb of RAM. Run-times were generally
very low, with no test taking more than 300 ms, apart from MU-
TANT test #11 whose termination proof times out. The definitions
abduced by the safety- and termination-proving runs on each pro-
gram were syntactically identical except when proving termination
fails entirely (test #16 and MUTANT test #11).

Evaluating the quality of abduced definitions is not trivial.
In principle, definitions could be partially ordered by entailment
(cf. [12]) but for our language this is unlikely even to be decidable,
let alone practical for experimental evaluation. Another possibil-
ity is to use code coverage, or one of its variants, as a measure of
solution quality; however, because we insist every predicate in our
definitions is satisfiable (cf. Sections 2.4 and 5) it is easy to see
that coverage will always be 100% provided a proof is found. To
overcome these difficulties we classify solutions manually in three
categories. Category A consists of definitions that are identical to
the standard one, modulo predicate name substitution. As an exam-
ple the predicate below defines a nil-terminated singly-linked list,
but the name P is arbitrary. This is the output obtained from tests
#1, #7–#9 and MUTANT tests #1–#3, #6 and #7.

x = nil⇒ P (x)

x 6= nil ∗ x 7→ x′ ∗ P (x′)⇒ P (x)
(L)

Category B consists of definitions provably equivalent to the stan-
dard one, but possibly unfolded, or having a significantly different
recursion scheme. For example, the following definition is clearly
equivalent to (L) and derives by unfolding (L) once. These predi-

10 2013/7/12

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 List traverse 3 20 3 A X
2 List insert 14 8 7 B X
3 List copy 12 0 8 B X
4 List append 10 12 5 B X
5 Delete last from list 16 12 9 B X
6 Filter list 21 48 11 C X
7 Dispose list 5 4 5 A X
8 Reverse list 7 8 7 A X
9 Cyclic list traverse 5 4 5 A X

10 Binary tree search 7 8 4 A X
11 Binary tree insert 18 4 7 B X
12 List of lists traverse 7 8 5 B X
13 Traverse even-length list 4 8 4 A X
14 Traverse odd-length list 4 4 4 A X
15 Ternary tree search 10 8 5 A X
16 Conditional diverge 3 4 3 B ×
17 Traverse list of trees 11 12 6 B X
18 Traverse tree of lists 17 68 7 A X
19 Traverse list twice 8 64 9 B X

Program LOC Time Search Defs. Term.
(ms) Depth Class Proved

1 MUTANT test #1 4 4 3 A X
2 MUTANT test #2 6 8 5 A X
3 MUTANT test #3 6 8 7 A X
4 MUTANT test #4 11 52 8 C X
5 MUTANT test #5 16 16 12 B X
6 MUTANT test #6 6 4 5 A X
7 MUTANT test #7 8 4 7 A X
8 MUTANT test #8 30 × × × ×
9 MUTANT test #9 13 16 13 B X

10 MUTANT test #10 21 4 13 C X
11 MUTANT test #11 17 292 13 C T/O

Figure 7. Experimental results for the CABER tool. T/O indicates timeout (30s). See Sec. 5.3 for explanation of the Definitions Class column.

cate were ontained from tests #2–#4 and MUTANT test #5.

x = nil⇒ Q(x)

x 6= nil ∗ x 7→ x′ ∗Q(x′)⇒ Q(x)

x = nil⇒ P (x)

x 6= nil ∗ x 7→ x′ ∗Q(x′)⇒ P (x)

(LU)

Finally, category C consists of definitions that are strictly stronger
than the standard one, typically because they allow recursion up to
a fixed finite level. For example, the following definition is stronger
than (L)/(LU) in that it only allows lists of length < 2. These
predicates, here folded for brevity, were obtained from test #6.

x = nil⇒ Q(x)

x 6= nil ∗ x 7→ x′ ∗Q(x′) ∗Q(x′)⇒ Q(x)

x = nil⇒ P (x)

x 6= nil ∗ x 7→ x′ ∗Q(x′)⇒ P (x)

(L1)

Arguably, the difference between categories A and B is a little ar-
bitrary. For instance, better simplification techniques (Section 4.7)
would turn B instances to A instances. What is more important is
the distribution of tests between A/B and C.

Overall, 14 out of 30 tests (47%) produce predicates syntacti-
cally isomorphic to the standard ones (A), 11 tests (37%) produce
semantically equivalent, but not syntactically isomorphic predi-
cates (B), 4 tests (13%) produce predicates that are strictly stronger
than the standard ones (C), and one test (3%) fails entirely. Notable
cases in categories A and B are traversing a cyclic list (program 9
in Fig. 7), traversing a list of lists (12), searching binary and ternary
search trees (10, 15) and traversing even- and odd-length lists (13,
14). The last four programs typically cannot be handled by (safety-
checking) tools such as SPACEINVADER and SLAYER.

Test #6 and MUTANT tests #4, #10, #11 produce too strong
definitions, and MUTANT tests #8 fails altogether. The cause behind
these are due to the need for better abstraction techniques, as
discussed in Section 4.6. Manual inspection reveals that the tactic
seg gen would produce a sufficiently strong precondition for a
proof by hand. However, such a proof requires the use of the (Cut)

rule to prove non-trivial inductive theorems such as the following.

lseg(x, y) ∗ y 7→ z ∗ ls(z) ` lseg(x, z) ∗ ls(z)

As briefly discussed in Sec. 4.6 we implemented this approach by
calling the separation logic entailment prover in CYCLIST from
within the abductive proof search, but found it to be computa-
tionally prohibitive. An improved lemma speculation facility could
help significantly by avoiding many unsuccessful calls to the entail-
ment checker; we plan to investigate this direction in future work.

6. Related work
Our proof-theoretic approach to the abduction of inductive defini-
tions is close in spirit to inductive recursion synthesis in AI (for
a survey see [17]). The main novelties of our approach, compared
to existing inductive recursion synthesis techniques, are: (a) that
we abduce program preconditions in separation logic, while the
techniques surveyed in [17] are confined to the setting of first-
order logic; and (b) that we employ cyclic proof to abduce induc-
tion schemas, whereas inductive recursion synthesis typically relies
upon fixed recursion schemas.

There have also been a number of efforts to synthesise induc-
tive predicates of separation logic for use in program analysis. Lee
et al. present a shape analysis using an abstract domain of shape
graphs based on a grammar of heaps [19]. The main limitation of
the technique is the restriction of the inferred predicates to at most
two parameters. Later, Berdine et al. developed a shape analysis
employing a higher-order list predicate, from which various list-
like data structures can be synthesised [2]. Again, the choice of ab-
stract domain limits the class of predicates that can be discovered;
for example, predicates defining trees cannot be expressed in this
domain. Guo et al. leverage inductive recursion synthesis to infer
inductive loop invariants in a shape analysis based on separation
logic [18]. However, the inductive recursion synthesis and recur-
rence detection algorithms employed in [18] are highly complex.
Finally, Chang and Rival propose a shape analysis whose abstract
domain is parameterised by “invariant checkers”, which are essen-
tially inductive definitions provided by the user [13].

Recently, Brockschmidt et al. developed a termination prover
for Java programs based on term rewriting [7] that also performs

11 2013/7/12

some inference of heap predicates during analysis. In contrast to
our work, their analysis does not find termination preconditions but
assumes a fixed precondition and uses it to infer further predicates;
more importantly, their approach assumes memory safety, while we
guarantee it. Several authors have also considered the problem of
conditional termination of integer programs (e.g., [14, 6]). Here,
the heap is not usually considered — an exception being Moy and
Marché [22] — and the abduced preconditions are linear combi-
nations of (in)equalities between integer expressions, rather than
inductively defined predicates, as in our case.

7. Conclusions and future work
In this paper, we introduce an entirely new technique, cyclic ab-
duction, for automatically abducing the inductive definitions of
data structures that serve as safety and/or termination preconditions
for heap-manipulating while programs. To the best of our knowl-
edge, ours is the first known technique for automatically inferring
such inductive definitions without recoursing to user-provided def-
initions or hard-coded abstract predicate domains. At the time of
writing, our automatic cyclic abduction tool CABER is capable of
inferring the correct definitions for many common small programs
manipulating lists and trees, and in some cases can also infer infer
the definitions of more exotic data structures such as cyclic lists,
segmented data structures, or a tree of linked lists. In particular,
CABER abduces the correct termination precondition for over 90%
of the successful tests reported for the MUTANT tool in [4], where
the precondition previously had to be supplied by hand.

Cyclic abduction is based upon heuristically-guided proof
search in a formal cyclic proof theory adapted from the one in [8].
For fundamental computability reasons, no general solutions are
possible, thus we cannot do any better than a heuristic search; our
method will not always succeed in discovering the ideal precon-
ditions (or perhaps any preconditions at all). On the other hand,
we believe our formal logical setting is advantageous in at least
three respects. Firstly, we can search either for safety or termina-
tion preconditions in the same formal system, simply by choosing
an appropriate soundness condition over pre-proofs. Secondly, it is
straightforward to develop and test new heuristics and tactics by im-
plementing (perhaps nondeterministic) combinations of inference
rules and back-links. Thirdly, when our proof search succeeds, it
yields both a suitable precondition for the program and an explicit
proof of safety and/or termination under this precondition.

In this paper we consider a basic while language that is quite
adequate for writing small programs but less so for large ones since
it does not include procedure calls. We can straightforwardly ex-
tend our proof system to consider postconditions as well as precon-
ditions, whereby the standard Hoare logic proof rule for procedure
calls (see e.g. [12]) can straightforwardly be included. However, to
abduce the preconditions of procedure calls successfully we would
need to establish inductive entailments between formulas at proce-
dure call sites. This is a challenging problem likely requiring the de-
velopment of good heuristics for lemma speculation, as also arises
in general inductive theorem proving [11].

Naturally, there are some limitations on what can be done using
cyclic abduction. Most conspicuously, the only source of informa-
tion for abduction is the program itself, which means that the recur-
sion in the abduced predicates will typically reflect the traversal of
data structures in the program. Similarly, we are currently unable
to abduce numerical information about data structures as employed
e.g. in [21], such as the length of a list, unless that information is
explicitly manipulated by the program. However, we can attempt
to establish the equivalence of an abduced predicate to one already
known by calling a suitable inductive theorem prover for separation
logic (e.g. CYCLIST [10]). Further current limitations (that however
might be overcome by better heuristics) include: a blow up in the

search space in the presence of too many record fields and/or tem-
porary variables in the program; and difficulty in correctly abduc-
ing suitably segmented predicates when several pointer variables
are used to traverse the same data structure.

Finally, we note that the problem of inferring predicates for
use in program analysis is by no means limited to the setting we
consider here. For example, [20] attempts to infer instrumentation
predicates for use in the TVLA system, while [1] attempts predicate
abstraction over large C programs. A possible avenue for future
work would be to investigate whether cyclic abduction as presented
here can be usefully adapted to such settings.

References
[1] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian

abstraction for model checking C programs. International Journal on
Software Tools for Technology Transfer, 5, 2003.

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, and
H. Yang. Shape analysis for composite data structures. In Proc.
CAV-19. Springer, 2007.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In Proc. APLAS-3. Springer, 2005.

[4] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In Proc.
CAV-18. Springer, 2006.

[5] J. Berdine, B. Cook, and S. Ishtiaq. Slayer: memory safety for
systems-level code. In Proc. CAV-23. Springer, 2011.

[6] M. Bozga, R. Iosif, and F. Konec̆ný. Deciding conditional termina-
tion. In Proc. TACAS-18. Springer, 2012.

[7] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated
termination proofs for Java programs with cyclic data. In Proc.
CAV-24. Springer, 2012.

[8] J. Brotherston, R. Bornat, and C. Calcagno. Cyclic proofs of program
termination in separation logic. In Proc. POPL-35. ACM, 2008.

[9] J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Pérez. A
decision procedure for satisfiability in separation logic with inductive
predicates. Technical Report RN/13/15, Univ. College London, 2013.

[10] J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic
theorem prover. In Proc. APLAS-10, LNCS. Springer, 2012.

[11] A. Bundy. The automation of proof by mathematical induction. In
Handbook of Automated Reasoning, chapter 13, . Elsevier Science,
2001.

[12] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. Journal of the ACM, 58(6),
December 2011.

[13] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In
Proc. POPL-35. ACM, 2008.

[14] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv.
Proving conditional termination. In Proc. CAV-20. Springer, 2008.

[15] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[16] D. Distefano and M. Parkinson. jStar: Towards practical verification

for Java. In Proc. OOPSLA-23. ACM, 2008.
[17] P. Flener and S. Yilmaz. Inductive synthesis of recursive logic

programs: achievements and prospects. The Journal of Logic
Programming, 41(2-3), 1999.

[18] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with
inductive recursion synthesis. In Proc. PLDI-28, June 2007.

[19] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer
programs using grammar-based shape analysis. In Proc. ESOP-14.
Springer, 2005.

[20] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via
inductive learning. In Proc. CAV-17. Springer, 2005.

[21] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Automatic numeric
abstractions for heap-manipulating programs. In Proc. POPL-37.
ACM, 2010.

12 2013/7/12

[22] Y. Moy and C. Marché. Modular inference of subprogram contracts
for safety checking. Journal of Symbolic Computation, 45, 2010.

[23] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification
of heap-manipulating programs. In Proc. POPL-37. ACM, 2010.

[24] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS-17. IEEE Computer Society, 2002.

[25] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano,
and P. O’Hearn. Scalable shape analysis for systems code. In Proc.
CAV-20. Springer, 2008.

[26] H. Yang and P. O’Hearn. A semantic basis for local reasoning. In
Proc. FOSSACS-5. Springer, 2002.

13 2013/7/12

