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Information Erasure: Varieties of Policies and Enforcement Mechanisms

David Sands

Chalmers University of Technology,

Sweden

Sometimes information is made available just for a specific purpose. Once it has fulfilled its purpose 

there are many good reasons why it should be erased and forgotten.  In this talk I will explore the 

semantics of information erasure, the variety of policies relating to erasure, and static and dynamic 

mechanisms to enforce such policies. (This talk covers material from joint works with P. Del Tedesco, 

S. Hunt, and A. Russo.)

Formal verification of program slicing for formally verified loop bound analyser.

David Pichardie

INRIA Rennes

France

Nowadays safety critical systems are validated through long and costly test campaigns. Static analysis 

is a promising complementary technique that allows to automatically provide guarantees on these 

critical systems. Significant examples are the state-of-the-art ASTREE static analyzer for C which has 

proven some critical safety properties for the primary flight control software of the Airbus A340 fly-

by-wire system.

Taking note of such a success, the next question is: why do we trust these analyzer that are themselves 

complex pieces of software ? An analyzer itself can be certified by testing, but exhaustivity cannot be 

achieved. In this work, we show how mechanized proofs can be used to certify static analyzers or 

their results.

Worst-case execution time (WCET) estimation tools are other examples of static analysis industrial 

successes. These complex pieces of software performing tasks such as computation on control flow 

graphs (CFG) and bound calculation. In this talk, we present a formal verification (in Coq) of a loop 

bound estimation. It relies on program slicing, followed by a value analysis and a bound calculation.

The work has been integrated into the CompCert verified C compiler. Our verified analyses directly 

operate on non-structured CFG. We extend the CompCert RTL intermediate language with a notion of 

loop scope (a.k.a. weak topological ordering on CFG) that is useful for intensive reasoning on CFG. 

The automatic extraction of our loop bound estimation into OCaml yields a program with competitive 

results, obtained from experiments on a reference benchmark for WCET bound estimation tools.
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Abstract. Metamorphic malware continuously modify their code, while preserv-

ing their functionality, in order to foil misuse detection. The key for defeating

metamorphism relies in a semantic characterization of the embedding of the mal-

ware into the target program. Indeed, a behavioral model of program infection

that does not relay on syntactic program features should be able to defeat meta-

morphism. Moreover, a general model of infection should be able to express de-

pendences and interactions between the malicious code and the target program.

ANI is a general theory for the analysis of dependences of data in a program. We

propose an high order theory for ANI, later called HOANI, that allows to study

program dependencies. Our idea is then to formalize and study the malware de-

tection problem in terms of HOANI.

1 Introduction

One of the major challenge in computer security is the detection and neutralization of

metamorphic malware. A metamorphic malware is a malicious program equipped with

a metamorphic engine that takes the malware, or parts of it, as input and morphs it at

run-time to a syntactically different but semantically equivalent variant, in order to foil

traditional misuse malware detectors. Misuse detectors are syntactic in nature as they

identify malware infection by comparing the byte sequence comprising the body of the

malware against a signature database [13]. It is exactly this syntactic characterization

of the malicious code that makes standard misuse malware detectors so vulnerable to

metamorphism. Thus, in order to handle metamorphism a malware detector should be

able to recognize the metamorphic variants of a malware, namely the possible evolu-

tions of the malicious code. The metamorphic engine is typically implemented as a set

of code obfuscations that preserve program semantics to some extent. Thus, in order

to handle metamorphism a malware detector should characterize infection in terms of

semantic properties rather than syntactic properties (like signatures). For this reason

researchers have started to investigate formal approaches to malware detection where

infection is specified in terms of behavioral properties of programs (e.g., [1, 2, 6, 9]).

As usual, the efficiency of these approaches is stated in terms of soundness (no false

positives) and completeness (no false negatives) properties. In [6] the authors present a

general framework based on program semantics and abstract interpretation for proving



soundness and completeness of malware detectors in the presence of obfuscations. This

semantic model for malware detection implicitly assumes that a malware appends its

code and behavior to the one of the target program (the victim) without interacting with

it. Hence, this formal model of malware infection is not appropriate for the descrip-

tion and identification of malware whose behaviors interferes with the one of the target

program (either with spurious or real dependences added to obstruct program analysis).

In order to develop a more general theory that is able to describe the interactions

between the malware and the target program we need a formal framework that is able

to describe dependences between fragments of the same program. It is well known that

non-interference [12] (NI) provides an ideal theory for reasoning on data dependencies

in a program and that abstract non-interference consists in a generalization of the the-

ory weakening the dependency analysis between data [7]. Our idea is to lift the ANI

framework on programs and to define a sort of high-order ANI (HOANI) that charac-

terizes dependences and relations among functions, and therefore programs, instead of

data. The idea is that we detect infection when the semantics of a program matches

the overall semantics of a target program corrupted by a malware. Indeed, if the mal-

ware detector could observe differences it would say that the specific malware has not

infected the program, since we cannot recognize its semantics in the semantics of the

program. This definition of malware detection allows to use HOANI for characterizing

both soundness and completeness of the malware detectors, but allows even something

more. We can inherits the attacker model and maximal information release characteri-

zations of ANI, which lifted high order and instantiated to the malware detection field

seem to provide a way to certify which classes of metamorphic engines do not deceive

the detector, and to make a training of the detector depending on the metamorphic en-

gine we aim to unveil. Finally, we prove that HOANI is a generalization of the semantic

approach cited above [6] to malware detection since under specific conditions the two

approaches collapse.

2 Background

Mathematical notation. If S and T are sets, then ℘(S) denotes the powerset of S and

S × T denotes the Cartesian product of S and T . If f : S−→T , Y ⊆ S, and X ⊆ T

then f(Y )
def

= {f(y) | y ∈ Y } and f−1(X)
def

=
{

x
∣∣f(x) ∈ X

}
. We will often denote

f({x}) as f(x) and use lambda notation for functions. f◦g
def

= λx. f(g(x)). 〈C,≤〉 de-

notes a poset C with ordering relation ≤, while 〈C,≤,∨,∧,⊤,⊥〉 denotes a complete

lattice C, with ordering ≤, lub ∨, glb ∧, top and bottom element ⊤ and ⊥ respectively.

id
def

= λx. x and T
def

= λx. ⊤. The point-wise ordered set of monotone functions, de-

noted C1
m−→C2, is a complete lattice 〈C1

m−→C2,⊑,⊔,⊓, T, λx.⊥〉. f : C1−→C2

is (completely) additive if f preserves lub’s of all subsets of C1 (emptyset included).

Continuity, denoted
c−→ , holds when f preserved lubs’s of chains. Co-addittivity and

co-continuity are dually defined.
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Abstract interpretation. We use the framework of abstract interpretation [3, 4] for mod-

eling both the observational capability of malware detector and the invariant proper-

ties of metamorphic engines. Abstract interpretation is used for reasoning on proper-

ties rather than on (concrete) data values. Abstract interpretation is a general theory

for deriving sound approximations of the semantics of discrete dynamic systems, e.g.,

programming languages [3]. Approximation can be equivalently formulated either in

terms of Galois connections or closure operators [4]. An upper closure operator (uco

for short) ρ : C → C on a poset C, representing concrete objects, is monotone, idem-

potent, and extensive: ∀x ∈ C. x ≤C ρ(x). The upper closure operator is the func-

tion that maps the concrete values to their abstract properties, namely with the best

possible approximation of the concrete value in the abstract domain. Formally, clo-

sure operators ρ are uniquely determined by the set of their fix-points ρ(C), for in-

stance Par = {Z,ev,od, ∅}. For upper closures, X ⊆ C is the set of fix-points of

ρ ∈ uco(C) iff X is a Moore-family of C, i.e., X = M(X)
def

= {∧S | S ⊆ X} —

where ∧∅ = ⊤ ∈ M(X). The set of all upper closure operators on C, denoted

uco(C), is isomorphic to the so called lattice of abstract interpretations of C [4].

If C is a complete lattice then uco(C) ordered point-wise is also a complete lattice,

〈uco(C),⊑,⊔,⊓,⊤, id〉 where for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C:

ρ ⊑ η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C); (⊓i∈Iρi)(x) = ∧i∈Iρi(x); and

(⊔i∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x. Given an abstraction, we want also to

understand whether the program computes accurately on the property. In general, the

abstract interpretation framework guarantees that the abstract computation is sound,

namely we can only lose information by computing on abstract properties. On the other

hand, the accuracy of the computation is modeled in terms of completeness: an ab-

stract domain is complete for a program if the computation of the program, on the

abstract properties, corresponds precisely to the abstraction of the concrete computa-

tion. In other words, the abstract domain is as precise as possible with respect to the

program to compute. The best correct approximation of f is f bca def

= α◦f◦γ (or equiv-

alently γ◦α◦f◦γ◦α). It is known that f ♯ is sound iff f bca ⊑ f ♯ and this implies that

α(lfp(f)) ≤ lfp(f bca) ≤ lfp(f ♯) [4]. In the following, if [[P ]] is specified as fix-point of

(a combination of) predicate-transformers FP : C
c−→C, and ρ ∈ uco(C), we denote

by [[P ]]ρ the (fix-point) semantics associated with F bca
P = ρ◦FP ◦ρ. [[P ]]ρ is the best

correct abstract interpretation of P in ρ. In this case ρ([[P ]]) ≤ [[P ]]ρ.

Abstract non-interference. Abstract non-interference (ANI) [7] is a natural weakening

of non-interference by abstract interpretation. Suppose the variables of program split in

private (H ) and public (L ). Let η, ρ ∈ uco(VL ) and φ ∈ uco(VH ), where V
L and V

H are

the domains of L and H variables. η and ρ characterise the attacker. Let φ ∈ uco(VH ),

which states what, of the private data, can flow to the output observation, the so called

declassification of φ [10]. A program P satisfies ANI, and we write [η]P (φ ⇒ ρ), if

∀h1, h2 ∈ V
H ,∀l1, l2 ∈ V

L :

η(l1) = η(l2) ∧ φ(h1) = φ(h2) ⇒ ρ([[P ]](h1, l1)
L ) = ρ([[P ]](h2, l2)

L ). (1)
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This notion says that, whenever the attacker is able to observe the input property η and

the output property ρ, then it can observe nothing more than the property φ of private

input. It is possible to systematically characterize the most concrete output observation

for a program, given the input one [7]. The idea is that of abstracting in the same object

all the elements that, if distinguished, would generate a visible flow. On the other hand,

we can characterize the maximal information that a program semantics allows to flow,

namely which is the most abstract property that needs to be declassified in order to

guarantee the non-interference of the program [7].

3 The Ingredients

Separability and Program Integration. Let us recall the notions of interleave and

separability introduced in [11]. Consider two disjoint sets of variables X = {x1 . . . xn}

and Y = {y1 . . . yn}. We use notation x̄ to refer to the tuple 〈x1 . . . xn〉, notation xi

to refer to the value stored in variable xi, and notation x̄ to refer to the tuple of values

〈x1 . . .xn〉. We define the set of possible states over X and Y as follows:

ΣX:Y =
{
〈x1 . . .xn : y1 . . .yn〉

∣∣X = {x1 . . . xn}, Y = {y1 . . . yn}
}

When Y = ∅ we refer to the set of states over X simply as ΣX . Every trace σ ∈ Σ∗

X:Y

is of the form σ = 〈x̄1 : ȳ1〉〈x̄2 : ȳ2〉 . . . with 〈x̄i, ȳi〉 ∈ ΣX:Y for every i. Let ǫ denote

the empty trace. We define the projection function πX : ΣX:Y → ΣX as πX(ǫ) = ǫ,

πX(〈x̄1 : ȳ1〉σ) = x̄1πX(σ), and similarly the projection function πY : ΣX:Y → ΣY .

According to [11] we define function interleave : Σ∗

X:Y × Σ∗

X:Y → Σ∗

X:Y such that

interleave(σ1, σ2) = σ iff πX(σ) = πX(σ1) and πY (σ) = πY (σ2). A set of traces

Γ ∈ ΣX:Y satisfies separability iff it is closed under interleave, namely if ∀σ1, σ2 ∈ Γ

then interleave(σ1, σ2) ∈ Γ .

We model program integration as a function I : P×P−→P that given two programs

combines them into one. Let Var(P ) denote the variables of program P . We interpret

the notions of interleaving and separability in the context of program integration.

Definition 1 An integration function I : P × P−→P satisfies separability if for every

pair of programs Q and T with disjoint variables, i.e., Var(Q) ∩ Var(T ) = ∅, the set

of traces [[I(Q, T )]] ∈ ℘(Σ∗

Var(Q):Var(T )
) is closed for interleave.

This means that, when the integration function satisfies separability, the behaviors of

programs Q and T are kept separate and independent in the behavior of the integrated

program I(Q, T ). In other words an integration functions satisfies separability when it

does not add dependences between the programs it composes. Indeed, when we have

separability we believe that it is reasonable to assume that the behavior of I(Q, T )

restricted to Q coincides exactly with the behaviour of Q, namely that if I satisfies

separability then ∀Q, T ∈ P : πVar(Q)([[I(Q, T )]]) = [[Q]].
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The Malware Detection Problem. A malware detector can be modeled as a function

D : P × P → {true, false} that decides whether a program is infected with a malware

or a metamorphic variant of it. Given M,P ∈ P we denote with M →֒ P the fact

that program P is infected with malware M . An ideal metamorphic malware detector

should be both sound (never erroneously claim that a program is infected) and complete

(detect all metamorphic variants), namely it should satisfy the following:

D(M,P ) = true ⇔ ∃M ′ metamorphic variant of M : M ′ →֒ P

The weaker notions of relative soundness/completeness are used to certify soundness

and completeness of a given malware detector wrt a class of obfuscations [6] .

Definition 2 Let O be a set of obfuscations. A malware detector D is sound for O if

D(P,M) = true ⇒ ∃O ∈ O : O(M) →֒ P . A malware detector D is complete for

O if ∀O ∈ O : O(M) →֒ P ⇒ D(P,M) = true.

In the following we formalize the notion of infection in terms of program integration:

M →֒ P iff ∃T. [[P ]] = [[I(M,T )]]. Hence, the integration function I models infection

(we may have different infection functions). For instance, if the malware is a standard

file infector appending its code to a target file, then the integration is simply the con-

catenation of the codes involved and it would be modeled by an integration function

that satisfies separability.

Higher-order Abstract Noninterference. In order to model non-interference in code

transformations such as code obfuscation and metamorphism, we consider an higher-

order version of ANI, where the objects of observations are programs instead of values.

Hence, we have a part of a program (semantics) that can change and that is not observ-

able, and the environment which remains the same up to an observable property. The

function analyzed by HOANI is a program integration function, which takes the two

parts of the program and provides a program as result. The output observation is the

best correct approximation of the resulting program. Consider programs P ∈ P and the

corresponding semantics, i.e., [[P ]]. Hence, we define

η([[P1]]) = η([[P2]]) ∧ φ([[Q1]]) = φ([[Q2]]) ⇒ ρ([[I(Q1, P1)]]) = ρ([[I(Q2, P2)]]) (2)

Note that, the abstractions can be any abstract property on programs. In the follow-

ing, we consider HOANI for a particular family of abstractions, and in particular for

semantics’ bca. In other words, if we have ρ ∈ uco(℘(Σ)), then we consider ρρ ∈

uco(℘(Σ) m−→℘(Σ)) such that ρρ def

= λf. ρfρ [5]. By noting that, ρρ([[P ]]) = [[P ]]ρ

(defined in Sect. 2), we can rewrite Eq. 2 in the following HOANI notion:

[[P1]]
η = [[P2]]

η ∧ [[Q1]]
φ = [[Q2]]

φ =⇒ [[I(Q1, P1)]]
ρ = [[I(Q2, P2)]]

ρ (3)
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Example 1. Consider the following program fragments, where 10! = 3628800:

Q1 :

2

6

6

6

4

prod = 1; x = 1;

while x < 11 {

prod = prod · x;

x = x + 1};

Q2 :

2

6

6

6

4

prod = 10!; x = 11;

while x > 1 {

x = x − 1;

prod = prod/x};

P1 :

2

6

6

6

4

sum = 0; x = 1;

while x < 11 {

sum = sum + x;

x = x + 1};

P2 :

2

6

6

6

4

sum = 55; x = 11;

while x > 1 {

x = x − 1;

sum = sum − x};

Consider, as I (T = [[I]]) the integrating algorithm proposed by [8], providing the

following resulting programs:

I(Q1, P1) :

2

6

6

6

6

6

6

6

4

prod = 1; sum = 0;

x = 1;

while x < 11 {

prod = prod · x;

sum = sum + x;

x = x + 1};

I(Q2, P2) :

2

6

6

6

6

6

6

6

4

prod = 10!; sum = 55;

x = 11;

while x > 1 {

x = x − 1;

prod = prod/x;

sum = sum − x};

Consider the abstract domain ι ∈ uco(℘([−m,m])) of limited intervals, where m ∈ Z is

the maximal integer. In this case ι(x) = [min(x), max(x)]. Interval analysis is defined

in [3], with standard bca abstract interpretations for arithmetic operations on intervals:

⊙, ⊕, ⊖. Then we have that

[[Q1]]
ι = [[Q2]]

ι ∧ [[P1]]
ι = [[P2]]

ι =⇒ [[I(Q1, P1)]]
ι = [[I(Q2, P2)]]

ι

This HOANI property of the considered integration algorithm tells us that we can vary

the involved programs leaving unchanged the variables’ intervals without inducing any

variation in the interval analysis of the resulting program.

4 Malware detection by unveiling program dependencies

4.1 Abstract noninterference-based malware detector

In this section, we define a notion of malware detector inspired by higher order abstract

noninterference, let us call it ANIMD. The idea is that a program P is infected with a

possibly metamorphic variant of malware M if it is (semantically) equivalent, at least

up to an observation (program analysis), to the integration of a code segment T with

the code of the malware M . Formally, given ρ ∈ uco(℘(Σ∗

Var(P )
)):

ANIMDρ(M,P ) = true ⇔ ∃T ∈ P : [[I(M,T )]]ρ = [[P ]]ρ

Namely a program P is infected with a malware M if it behaves wrt ρ like a target

program T infected with malware M .
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Given a metamorphic engine ME we assume that it is possible to identify a seman-

tic property φ that is preserved by any code transformation generated by ME, while

each transformation changing φ cannot be generated by ME. This means that ME can

be modeled as a semantic property φ ∈ uco(℘(Σ∗

Var(M)
)) and that the set of all the

obfuscating transformations generated by ME can be formalized as follows:

Oφ =
{

O
∣∣∀P,Q ∈ P. [[P ]]φ = [[Q]]φ ⇔ P = O(Q)

}
.

This are exactly all and only the transformations used by the malware equipped with

ME as stealthing technique. We can either assume to know this property, or given a

set of metamorphic malware variants we can derive it and then use it to model the

metamorphic engine (possibly catching also unseen variants). First of all, let us rewrite

HOANI in the context of malware detector: by changing the version of the malware,

up to an observable property φ, the malware detector analysing ρ is not deceived by the

differences between the versions and recognize the same infection in both the analyzed

programs. Hence, we define HOANIφ
ρ :

[[M ]]φ = [[M ′]]φ =⇒ [[I(M,P )]]ρ = [[I(M ′, P )]]ρ (4)

At this point we study the precision of the malware detectors based on HOANI in terms

of soundness and completeness.

Theorem 2 (Soundness). Let Oφ =
{

O
∣∣∀P,Q ∈ P. [[P ]]φ = [[Q]]φ ⇔ P = O(Q)

}
,

then ANIMDρ is sound for Oφ whenever:

[[M ]]φ = [[M ′]]φ ⇐= [[I(M,P )]]ρ = [[I(M ′, P )]]ρ (5)

Theorem 3 (Completeness). If HOANIφ
ρ holds, then ANIMDρ is complete for Oφ.

4.2 Certifying and Training Malware Detectors.

In this section we discuss how we can exploit the HOANI framework in order to un-

derstand how we can certify the “power” of a malware detector in terms of the classes

of metamorphic engines unable to deceive it, and how we can do a training of malware

detectors starting from a class of obfuscation techniques characterizing a metamorphic

engine that we aim to defeat. In this way we could formally understand the relation be-

tween the metamorphic invariant property and the analysis performed by the detector.

The ANI framework allows to describe two transformations, one characterizing the

most concrete output observation unable to observe interferences, and the other charac-

terizing the maximal property that do not cause interference [7]. We believe that these

two transformations, once lifted high order, would provide exactly a way for certify-

ing and training malware detectors. The main difference between ANI and HOANI is

that while abstracting data means to consider properties of data, i.e., sets of values; ab-

stracting programs means to consider the best correct approximation of their semantics,

7



i.e., the abstraction of a function is a more abstract function instead of a set of func-

tions. This difference makes not so immediate to extend ANI from data to functions

and requires a deeper analysis of a higher-order notion of abstract non-interference.

Note that, because the domain transformers introduced for ANI [7] extended to the

definition above of HOANI would generate sets of programs and therefore of seman-

tics (i.e., functions), which in general represent program/semantics properties, we can

build a correspondence between semantic properties, i.e., sets of semantic functions,

and best correct approximations. In other words, we can always associate a best correct

approximation with any set of functions, while we can construct a set of functions cor-

responding to any given best correct approximation of a given function.

Certification: Given ρ in HOANI we can characterize the maximal amount of infor-

mation released φ. This property φ is non-redundant, i.e., any change of φ do cause

interference, and it is such that when it is invariant then there is no interference in the

observation ρ. Hence, if we start from a malware detector ANIMDρ, we can charac-

terize the most concrete property φ such that ANIMDρ is sound and complete for Oφ.

This means that ANIMDρ is sound and complete for any metamorphic engine whose

code transformations preserves at least φ

Training: Given a property φ the HOANI framework allows to characterize the most

concrete observation unable to observe interferences when the property φ is unchanged.

In other words, if we start from a set of obfuscations O, whose semantic invariant is the

property φ then we can characterize the most concrete ρ such that the corresponding

ANIMDρ is complete for O. Namely, we can modify the observation capability of the

malware detector depending in the class of obfuscation we aim to defeat.

4.3 What’s new in ANIMD?

In this section we compare the prosed ANIMD with the closest framework of semantic-

based malware detectors based on abstract interpretation [6]. The two approaches are

clearly related since both model the malware detector as parametric on the program

analysis that it is able to perform. Moreover, in both the approaches the malware code

has in some way to be separated by the original program and both the approaches

characterize classes of obfuscation techniques, those used by a metamorphic engine,

in terms of the invariant property left unchanged by the transformations. This means

that we can quite easily compare these two approaches. In particular, we show that

ANIMD generalize all these aspects by considering the best correct approximation of

the program semantics instead of the output abstraction, and by considering a generic

integration function instead of the trivial composition of programs. Hence, let us first

recall the basic definitions of the first semantic malware detector [6].

Semantic Malware Detector. The idea of [6] is to classify a program P as infected

by a possibly metamorphic variant of malware M if there exists a portion of P whose

8



abstract behavior corresponds to the abstract behavior of M . This implicitly assumes

that infection does not add dependences between the malware and the target program,

namely that the integration function that models infection satisfies separability. Given

ρ ∈ uco(℘(ΣVar(M))), we can rewrite the semantic malware detector of [6] as:

SMDρ(M,P ) = true ⇔ ∃Q, T ∈ P : [[P ]] = [[I(Q, T )]] ∧ ρ([[M ]]) = ρ([[Q]])

SMD vs ANIMD. Observe that SMDρ decides infection by comparing the abstraction

of the concrete semantics of programs, i.e., ρ([[M ]]) = ρ([[Q]]), while ANIMDρ decides

infection by comparing the abstract semantics of programs, i.e., [[I(M,T )]]ρ = [[P ]]ρ.

The abstraction of the concrete semantics and the abstract computation of the seman-

tics collapse when the abstract domain ρ is complete for the computation of program

semantics as shown by the following result.

Lemma 4. If f is complete for ρ, i.e., ρ◦f = ρ◦f◦ρ then we can apply the fix point

Kleene transfer, namely ρ lfpf = lfp ρ◦f◦ρ.

Thus, in order to compare SMDρ and ANIMDρ we have to assume the completeness

of the domain ρ for the semantic computation, i.e., ∀P ∈ P : ρ([[P ]]) = ρ(lfpFP ) =

lfpρ ◦ FP ◦ ρ = [[P ]]ρ.

Another difference between SMD and ANIMD is given by the computational do-

main that they consider: SMD observes properties of the behaviour of the malware,

while ANIMD properties of the behaviour of the whole infected program. Thus, in

order to understand their relation we define the following domain extension: Given

ρ ∈ uco(℘(Σ∗

Var(M)
)) we denote ρ̃ ∈ uco(℘(Σ∗

Var(M)
)) × uco(℘(Σ∗

Var(T )
)) any ab-

straction that is ρ on Var(M), i.e., ρ̃ = ρ × η where η ∈ uco(℘(Σ∗

Var(T )
)).

Theorem 5. Consider an integration function I that satisfies separability, two abstract

domains ρ and ρ̃ that are complete for the computation of program semantics and as-

sume that Equation 4 and Equation 5 hold, then SMDρ(M,P ) ⇔ ANIMDeρ(M,P ).

5 Conclusions and future works

In this work we have begun to investigate the possibility of exploiting the ANI theory

for detecting malware infection. To this end we have started to reason on an high order

version of the standard ANI framework that allows to reason on dependences and inter-

ferences among programs (instead of data). We have formalized the malware detection

problem in terms of HOANI and we have proved that the malware detector ANIMD

based on HOANI generalizes the semantic malware detector SMD proposed in [6]. An

interesting feature of ANIMD is that it is parametric on the infection strategy used by

the malware and that it can model possible interactions between the malware and the

target program. Another reason that makes our approach promising is the possibility to

9



develop systematic techniques for certifying and training malware detectors. This can

be done by lifting high order the ANI transformations that characterize respectively the

most concrete output observation unable to detect interferences, and the maximal prop-

erty that do not cause interference. Indeed, the ability of certifying the precision of a

given malware detector, and the possibility of deriving the best malware detector wrt

a metamorphic engine are two important challenges in the battle against metamorphic

malware. To this end we have to deeply understand and develop the HOANI theory

beyond ANIMD.

Based on these results, our goal is to develop a systematic strategy for the design of

the best malware detector for a given class of metamorphic code variants. To this end

we first need to develop a technique for learning the metamorphic engine ME that has

generated the considered malware variants. Next we have to characterize the invariant

property φ of all the generated variants in order to derive the observation property ρ

that characterizes detection for ANIMDρ. We believe that this theoretical identification

of the program property ρ that the malware detector should consider in order to handle

metamorphism for ME can given useful insight in the design and implementation of a

malware detector tool able to defeat ME.
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Abstract. We combine the static analysis techniques of Program Depen-
dence Graphs (PDG) and Dynamic Pushdown Networks (DPN) to im-
prove the precision of interference analysis for multithreaded Java pro-
grams. PDGs soundly approximate possible dependence between pro-
gram points in sequential programs through data and control dependence
edges. In a concurrent setting a third category of so-called interference
edges captures the potential interferences between memory accesses in
different threads. DPNs model concurrent programs with recursive proce-
dures, dynamic thread creation and nested locking. We use a lock-sensitive
analysis based on DPNs to remove spurious interference edges, and apply
the results to information flow control.

1 Information Flow Control for Multithreaded Java Programs

Information flow control (IFC) analyses check whether information about a
programs (secret) input can possibly flow to public output, e.g. if a secret value
is printed to console. A program is called non-interferent, iff it does not leak secret
information. Non-interference of a given program can be verified with a sound
static analysis that detects possible information flow through dependencies
and interference between program statements using PDGs [1]. If the analysis
detects no illegal information flow, it is guaranteed that during execution of the
program, an attacker observing the public output will learn nothing about the
secret input. However, depending on the precision of the analysis, there may
be false alarms, because the analysis reports spurious information flow that
is impossible during an actual execution of the program. Thus a main goal of
static non-interference analyses is to minimize the number of false alarms, by
improving analysis precision.

In the following example we show which false alarms may arise when a
multithreaded Java program is analyzed for non-interference. The program in
figure 1 does not leak information about the secret value secret to a public
visible output println and should be considered non-interferent: It contains
two threads, the main thread t0 and an instance of MyThread t1. Output to a
public visible channel only occurs through the two println statements in t0. At
a first glance it may seem possible that the value of secret is leaked, because t1



copies its value to shared variable x, but this is not the case. The first println
statement cannot leak the secret, because it is executed before t1 starts. Therefore
x cannot contain the secret value at this time. We call an analysis that can detect
the absence of this leak invocation-sensitive. The second println statement does
also not leak the secret, because of the synchronization through lock l. The lock
l is acquired in t0 before t1 is started. Due to this the write operation in t1 can
only be executed after t0 releases l again which only happens after the second
println. An invocation- and lock-sensitive analysis is able to detect this.

1 class MyThread extends Thread {

2 private Object l;

3 private int secret = 42;

4 private int x = 0;

5

6 public static void main() {

7 Object l = new Object();

8 MyThread t1 = new MyThread(l);

9 System.out.println(t1.x);

10 synchronized (l) {

11 t1.start();

12 System.out.println(t1.x);

13 }

14 }

15 public MyThread(Object l) {

16 this.l = l;

17 }

18

19 public void run() {

20 synchronized (l) {

21 x = secret;

22 }

23 }

24 }

Fig. 1: A non-interferent multithreaded Java program.

Therefore in practice even the very precise invocation-sensitive PDG-based
IFC analysis [1, 2] can only remove the first false alarm and does raise the
second one. We were able to remove this false alarm and proof the program
non-interferent by incorporating the results of a DPN-based analysis [3–6].

2 Concurrent Program Dependence Graphs

A PDG is a graph that captures the dependencies between statements in a
program. Each node corresponds to a statement and potential dependencies
between statements are represented by edges. In a sequential program, two
statements s1 and s2 may either be data dependent, when a s2 uses a value that
s1 has produced, or control dependent, when the outcome of s1 decides if s2 will
be executed. These dependencies are in general a sound overapproximation of
all dependencies that may occur during program execution. So whenever two
statements are not connected in the PDG, they will never depend on each other
during runtime and there is no information flow between them. Figure 2 shows
the PDG of the example program with all data and control dependencies that
may occur.



MyThead()

run()

main()

this.l = l

aquire l

release l

x = secret

l = new Object()

t1 = new 
MyThread(t)

println(t1.x)

aquire l

release l

t1.start()

println(t1.x)

call

spawn

Read/Write Interference

Data Dependence

Control Dependence

Thread t0

Thread t1

Fig. 2: The concurrent PDG of the program in Figure 1 that contains two spurious
interference edges

For concurrent programs, control and data dependencies do not suffice,
because they do not capture interference between different threads. Therefore
the concurrent PDG contains additional interference dependence edges. A write
and a read statement from two different threads are connected with an inter-
ference dependency, iff the value written may be read by the read statement.
The concurrent PDG in Figure 2 shows two interference dependencies between
both println statements and the statement that writes the value of variable x.
As previously mentioned, both of these interferences are spurious and can be
removed.

Giffhorn [2] proposes an invocation-sensitive but lock-insensitive may-hap-
pen-in-parallel (MHP) analysis that keeps track of thread creation and invoca-
tion through a dataflow analysis on the control flow graph. This algorithm is
able to detect that the first println statement may not happen in parallel with
the write operation on x, because the second thread t1 has not been started at this
time. The second interference dependence however is not removed, because the
algorithm does not consider locking.



3 Dynamic Pushdown Networks

In order to achieve lock-sensitivity, we model concurrent Java programs us-
ing Dynamic Pushdown Networks (DPN) [3–6]. DPNs can precisely model
concurrent programs with dynamic thread creation, unbounded recursion, syn-
chronization via well-nested locks and finite abstractions of thread-local and
procedure-local state. Execution trees [5] allow us to represent all the DPN’s lock-
sensitive executions using tree-automata. This allows to check for reachability
of configurations with tree-regular properties e.g. calculating MHP informa-
tion. Note that in the presence of locking MHP is not a sound criteria to remove
interference. In fact Giffhorn [2] defines that two statements may-happen-in-
parallel iff there exists two executions in which they are executed in opposite
order. Recent extensions of DPN-analysis [6] allow to iterate the execution tree
based technique and check whether critical configurations can be reached from
other configurations while retaining a tree-regular property. In particular, we
can check whether there exists an execution that executes the write to x first,
followed by one of the println statements without an intervening killing of
x. Since this is not the case, the DPN-based analysis will remove the spurious
second interference edge.

4 Implementation and Future Work

We have integrated the DPN based interference Analysis in the tool Joana[7].
Joana, based on the Wala framework, implements a flow-, object-, context-
sensitive IFC Analysis based on PDGs. Within the RS3 priority program, we
plan to integrate further analysis technique in order to further improve the
tools precision. In particular, we want to improve on the lock-detection analy-
sis, which in Java is difficult since any object can function as a lock. We plan to
use path conditions and linear invariants to detect further spurious information
flow. Analyses based on PDGs are typically whole-program analyses. In order
to deal with software consisting of several components, we implement modular
PDGs and methods for plugin-time analysis.

Acknowledgments. This work was funded by the DFG under the project IFC
for Mobile Components in the priority program RS3 (SPP 1496).

References

1. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs. International Journal
of Information Security 8(6) (December 2009) 399–422 Supersedes ISSSE and ISoLA
2006.

2. Giffhorn, D.: Slicing of Concurrent Programs and its Application to Information Flow
Control. PhD thesis, Karlsruher Institut für Technologie, Fakultät für Informatik
(2012)



3. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic net-
works of pushdown systems. In: CONCUR 2005. Volume 3653 of LNCS. Springer
(2005)

4. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Proceedings of the 21st International
Conference on Computer Aided Verification. CAV ’09, Berlin, Heidelberg, Springer-
Verlag (2009) 525–539

5. Gawlitza, T.M., Lammich, P., Müller-Olm, M., Seidl, H., Wenner, A.: Join-lock-sensitive
forward reachability analysis for concurrent programs with dynamic process creation.
In: Proceedings of the 12th international conference on Verification, model checking,
and abstract interpretation. VMCAI’11, Berlin, Heidelberg, Springer-Verlag (2011)
199–213

6. Nordhoff, B., Lammich, P., Müller-Olm, M.: Iterable forward reachability analysis of
Monitor-DPNs. Submitted for publication (2012)

7. Programming Paradigms Group, KIT: Joana (Java Object-sensitive ANAlysis) tool.
http://joana.ipd.kit.edu



Semantic-based Slicing through the use of

Program Contracts

Daniela da Cruz

Departamento de Informática
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Abstract. This extended abstract revisits the idea of slicing programs
based on their axiomatic semantics, rather than using criteria based on
control/data dependencies. It is shown how the forward propagation of
preconditions and the backward propagation of postconditions can be
combined in a new slicing algorithm that is more precise than the exist-
ing specification-based algorithms. The algorithm is based on (i) a precise
test for removable statements, and (ii) the construction of a slice graph,
a program control flow graph extended with semantic labels. It improves
on previous approaches in two aspects: it does not fail to identify remov-
able statements; and it produces the smallest possible slice that can be
obtained (in a sense that will be made precise). Although only the basic
concept of assertion-based slicing is present in this abstract, other topics
will be discussed along the presentation, such as: comparison with other
semantic-based slicing algorithms; tools that implement such algorithms;
and future work.

1 Introduction

Program slicing [1] is a well-established activity in software engineering. For
instance it plays an important role in program comprehension, since it allows
software engineers to focus on the relevant portions of code (with respect to
a given criterion). The basic idea is to isolate a subset of program statements
that: either directly or indirectly contribute to the values of a set of variables
at a given program location; or are influenced by the values of a given set of
variables.

Other statements are considered spurious with respect to the given criterion
and can be removed, enabling engineers to concentrate on the analysis of just
the relevant ones. The first approach corresponds to backward forms of slicing,
whereas the second corresponds to forward slicing.

Work in this area has focused on the development of progressively more
effective, useful, and powerful slicing techniques, and has led to the use of these
techniques in many application areas including program debugging, software
maintenance, software reuse, and so on. See for instance [2] for a fairly recent
survey of the area.



Program verification is an apparently unrelated activity whose goal is to es-
tablish that a program performs according to some intended specification. Typ-
ically, what is meant by this is that the input/output behaviour of the imple-
mentation matches that of the specification (this is usually called the functional
behaviour of the program), and moreover the program does not ‘go wrong’, for
instance no errors occur during evaluation of expressions (the so-called safety
behaviour). Modern program verification systems are based on algorithms that
examine a program and generate a set of verification conditions that are sent
to an external theorem prover for checking. If all the conditions generated from
a program can be proved, then the program is guaranteed to be correct with
respect to the specification.

There are several points of contact between slicing and verification: first,
traditional syntactic slicing, applied a priori, facilitates the verification of large
programs. Secondly, and this is what concerns us in this paper, it makes sense
to slice programs based on semantic, rather than syntactic, criteria, and the
contracts used in DbC and program verification are excellent candidates for
such criteria. A third point (see Section 6) is that there is evidence that this
kind of slicing can also be of help in the verification of large programs.

The expression “assertion-based slicing” is used here to refer to slicing meth-
ods based on the axiomatic semantics of programs, taking as criteria asser-
tions (preconditions and/or postconditions) annotated in the programs. This
includes precondition-based slicing, postcondition-based slicing, and specification-
based slicing. The latter expression has been used in previous work when both
a precondition and a postcondition (i.e. a specification) are given as criteria.

The paper introduces new ideas which allow the development of an algo-
rithm for specification-based slicing that improves on previous algorithms in
two aspects: the identification of sequences of statements that can be safely re-
moved from a program (without modifying its semantics), and the selection of
the biggest set of such sequences. Note that removable sequences may overlap,
so this is not a trivial problem. This algorithm produces minimal slices (in the
sense that will be made precise afterwards).

Structure of the Paper Section 2 introduces the simple language considered in the
paper, and sets down the definitions of weakest precondition and strongest post-
condition. Section 3 formalizes the basic notions of precondition-, postcondition-
and specification-based slicing used in the rest of the paper. The following sec-
tions introduce a new test for identifying removable chunks of code (Section 4),
and a graph-based algorithm for actually computing the best possible slices of
a program with respect to a given specification (Section 5). The paper ends in
Section 6 with a summary and some topics that will be explored in the talk.



Exp[int] ∋ e ::= . . . | −1 | 0 | 1 | . . . | x |
−e | e + e | e − e | e ∗ e | e div e | emod e

Exp[bool] ∋ b ::= true | false | e = e | e < e | e ≤ e | e > e |
e ≥ e | e 6= e | b ∧ b | b ∨ b | ¬ b

Assert ∋ A ::= true | false | e = e | e < e | e ≤ e | e > e |
e ≥ e | e 6= e | A ∧ A | A ∨ A | ¬A |
A → A | ∀ x.A | ∃ x.A

Comm ∋ C ::= skip | x := e | if b then S else S |
while b do {A}S

Prog ∋ S ::= C | C ; S
Spec ∋ P ::= {A}S {A}

Fig. 1. Language syntax

2 The Language, Weakest Preconditions and Strongest

Postconditions

To illustrate the ideas the syntax in Figure 1 for a core imperative language
will be used. Programs are non-empty sequences of commands; Specifications
are programs annotated with preconditions and postconditions.

Please note that the choice of language is not important, and the ideas dis-
cussed scale up to realistic languages; the only crucial requirements are the
existence of an axiomatic semantics (definitions of weakest precondition and
strongest postcondition), and an external proof tool that is capable of reasoning
about the data structures that are present in the language. To illustrate the ideas
presented along the paper it will be used a very simple language with integer
variables only; the syntax of assertions (used as preconditions, postconditions,
and loop invariants) is obtained as an extension of boolean expressions with
first-order quantification.

The notions of weakest precondition and strongest postcondition are certainly
among the most important and popular in programming semantics. For such a
simple language, there is a nice symmetry between them, and both can be used to
calculate proof obligations (usually called verification conditions) when verifying
the correctness of programs. The former is however much more widely used in
verification tools, because of the absence of quantifiers. The definition of both
notions for our language is given in Figure 2.

Notation Let S = C1 ; . . . ; Cn, 1 ≤ k ≤ n, and 1 ≤ i ≤ j ≤ n. It will be
used the following notation for the weakest precondition of a suffix of S; the
strongest postcondition of a prefix of S; and the sequence obtained by removing
a subsequence of S.

– wpk(S,Q)
.
= wp(Ck ; Ck+1 ; . . . ; Cn, Q)

– wpn+1(S,Q)
.
= Q

– sp0(S, P )
.
= P

– spk(S, P )
.
= sp(C1 ; . . . ; Ck−1 ; Ck, P )



wp(skip, Q) = Q

wp(x := e,Q) = Qx
e

wp(C1;C2, Q) = wp(C1,wp(C2, Q))
wp(if b then Ct else Cf , Q) = (b → wp(Ct, Q))

∧ (¬ b → wp(Cf , Q))
wp(while b do {I}C,Q) = I

sp(skip, P ) = P

sp(x := e, P ) = ∃ v. P x
v ∧ x == exv

sp(C1;C2, P ) = sp(C2, sp(C1, P ))
sp(if b then Ct else Cf , P ) = sp(Ct, b ∧ P )

∨ sp(Cf , ¬ b ∧ P )
sp(while b do {I}C,Q) = I ∧ ¬ b

Fig. 2. Definition of weakest precondition and strongest postcondition. Qx
e denotes the

result of substituting e for x in Q; I is a loop invariant.

– remove(i, j, S)
.
=

{

skip if i = 1 and j = n,

C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn otherwise.

3 Assertion-based Slices

In this section the different notions of precondition-based slicing, postcondition-
based slicing and specification-based slicing are formalized. A program S′ is
a specification-based slice of S if it is a portion of S (a syntactic notion, also
known as a reduction of S) and moreover S can be refined to S′ with respect
to a given specification (a semantic notion). The notions of precondition-based
and postcondition-based slice can be defined as special cases of this notion.

Definition 1 (Assertion-based slices). Let S be a correct program with re-
spect to the specification consisting of precondition P and postcondition Q. The
program S′ is said to be

– a specification-based slice of S with respect to (P,Q), written S′ ⊳(P,Q) S, if
S′ � S (S’ is a portion of S) and S′ is also correct with respect to (P,Q);

– a precondition-based slice of S with respect to P if S′ ⊳(P,sp(S,P )) S;
– a postcondition-based slice of S with respect to postcondition Q if S′⊳(wp(S,Q),Q)

S.

Incidentally, note that the names precondition- and postcondition-based slice
are not entirely adequate for describing the notions known under these names.
They would more accurately be described as condition-based forward and back-
ward slice, respectively, which not only establishes a correspondence with the



two classic approaches to syntactic slicing, but also highlights the fact that con-
ditions may be propagated even when preconditions or postconditions are not
present. An example is a program that starts with an assignment x := c with c a
constant. Even without an informative precondition, forward slicing will use the
information x = c, calculated as the strongest postcondition of the command,
and then propagated forward.

In this paper it is proposed a solution to the problems raised by previous
versions of specification-based slicing algorithms, in the form of an optimal slicing
algorithm. The algorithm builds on two basic ideas, that will be explained in the
next two sections. In abstract terms, any slicing algorithm based on the axiomatic
semantics of programs must be able to

1. Identify subprograms that can be removed from the program being sliced,
without modifying its semantics. More concretely, given a program S =
C1 ; . . . ; Cn with specification (P,Q), some test is used to allow the al-
gorithm to decide if remove(i, j, S) ⊳(P,Q) S holds. It was shown that the
algorithm of [3] fails to identify some subprograms; In Section 4 it will be
shown that using preconditions and postconditions simultaneously allows for
a precise identification of removable subprograms.

2. Select, among the subprograms identified as removable, the combination that
produces the smallest sliced program. In Section 5 it will be shown that this
may be reduced to a graph problem that can be solved by applying standard
algorithms.

The algorithm can be applied to calculate precondition-, postcondition-, and
specification-based slices. One concentrate on the latter case, since the first two
are particular cases as shown before. Note that the resulting algorithm is optimal
in a relative sense only. The test for removable subprograms involves first-order
formulas whose validity must be established externally by some proof tool. Un-
decidability of first-order logic destroys any hope of being able to identify ev-
ery removable subprogram automatically, since some valid formulas may not be
proved.

4 Removable Subprograms

One start by considering programs without iteration and postpone the discussion
of loops to the end of the section. For such programs the following lemma is
straightforward to prove:

Lemma 1. For every precondition P , postcondition Q, and program S,

1. |= P → wp(S, sp(S, P ))
2. |= sp(S,wp(S,Q)) → Q

3. |= P → wp(S,Q) iff |= sp(S, P ) → Q

Each of the implications mentioned in the third item in fact corresponds to the
verification condition for the program S: it suffices to check the validity of this
condition to ensure that S is correct with respect to the specification (P,Q).



In this section one consider the following problem: given a specification and a
program S correct with respect to it, how can it be decided if some subsequence
of S can be removed, resulting in a program that is still correct with respect
to the specification, i.e. it is a specification-based slice of S? Note that one are
not asking if the sequence should be sliced (since this could prevent the minimal
slice from being obtained); that question is left to the next section.

The following lemma establishes the implications that are valid among the
calculated preconditions and postconditions calculated for a subsequence of a
given correct program.

Lemma 2. Let (P,Q) be a specification; S = C1 ; . . . ; Cn a program such that
|= P → wp(S,Q), and i, j, k integers such that 1 ≤ i ≤ j ≤ n and 0 ≤ k ≤ n.
Then

1. |= spk(S, P ) → wpk+1(S,Q)
2. |= spi−1(S, P ) → wp(Ci ; . . . ; Cj ,wpj+1(S,Q))

Observe that spi−1(S, P ) and wpj+1(S,Q) can be seen respectively as the strongest
precondition and the weakest postcondition calculated for the sequence Ci ; . . . ; Cj

w.r.t. the specification (P,Q). Their significance is that, according to the follow-
ing proposition, they can be used to decide exactly when the sequence Ci ; . . . ; Cj

can be sliced off.

Proposition 1. In the conditions of the previous lemma,

|= spi−1(S, P ) → wpj+1(S,Q) iff remove(i, j, S) ⊳(P,Q) S

Note that the following are implications but not equivalences:

|= wpi(S,Q) → wpj+1(S,Q) implies
|= P → wp(remove(i, j, S), Q)

|= spi−1(S, P ) → spj(S, P ) implies
|= P → wp(remove(i, j, S), Q)

Both conditions would also imply S′ ⊳(P,Q) S. However, note that the latter
conditions are both stronger than the one in the proposition (as a consequence
of Lemma 2(1)), which means that using them as tests would not allow for all
removable subprograms to be identified.

For commands containing sequences of commands, illustrated here with con-
ditional, the following proposition states that slicing both branches results in
a slice of the structured command. It suffices to propagate the postcondition
inside both branches, as well as the precondition strengthened with the boolean
condition and its negation, respectively.

Proposition 2. If S′
t ⊳(P∧b,Q) St and S′

f ⊳(P∧¬ b,Q) Sf , then

if b then S′
t else S′

f ⊳(P,Q) if b then St else Sf



The treatment of loops introduces a few subtleties. First, if S contains loops
the implication |= P → wp(S,Q) is no longer the only verification condition:
other conditions must be introduced related to the preservation of the loop in-
variant, as well as its relation with the loop’s desired postcondition (or precondi-
tion, if strongest postconditions are used). The notion of refinement, required by
the definition of specification-based slicing, will now incorporate the preserva-
tion of these additional conditions. Moreover, in a total correctness setting other
conditions are involved, regarding the strictly decreasing value of a loop variant.
Slicing the body of a terminating loop should not result in a non-terminating
loop, which is granted by the preservation of the verification conditions involving
the loop variant. Full details will be given in the presentation of this paper.

5 Slice Graphs

Below it is introduced the notion of control graph for a program, labeled with
respect to a given specification, and the notion of slice graph, in which removable
sequences of commands will be associated with edges added to the initial control
flow graph.

Definition 2 (Labeled Control Flow Graph). Given a program S, precon-
dition P and postcondition Q such that S = C1 ; . . . ; Cn, the labeled con-

trol flow graph LCFG(S, P,Q) of S with respect to (P,Q) is a labeled directed
acyclic graph (DAG) whose edge labels are pairs of logical assertions on program
states. To each command C in the program S one associate an input node IN (C)
and an ouput node OUT (C).

The details about the graph construction can be found in [4].
Informally, the idea is that the label of an edge Ci −→ Cj represents the

strongest postcondition spi(S, P ) of (the sequence ending with) the command
Ci and the weakest precondition wpj(S,Q) of (the sequence beginning with) the
command Cj , calculated from the initial specification (P,Q) taking into account
the structure of the program.

It is crucial that sequences that are branches of a conditional are generated
using the appropriate strongest postcondition and weakest precondition, in ac-
cordance with Proposition 2. The same applies to the body of loop commands.
This means that the graph is annotated exactly with the strongest postcondi-
tions and weakest preconditions that are calculated recursively throughout the
structure of the graph, following the definition of Figure 2. The labelled CFG
can thus be seen as a “verification graph” for a program; in particular, the pro-
gram is correct if |= P → wp1(S,Q), where (P,wp1(S,Q)) is the label of the
outgoing edge from the START node or equivalently if |= spn(S, P ) → Q, where
(spn(S, P ), Q) is the label of the incoming edge into the END node.

An algorithm for constructing the graph could first build the unlabeled graph
from the syntax tree of the program, then assign the first component of the labels
by traversing the graph from START to END , and finally assign the second
component by traversing the graph in the reverse direction. Note that the label



of each edge can be calculated locally from the labels of the (one or two) previous
edges. In particular, note that for 1 ≤ k ≤ n,

spk(S, P ) = sp(Ck, spk−1(S, P ))
wpk(S,Q) = wp(Ck,wpk+1(S,Q))

The worst-case execution cost of constructing the graph is apparently linear
on the program size. However, weakest preconditions are potentially of exponen-
tial size on the length of the program [5], so this is not so. Fortunately this size
can be corrected to quadratic (see Section 6).

Definition 3 (Slice Graph). Consider a program S and a specification (P,Q)
such that |= P → wp(S,Q) (in which case one assume loops are not annotated
with variants). The slice graph SLCG(S, P,Q) of S with respect to (P,Q) is ob-
tained from the labeled control flow graph LCFG(S, P,Q) by inserting additional
edges as follows.

Let Ŝ = Ĉ1 ; . . . ; Ĉm be any maximal sequence of commands in S, i.e. Ŝ is
a branch of a conditional command in S, or the body of a loop command in S, or
else Ŝ = S. Then for any two edges (Ĉi−1, Ĉi) with label (spi−1(S, P ),wpi(S,Q))

and (Ĉj , Ĉj+1) with label (spj(S, P ),wpj+1(S,Q)) in LCFG(S, P,Q) such that
i < j, if |= spi−1(S, P ) → wpj+1(S,Q),

– if i 6= 1 or j 6= m, an edge (Ĉi−1, Ĉj+1) with label (spi−1(S, P ),wpj+1(S,Q))
is inserted;

– otherwise if i = 1 and j = m a new skip node is inserted in the graph,
together with two edges (Ĉi−1, skip) and (skip, Ĉj+1), both with label
(spi−1(S, P ),wpj+1(S,Q)).

The time required to insert the additional edges into the graph is again
quadratic on the length of the program, since for each sequence of commands
it is necessary to generate slicing conditions for every pair of edges such that
the first precedes the second in the graph. Note that this presupposes that the
external theorem prover checks the validity of formulas in constant time, which
is a reasonable assumption since automatic tools are typically used with a time
out limit, after which a condition is treated as invalid. Also, the construction
depends on the particular external tool used to decide which edges should be
inserted, and may in fact result in different graphs if different tools are used.

As an example, Figure 3 shows the slice graph for the program in Listing 1.1
with respect to the specification (y > 10, x ≥ 0). It is clear that removable
sequences are signaled by the edges (and possibly skip nodes) that are added
to the initial labeled CFG. The following proposition states that all admissible
slices are represented in the slice graph.

Proposition 3. Let S′ � S. Then S′⊳(P,Q)S iff the control flow graph LCFG(S′, P,Q)
is a spanning subgraph (i.e. a subgraph with the same set of nodes) of the slice
graph SLCG(S, P,Q).



i f ( y > 0) then x := 100 ;
x := x+50;
x := x−100

else x := x−150;
x := x−100;
x := x+100

Listing 1.1.

Thus for any given sequence of commands σ inside S, the graph contains a
path that represents every subsequence σ′ of σ such that substituting σ′ for σ

results in a slice of S. The slice graph represents the entire set of specification-
based slices of S, and obtaining the minimal slice is simply a matter of selecting
the shortest subsequences using the information in the graph.

Slicing Algorithm The notion of minimal slice with respect to a given slice graph
is simply given by a read-back from the graph to the program. For each command
sequence represented in the graph, one apply a shortest paths algorithm (basi-
cally a breadth-first traversal, linear on the size of the graph) to find a minimal
slice of that sequence. Nodes that are not traversed correspond to commands
that can be removed. This notion of minimality is relative since it is meant with
respect to a slice graph: the proof tool may have failed or timed out in checking
some valid conditions (and signaling them in the graph); the resulting slice will
thus only be as good as the graph.

Slicing a loop involves slicing the loop’s body recursively, with respect to
the specification (I, I ∧ ¬ b)). Note however that the usefulness of this approach
may be limited without human intervention. If the program is being sliced with a
specification that has been weakened with respect to an initial, full specification,
it makes sense to weaken the loop invariant accordingly, otherwise slicing the loop
may result in no commands being removed at all inside its body.

6 Conclusion

Assertion-based slicing is more powerful and flexible than syntactic slicing, since
the criteria can be as expressive as any set of first-order formulas on the initial
and final states of the program. One of the first forms of slicing based on program
semantics was conditioned slicing [6], a form of forward slicing. This was shown
to subsume both static and dynamic notions of syntax-based slicing, since the
initial state of execution is constrained by a first-order formula that can be
used to constrain the set of different admissible initial states to exactly one
(corresponding to dynamic slicing), or simply to identify a relevant subset of
the state to be used as slicing criterion (as in static slicing). The same applies
to backward slicing: using a postcondition as slicing criterion instead of a set
of variables is clearly more expressive. Naturally, this expressiveness comes at a
cost, since semantic forms of slicing are harder to compute.



Fig. 3. Example slice graph. Thick lines represent edges that were added to the initial
CFG, corresponding to “shortcut” subprograms that do not modify the semantics of
the program. These paths have the same source and destination nodes as other longer
paths corresponding to removable sequences

GamaSlicer [7] is a tool developed for experimenting the previous versions
of specification-based slicing algorithms and also the new algorithm proposed in
this paper. The user can choose between different precondition-based, postcondition-
based, and specification-based slicing algorithms; the tool also offers standard
verification capabilities (verification condition generation) and a visual represen-
tation of the LCF graphs introduced in the paper.

While the front-end is meant to allow for experimentation and comparison of
different algorithms, one intend to optimize and test the graph-based algorithms
with realistic code. One obligatory step will be to calculate weakest preconditions
using Flanagan and Saxe’s algorithm [5], which avoids the potential exponential
explosion in the size of the conditions generated, keeping our algorithm within
quadratic time.

Along the presentation, the main topic (assertion-based slicing) will serve
as motto to compare this new concept with existing semantic-based slicing al-
gorithms. Also, the adaption of this algorithm to work with passive programs
will be discussed, since there are interesting challenges when considering such
kind of programs (GamaBoogie was developed to slice Boogie programs in its
passive form). Future work and improvements will be discussed: it will be inter-



esting to compare the present approach with the work of Fox and colleagues [8],
who introduced the backward conditioning technique, based on symbolic execu-
tion. The goal of this related approach is to remove from a program statements
which, when executed, always lead to the negation of a given postcondition. The
interest of this work is that it indicates that the interaction between slicing and
verification happens in both directions: verification offers the tools used for im-
plementing assertion-based slicing (of correct programs), but slicing can also be
used to facilitate program verification.

Finally, it will be emphasized that the notion of control flow graph labeled
with semantic information has a broader usefulness and may have other appli-
cations in program analysis, verification, and of course visualization.
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Abstract. Recently a unifying theory of control dependence has been
developed that handles arbitrary control flow graphs. In particular, it
no longer requires a single entry, nor a single exit point of the control
flow graph. While the authors presented algorithms that compute weak
and strong control closures, representing the transitive hull of control
dependence, their worst-case complexity contains third and fourth degree
polynomials, which makes them too expensive for realistic programs.
This paper presents an algorithm that efficiently computes both weak
and strong control dependence, with an amortized worst case complexity
in O(N log N) and O(N(log N)2).

Keywords: Control dependency, program slicing

1 Introduction

In program analysis terms, there are two major sources of interference: data
dependence and control dependence. There exists a data dependence between
two operations of a program, if there exists an execution where one operation
computes a value that the other uses. This notion is also known as explicit

flow in the information flow control literature. The other source of interference
emerges if one operation of a program controls whether or how often another
operation executes, which is represented as a control dependence between those
two operations. This notion is called implicit flow for information flow analyses.
Research proposed several definitions of control dependence, some of which are
known to be equivalent, others extensions to programs with more relaxed notions
of the control flow graph, which is a typical program representation. On top of
this, there is another dimension of control dependence, namely whether it takes
program termination into account or ignores it.

Recently, a unifying theory of control dependence was presented [1], which
subsumes all the previous definitions and comes in only two variants: termination-
sensitive and termination-insensitive. As this theory is based on a general notion
of control flow graph, there is hope that these definitions are general enough to
be applicable to all programing paradigms.

In contrast to many previous definitions, Danicic et al. define the underlying
semantics for control dependence as relations between graphs called weak and
strong projection, and show that the graph induced by a slicing criterion (which is
a set of vertices) is a weak/strong projection of the original graph iff the induced
graph is weakly/strongly closed under their definition of control dependence.
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Fig. 1. Example control flow graph, criterion darkly shaded, closure lightly

Danicic et al. [1] present algorithms to compute weak and strong control
closures, however their worst case complexity of O(N3) and O(N4), where N

is the number of operations of a program is prohibitive for program analysis,
especially when programs can reach millions of lines of code. In contrast, tradi-
tional non-termination-sensitive control dependence on a single-entry-single-exit
control flow graph can be computed in almost linear time in the size of the pro-
gram [2,3]. So in order to make the new theory applicable to realistic software,
more efficient algorithms need to be found.

This contributions of this paper are two variants of an algorithm that effi-
ciently computes weak and strong control closures. We conjecture a worst case
complexity in O(N log N) for weak and O(N(log N)2) for strong control clo-
sures. Therefore, both forms of control closure computation are therefore widely
applicable even for large program sizes. This work, however, is still in progress,
and do not yet provide a proof of complexity or correctness.

2 Weak and Strong Control Closures

The new forms of control closures are defined on a very general form of the
control flow graph G = (V, E, β) where (V, E) is a directed graph and the vertex
set V is partitioned into predicates P and non-predicates N . The edge labeling
function β : E → P(T, F ) has the following properties:

1. ∀x ∈ P : outdegree(x) ≤ 2 ∧ ∀(x, y) ∈ E : β(x, y) 6= ∅
2. ∀x ∈ N : outdegree(x) ≤ 1 ∧ ∀(x, y) ∈ E : β(x, y) = ∅
3. ∀p ∈ P, (p, y), (p, z) ∈ E : x 6= y =⇒ β(p, y) ∩ β(p, z) = ∅
4. A special vertex end of out-degree 0 may be present to represent normal

termination.

As an example, consider Fig. 1, which is a traditional CFG with distin-
guished start and end vertices. Danicic et al. show that the traditional control
slice of the criterion {g, h} is equivalent to the weak control closure with crite-
rion {start, end, g, h}. This traditional slice would contain both predicates. The
control closure of {start, g, h}, however, only contains p0, as only this node de-
termines whether g or h will be executed. Their paper also provides Algorithm 1



Algorithm 1: computing minimal weak control closures

Input: slicing criterion V ′

Result: its minimal weak control closure X

X = V ′;
while ∃ (p, v) ∈ E : V ′ →∗ p ∧ |Θ(G, X, v)| = 1 ∧ |Θ(G, X, p)| ≥ 2 do

X = X ∪ {p};

to compute control closures, where Θ(G, X, v) is the set of first-reachable ver-
tices from v to X in G, i.e. the set of vertices in X that are reachable from v

in the subgraph of G where all outgoing edges from any vertex in X have been
deleted1. In particular, we interpret this definition as Θ(G, V ′, v) = 1 for any
v ∈ V ′.

In the graph of Fig. 1, for V ′ = {start, g, h} we have Θ(G, V ′, p0) = 2, as
p0 can reach both g and h directly, Θ(G, V ′, p1) = 1 as it can only reach h.
As p0 is also reachable from start, the algorithm adds p0 to X. Now ∀x ∈ V :
Θ(G, X, x) ≤ 1 and the algorithm terminates.

For V ′ = {start, end, g, h} we have Θ(G, V ′, p0) = 3, Θ(G, V ′, p1) = 2,
and Θ(G, V ′, k) = 1. Thus, we add p1 to X which yields Θ(G, X, p0) = 2,
Θ(G, X, p1) = 1. After adding p0 to X the algorithm terminates.

Danicic et al. argue that this algorithm is in O(N3), as the while loop can
execute N times, the existence test may check |E| edges, and the computation
of Θ is in O(N).

2.1 Strong Control Closure

Based on that definition, algorithm 2 is presented to compute that function. This
algorithm is in O(N2) as it executes at most |E| iterations and needs to check |E|
edges in each. Consider Fig. 2, where vertex k has a self-loop. Γ (G, {start, g, h})
removes the edge (p1, h) such that p1 becomes a non-predicate. It also removes

1 [1] states that this subgraph is a CFG, however, it might no longer be connected

Algorithm 2: Original algorithm for computing gamma

Input: V ′

X = V ′;
while ∃ (y, x) ∈ E : x ∈ X ∧ y 6∈ X do

E = E \ (y, x);
if ∃(y, z) ∈ E : z 6= x then

P = P \ {z}; N = N ∪ {z}

else if y ∈ N then
X = X ∪ {y}

Γ = V \ X
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Fig. 2. Example control flow graph, criterion shaded darkly, strong closure shaded

Algorithm 3: computing minimal strong control closures

Input: slicing criterion V ′

Result: its minimal strong control closure X

X = V ′;
while ∃ (p, v) ∈ E : V ′ →∗ p ∧ |Θ(G, X, v)| = 1 ∧ v 6∈ Γ (G, X)

∧(|Θ(G, X, p)| ≥ 2 ∨ p ∈ Γ (G, X)) do

X = X ∪ {p};

(p0, g), which makes p0 another non-predicate. Then the algorithm terminates
and Γ (G, {start, g, h} = {p0, p1, k, m, end}.

The original algorithm to compute strong control closures is very similar to
the one for weak control closures. Basically, it just requires a new function Γ

which is defined as follows:

Definition 1. Let G = (V, E) be a finite directed graph and let V ′ ⊆ V . We

define Γ (G, V ′) to be the set of all x ∈ V that lie on a complete path in G which

does not pass through V ′. A complete path is either an infinite path or a finite

path whose last vertex is final. A final vertex is either a non-predicate vertex of

out-degree 0 or an incomplete predicate, i.e. a predicate whose union of outgoing

edge labels is not {T, F}.

Consider Fig. 2, where vertex k has a self-loop. In contrast to the weak
control closure of V ′ = {start, g, h}, the strong control closure contains p1, as
this predicates whether the program terminates or goes into an infinite loop.
Algorithm 3 reflects this by the additional constraints of the while loop (as
opposed to Algorithm 1.) For the edge (p1, h), we have h 6∈ Γ (G, V ′) but p1 6∈
Γ (G, V ′), which adds p1 to X.

3 An Efficient Algorithm

The main ideas behind the efficient algorithm presented in this section are:
1. Computing Θ(G, X, ·) can be done in O(N), i.e. Θ(G, X, y) can be computed

in constant amortized time.



Algorithm 4: computing Θ

Input: slicing criterion V ′

Result: Θ(G, V ′, ·)
foreach n ∈ V ′ do

remove all outgoing edges of n

foreach vertex finishing in a DFS do

if vertex ∈ V ′ then

fr = fr ∪ (vertex 7→ {vertex});
Θ(G, V ′, vertex) = 1;

else

nodes = ∅;
foreach n ∈ succ(vertex) do

nodes = nodes ∪ fr(n);

fr = fr ∪ (vertex 7→ nodes);
Θ(G, V ′, vertex) = |nodes|;

foreach set ∈ stronglyConnectedSets(G) do

theta = maxn∈set(theta(n));
foreach Node node : set do

Θ(G, V ′, node) = theta;

set the theta of all vertices not reachable from V ′ to 0;

Algorithm 5: computing the component graph

Input: Graph G

Result: Component Graph G′

G′ = new DirectedAcyclicGraph();
componentOf = ∅;
foreach set ∈ stronglyConnectedComponents(G) do

create new component node n;
n.nodes = set;
add vertex n to G′;
foreach Node node : set do

componentOf = componentOf ∪ (node 7→ n);

foreach node ∈ G do

from = componentOf(node);
foreach s ∈ succ(node) do

to = componentOf(s);
if from 6= to then

add edge (from, to) to G′;

return G′;



Algorithm 6: computing weak control closures

computeTheta(V );
computeComponentGraph();
compute reverse topological sorting in the component graph;
assign each vertex the corresponding number of previous step;
pq = new PriorityQueue() sorted according to this number;
foreach n : V do

n.diff = 0;
add n to pq;

X = V ;
while pq is not empty do

v = remove vertex from pq;

Θδ = v.diff ;
foreach p ∈ predecessors(v) do

if p 6∈ X then

if Θ(G, X, p) − Θδ ≥ 2 ∧ (Θ(G, X, v) − Θδ = 1 ∨ v ∈ X) then

X = X ∪ p;
diff = Θ(G, X, p) − 1;
Θ(G, X, p) = 1;
p.diff = diff ;
add p to pq;

else

p.diff = Θδ;
add p to pq;

return criterion;

2. If (x, y) ∈ E, outdegree(x) = 1 then Θ(G, X, x) = Θ(G, X, y)
3. Adding a vertex to X in the computation of Θ can only change (transi-

tive) predecessors of that vertex, so the computation of Θ should be done
“backwards”.

First, we describe the algorithm to compute Θ(G, X, ·) in linear time (see
Algorithm 4). After removing outgoing edges from the criterion nodes, we do
a depth first search on the graph, and propagate the first-reachable vertices of
V ′ backwards whenever a vertex has been fully processed (second foreach loop).
Then we use the observation that all vertices in a loop of the pruned CFG have
the same Θ value, so we set it to the maximum determined in that loop. Finally,
vertices not reachable from V ′ are assigned a Θ of 0, so they will not satisfy the
predicate of Algorithm 1.

We use reverse topological order to compute the control closure “backwards”,
however, reverse topological order is only defined for directed acyclic graphs, so
we fold the CFG to its component graph, where all strongly connected compo-
nents are represented by a single vertex. Since the component graph is acyclic,
we can determine its reverse topological order and propagate the order number



Algorithm 7: incrementally computing gamma

Input: update, the set of vertices to add to X

pq = new PriorityQueue() using reverse topological sorting;
foreach n : update do add n to pq;
while pq is not empty do

v = remove vertex from pq;
foreach edge ∈ incomingEdgesOf(v) do

p = edge.from;
if p 6∈ X then

remove edge from GΓ ;

if GΓ .outDegreeOf(p) > 0 then N = N ∪ {p};
else if N .contains(p) then

X = X ∪ p;
Γ = Γ \ p;
add p to pq;

Γ = Γ \ update

of the component to all vertices it represents. This means that vertices of one
component will be processed with the same priority. Algorithm 5 shows one way
to compute a component graph in linear time.

Now we are ready to compute the weak control closure as depicted in Al-
gorithm 6. The vertices of V ′ are added to a priority queue according to their
reverse topological order number. Then we process the vertices in that order, go-
ing through all their predecessors to check the predicate defined in the original
algorithm (other than reachability from V ′, which we included in Θ.) However,
as we need to account for a changing Θ based on the changes to X, we propagate
a difference between a vertex’ original value of Θ and the new value based on
the changes to X, named Θδ in the algorithm. Here, we are only interested in
propagating the differences in straight-line code. If a Θ(G, X, v) is not available
for a particular X we resort to the value of Θ(G, X, v) − Θδ. When a vertex is
added to X we also add it to the priority queue.

3.1 Strong Control Closures

The original algorithms for computing weak and strong control closures only
differ in a predicate based on the value of Γ . This is also reflected in our al-
gorithm (see Algorithm 8), which only differs in this predicate and additionally
needs to recompute Γ incrementally every time a new vertex is added to X.
As the algorithm to compute Γ (depicted in Algorithm 7) modifies the control
flow graph, our algorithm clones that graph to GΓ . Again, determining Γ in
reverse topological order allows to reduce the complexity class from O(N2) to
O(N log N), as we have to walk through all vertices in that order. On top of
that, this algorithm can be computed incrementally, such that when we add a



vertex to X during the computation of the control closure, we only need to up-
date the graph for this single element. This update may, however, modify the
complete graph as demonstrated by the inner foreach loop. Yet, once all vertices
have been processed, subsequent increments will have no more work to do and
thus execute in constant time. So this algorithm has an amortized worst case
complexity in O(N log N).

As mentioned earlier, Algorithm 8 only differs from Algorithm 6 in the pred-
icate and code blocks that compute and update Γ (G, X). Based on this observa-
tion, we conjecture an amortized complexity of O(N(log N)2), as computing an
increment of Γ is amortized logarithmic. This algorithm is therefore still fairly
scalable.

4 Discussion

This paper presents an idea for two variants of an algorithm to compute weak
and strong control closures. While there is still a fair amount of work to be done
to show that the presented algorithms and worst case execution times are indeed
correct, we are confident that this work sparks discussions in the community as
it allows to use the more general algorithms for realistic size applications. This is
however, not the end of this research. The new notion would need to be included
into slicing algorithms to be useful for general applications like information flow
control or program maintenance. In many cases, it might also be desirable to
have a traditional relation of control dependence instead of only an algorithm
to compute closures, as dependences are more local an thus allow compositional
analysis. For the same reason a formulation of procedural analysis for control
closures would be imperative.
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Algorithm 8: computing strong control closures

computeTheta(V );
computeComponentGraph();
compute reverse topological sorting in the component graph;
assign each vertex the corresponding number of previous step;
Γ = ∅;

GΓ = G;

XΓ = V ;

computeGamma(GΓ , Γ, XΓ , V );
pq = new PriorityQueue() sorted according to this number;
foreach n : V do

n.diff = 0;
add n to pq;

X = V ;
while pq is not empty do

v = remove vertex from pq;

Θδ = v.diff ;
foreach p ∈ predecessors(v) do

if p 6∈ X then

if (Θ(G, X, p) − Θδ ≥ 2 ∨ p ∈ Γ ) ∧ v 6∈ Γ

∧(Θ(G, X, v) − Θδ = 1 ∨ v ∈ X) then

X = X ∪ p;
diff = Θ(G, X, p) − 1;
Θ(G, X, p) = 1;

computeGamma(GΓ , Γ, XΓ , {p});
p.diff = diff ;
add p to pq;

else

p.diff = Θδ;
add p to pq;

return X;
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Abstract. In the past two decades the Model-View-Controller pattern
has been employed successfully in the development of software systems.
In this paper we argue that this model may be improved to support
the development of applications running on multiple devices, possibly
not always connected. Specifically, we introduce the notion of Symmet-
ric Synchronized Model-View-Controller, in which multiple views and
controllers are generated from a single model, and we propose the adop-
tion of synchronization mechanisms based on ideas borrowed from the
approaches developed for collaborative software (groupware) communi-
cation.

1 Introduction

The Model-View-Controller (MVC) pattern (see for instance the standard ref-
erence [1] for a detailed description) has been employed successfully in the past
two decades for the development of software systems. A number of development
frameworks and development environments currently in use support and encour-
age the adoption of this pattern. Notable examples include Apple XCode for the
development of iOS applications and the open source frameworks Django [2]
and Spring [3] for the development of Python and Java applications, respec-
tively. Typically, in these frameworks developers specify a model and the code
for the views and the controllers can be partially generated in an automatic way.
For instance, a web-based application can be generated in Django by describing
the model (essentially, an abstraction of the data model), and the corresponding
views and controllers are automatically generated for clients using a browser3.

Due to the increase in the number of mobile platforms, web based applica-
tions are required to be able to interact with a variety of clients, in addition
to “standard”, desktop-based clients. In many circumstances it may be required
that mobile clients are also able to work off-line. A typical example are web-based
calendars, which can be accessed by a (connected) desktop, and by a a range of

3 https://docs.djangoproject.com/en/dev/topics/class-based-views/

generic-display/



native mobile applications that make a local copy of the remote database and
present the former when connectivity is not available.

The current trend in industry is to consider the server-side (together with
its browser-based client) and the mobile platforms as different applications all
together. In fact, in some cases these products are developed by different com-
panies, specialising in different technologies, e.g. Django for the server-side4,
and the iOS SDK for the mobile clients. This means that developers need to
work on multiple MVC patterns, one for each platform, which need to be kept
aligned when a change is made in the server model, and with the additional
issue of synchronization of the various local databases. As exemplified in the
following sections, this causes substantial code repetition and makes validation
and verification impractical.

In this paper we argue that server and all the mobile clients should be seen as
a single modular application, in which the application for each platforms depends
on the applications running in all the other platforms, and this dependency is
exploited at the modelling stage to automatically generate code. Our idea is to
extend the MVC pattern by introducing the notion of Symmetric Synchronized
MVC (SSMVC):

1. Symmetric: extract views and controllers for multiple classes of devices from
a single model (the server model).

2. Synchronized: automatically generate code for client-server synchronization
using ideas borrowed from Computer Supported Cooperative Work (CSCW,
e.g., DiscoTech [4])

We provide the details of this idea in the rest of the paper, which is organised
as follows: in Section 2 we describe a scenario that is used throughout the paper
as a running (and motivational) example, while our idea is described in Section 3.
We provide related work in Section 4 and we conclude in Section 5.

2 A motivational example

In this section we describe a scenario that is obtained from the simplification of
a real application: a law firm composed by a number of lawyers manages various
customers concurrently. Lawyers operate using a range of devices: desktop PCs,
mobile phones, tablets, etc., which sometimes need to work off-line due to lack of
connectivity. The two key requirements for this application are: (1) Data must be
always available, even when devices are off-line; (2) Data must be synchronized:
if a change is made, this should be pushed to all the other devices as soon as a
connection is available.

To develop this application, we can start from a framework such as Spring
that provides a Java-based back-end and a standard web client implementation

4 From now on we will omit the fact that server-side development includes also a
browser client, when this is clear from the context.



using an MVC pattern. More in detail, the development process is similar to the
following:

1. Develop the server-side model using a dedicated tool (this is typically a
domain specific language, or a graphical tool).

2. Develop controller and view for the browser-based client: source code for
these is normally generated automatically from the client-side model de-
scription, and the developers only need to introduce changes for the specific
application.

3. Develop server-side views (and, when needed, a controller) for REST (or
SOAP) API. These APIs are used by the native mobile clients that need to
interact with the “main” server.

This process enables the creation of the web-based application that lawyers
can use from their desk. However, in many cases lawyers need to work from
remote locations (e.g. court, at clients’ residence, etc.), and in many cases con-
nectivity is not available (e.g. in tribunals). Suppose now we want to develop
a native Android client to be used in these circumstances. Effectively, this re-
sults in the development of a new, separate application that interacts with the
previous one by means of REST (or SOAP) APIs. The typical steps would be:

1. Develop the client-side model and persistence model. Android has currently
no support for automated model and persistence generation. The implemen-
tation is completely left to developers which have to choose among various
solutions including the Google App engine [5] and a Sqlite DB.

2. Develop the client-side view and controller (i.e. the user interface). As above,
these may be partially generated automatically from the model. item Imple-
ment the client-side REST (or SOAP) API to synchronize with the “main”
server.

Notice that all the issues associated with synchronization (e.g. pushing local
changes or fetching new data) need to be resolved by the developer on the client-
side API.

In addition to mobile phones running Android, a number of lawyers have
access to tablets such as the Apple iPad. The implementation of a native iOS
application would follow the same steps above using the iOS SDK, but for iOS
clients there is another possibility that avoids the need of placing the iOS mo-
bile client on Apple App Store: developing a iOS web app using the Javascript
extensions of Safari mobile5. This can be considered as a Javascript-based mo-
bile application in which the browser itself act as a sandbox for the application.
The interaction with the “main” server in this case requires a server-side MAN-
IFEST file listing all the resources required to execute the application. The
browser drives the application life cycle with a sequence of events and allows the
Javascript code to read and write external resources such as private property
files or databases.

5 This is the solution currently adopted by http://www.ft.com. Web apps can also
be implemented using Chrome extensions, see below.



In this particular case, the whole client implementation is embedded in server-
side views or files which are loaded by Safari mobile when the application boot-
straps. More in detail iOS web apps require to:

1. Develop a Javascript client-side model.
2. Develop all the views and the Javascript controller.
3. Implement a Javacript client for the REST API. (The implementation of a

Chrome web extension follows an identical pattern.)

Both the native Android/iOS development and the web app development
presented above show that the current implementation strategies lead to a sub-
stantial duplication of code that is clearly interdependent, and to a number of
inefficiencies:

– The MVC pattern is repeated in all clients.
– A change in the “main” (server-side) model requires the immediate change

of all the clients’ models, making the code hard to maintain. As an example,
suppose that there is a change in the customers’ records, e.g. by introducing
an additional field in a table. The models of all the mobile applications need
to be modified accordingly before being able to interact with the server again.

– For each mobile client, developers have to implement manually all the aspect
of synchronization, for each possible platform.

– Testing the application (as a whole) is problematic: for instance, fixtures
need to be developed for each possible client and for the “main” server.

3 Symmetric Synchronized MVC

In this section we describe SSMVC (Symmetric Synchronized MVC), our pro-
posed extension of the MVC pattern.

MVC-based frameworks ask developers to implement model classes repre-
senting persistent stateful objects. Starting from those classes each framework is
capable of creating (semi-)automatically the database schema, the REST API,
detail and list views on each model. If the original model changes, the framework
is also capable of (semi-)automatically updating the code [6]. However, as in the
development case, this update operation is repeated on the server and on each
client separately.

3.1 Symmetric MVC

One key point of our idea is to consider web-based and mobile clients as a
single application. Following this idea the same framework that is generating
the server-side database, views and controllers can also generate all the client
code. Similarly changes in one of the models can be (semi-)automatically and
simultaneously updated by the framework itself.

Notice that traditional client applications use API to synchronize with the
server. As we stated in Section 2, both server and client endpoints have to



Fig. 1. Symmetric Synchronized MVC

be implemented. However, we argue that both of them can be automatically
generated starting from the model.

Figure 1 depicts the SSMVC process, where the model in bold is provided
by the user, and all the elements in dashed boxes are (semi-automatically) gen-
erated. More in detail, the generation process needs to:

1. extract the client-side model from the server model.
2. generate for each model the database schema and the platform-dependent

persistence code (e.g. all the code containing the query to create, save and
change models on the database).

3. generate on demand basic views and controller (e.g. a detail view on a model
instance or a list view listing all the instances of a certain models).

4. configure a set of synchronization API on the server and their client coun-
terpart to load data from the server or to push changes from the client.

Notice that most of these steps are already performed by existing MVC frame-
works, but only for a single platform. Table 1 describes which part of the ap-
plication are automatically generated by applying the MVC pattern to various
server and mobile platform: the same steps can be repeated for SSMVC starting
from a single model.

Django-jom is our initial prototype implementation of the SSMVC pattern
for the Django framework. A detailed description of this implementation can be
found at https://github.com/msama/django-jom/wiki. Django-jom stands
for Django Javascript Object Models. The implementation is a Python Django
component that automatically generates all the Javascript code necessary to ex-
port existing Django models for the server into Javascript objects for clients.
Developers need to specify a descriptor indicating, for each model that they
want to be exported, some basic properties, including which fields should be
exported and how. Additionally, developers can implement a skeleton with ad-
ditional prototypes that the Javascript objects should have at runtime. At this
stage of the implementation Django-jom only handles the Symmetric behaviour.
The Synchronization strategy described in the next section is currently being im-
plemented.



Platform Description

Server Model: Manually implemented at abstract level. Persistence
handled by the framework.
View: Partially generated by the framework. HTML and
CSS and custom views are manually added.
Controller: Generated by the framework. Developer can add
custom ones.

Web apps (Chrome/iOS) Model: Javascript model and database connection are auto-
matically generated.
View: Partially generated by the framework. HTML and
CSS and custom views are manually added.
Controller: Default Javascript controllers are generated by
the framework. Developer can add custom ones.

Native (iOS/Android) Model: SQLite and core data are automatically generated
as well as model classes.
View: Automatic XML generation (Android); limited by
XCode integration (iOS)
Controller: Default controllers are generated by the frame-
work. Developer can add custom ones.

Table 1. Automatic code generation in SSMVC

3.2 Synchronized MVC

Synchronizing client-server applications when clients can work both on-line and
off-line is non-trivial. Traditional REST (or SOAP) API are designed to support
the transfer of data when the client is on-line but they have no support for
re-synchronizing clients operating off-line.

Consider for instance two lawyers updating the same data, one online and
one off-line. The lawyer operating off-line will change data in the local database
but will not be able to push changes to the server. When the lawyer returns
on-line, the mobile client has to:

1. trace local changes which have not been pushed
2. pull an update from the server as soon as a connection is re-established
3. resolve possible conflicts on the locally modified data
4. resolve the conflict with a given policy (e.g. ask the user, merge or discard

the changes)
5. push the update to the server
6. mark all the local changes as pushed to the server

None of the above features is automatically provided by the existing frameworks.
Currently, implementations are left to developers which have to implement this
mechanism for each model.

Our proposed Synchronized MVC looks at this problem from another per-
spective. Modern groupware implement a number of strategies to handle dis-
connection and reconnection of clients. For instance, the DiscoTech toolkit [4]
provides an API to manage event queues, both at the client and at the server



side. The specific instantiation of a strategy is application-dependent, but the
toolkit provides a parametric framework that can be adapted by the application
developer to manage the possible events of a particular application. Notice that
given the model and given a framework supporting the synchronization issues, all
the system code could be automatically generated. Figure 2 provides a high-level
overview of the toolkit; we refer to [4] for additional details.

Fig. 2. Overview of the DiscoTech toolkit (from [4])

Conflict resolution is one of the most important aspect in terms of usability
and user experience. Various systems could implement different policies accord-
ing to their needs. For instance in our example we could apply a policy in which
junior lawyers cannot override changes made by senior lawyers. The definition
of such conflict resolution policies is out of scope for this paper but we remark
that the SSMVC can accommodate these policies.

For the sake of completeness, there is an additional issue which needs to
be addressed: changes in the model while the system is being used. This is a
common issue in every data-driven application. Existing system such as iOS web
applications employ a mechanism to check if the database version has changed
and to trigger an update script. In SSMVC we can apply a more efficient solution.
If the model (and, therefore, the database) changes, we can add the appropriate
event to the queue of events, thus distributing it to all the clients as if it were a
data change.

4 Related work

The MVC pattern is broadly used in industry and most of the existing web and
mobile frameworks adopt it as base for the development. There has been some
work in the extension of the MVC pattern. For instance Huang and Zhang [7]
add an extra layer using XML and XSL. Their approach goes in the direction of
using the MVC pattern for the server side application but does not include mo-
bile clients. Other extensions include Flexible Web-Application Partitioning [8],
targeting broswer-based web applications and MVC RIA (Rich Internet Appli-
cations) [9]. The latter work suggests splitting the model in client and server
models, adopting browser plug-ins for interoperability of code, and mentions the
use of a client-side persistence layer. However, the issue of synchronization is not
addressed in this work.



More in general, the concept of synchronizing client applications, allowing
users to access their data from multiple platforms, is becoming increasingly pop-
ular in industry. Server-side Chrome extensions [10] support client synchroniza-
tion. Off-line changes are synchronized and distributed to all the clients employed
by the same user (e.g. see the synchronization mechanism of Google Calendar
for web browsers, phones, and tablets). However, there is no coherent solution:
we found examples in which clients cannot make modifications if they bootstrap
off-line, even when they go back on-line. Our pattern associates synchronization
with concepts from CSCW, allowing multi-user concurrent pushes.

Other works exists in literature for mobile client synchronization. Shun at
al. [11] propose a cache-like synchronization system. They introduce an inter-
mediate state in which a client operating off-line has to re-synchronize before
operating on-line. They also propose a coordination algorithm. The synchro-
nization part of SSMVC is similar in spirit, but instead of proposing a new
synchronization algorithm we suggest to use a Git-like protocol, and we also
look at the global architecture of an application.

There is a substantial body of work on collaborative applications, see for
instance [12] and references therein. The SSMVC pattern makes use of ideas
from CSCW to address the issue of synchronization among multiple clients.
Overall, however, our focus is different: the applications for which we suggest
the use of SSMVC are not necessarily groupware applications (in the sense that
multiple users collaborate to achieve a common goal), but could be applications
in which a single user access data from a range of devices, not always connected.
Additionally, we address the issue of code dependency and code generation for
deployments on heterogeneous platforms, and to the best of our knowledge this
is an issue that has not been addressed by the CSCW community.

5 Conclusion

The idea we propose here is a first step in the direction of considering back-
ends, mobile applications and synchronization of user data as components of a
single distributed and coordinated data-driven system. In this sense the SSMVC
pattern that we propose in this paper aims at aiding web and mobile applica-
tion developers by introducing a “design once and deploy everywhere” principle,
with the additional benefits of avoiding code duplication, improving efficiency,
testability, and maintainability. We achieve this by exploiting the dependencies
between the various components of the overall system.

We consider our MVC extension symmetric because the same architecture is
replicated both on the server and on each client platform. We consider our MVC
extension synchronized because it gives developers a way to handle on-line and
off-line concurrent changes by exploiting synchronization strategies developed
for groupware applications that can be automatically generated.

We are currently developing a tool implementing model-to-model transforma-
tions to support SSMVC. A preliminary prototype implementing the Symmetric
MVC pattern is available at https://github.com/msama/django-jom/wiki; in



this prototype we generate Javascript code automatically from a server model
for the Python-based Django framework. We believe that the SSMVC pattern
could substantially improve the current approaches to web system development.
We hope that this initial submission will provide feedback and comments on
the feasibility of our idea, and suggestions for improvements to the process as a
whole and to its single components.
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