
Research Note
RN/12/14

A Performance Analysis of Distributed Indexing using Terrier

26 November 2012

Amaury Couste

Jakub Kozłowski

William Martin

Abstract

High performance indexing is critical to fast and efficient data retrieval, and underlies
mainstream systems such as search engines. A limiting factor for indexing performance is
data set size: while this may not be important for small desktop or smartphone applications,
the scale of the dataset is problematic when indexing large corpora such as the web.
Distributing both the dataset and the computation can solve this issue, and consequently a
number of distributed indexers have been developed, but their effectiveness remains to be
seen. To shed some light on this issue, we present a detailed performance analysis of one of
the leading solutions. Terrier is a scalable piece of software supporting indexing and retrieval
both on a single nodes and a distributed cluster. We demonstrate that performance is highly
correlated to the specific setup of a cluster and aim to provide useful guidelines for data
scientists willing to get the most out of their hardware.

UCL DEPARTMENT OF COMPUTER
SCIENCE

A Performance Analysis of Distributed Indexing using
Terrier

Amaury Couste
University College London
a.couste@ucl.ac.uk

Jakub Kozłowski
University College London
j.kozlowski@ucl.ac.uk

William Martin
University College London
w.martin@ucl.ac.uk

ABSTRACT
High performance indexing is critical to fast and efficient
data retrieval, and underlies mainstream systems such as
search engines. A limiting factor for indexing performance
is data set size: while this may not be important for small
desktop or smartphone applications, the scale of the dataset
is problematic when indexing large corpora such as the web.
Distributing both the dataset and the computation can solve
this issue, and consequently a number of distributed index-
ers have been developed, but their effectiveness remains to
be seen. To shed some light on this issue, we present a de-
tailed performance analysis of one of the leading solutions.
Terrier is a scalable piece of software supporting indexing
and retrieval both on a single nodes and a distributed clus-
ter. We demonstrate that performance is highly correlated
to the specific setup of a cluster and aim to provide useful
guidelines for data scientists willing to get the most out of
their hardware.

1. INTRODUCTION
Indexing is the process of parsing a dataset and collecting
and storing data to facilitate fast information retrieval. This
process allows for searching, and is used by popular search
engines such as Google [5] and Yahoo [10]. There are many
different indexing algorithms and combinations of these al-
gorithms; some of these perform quickly, whilst others may
have alternative advantages such as producing smaller index
files.

A performance problem for the vast majority of indexing so-
lutions arises from the size of the dataset: more data means
a way of quickly searching it is more useful, however in-
dexing it poses many challenges; this drives the concept of
indexing in the direction of very large datasets such as the
web. Indexers by default run on a single machine, which
often does not have the processing power, memory or even
the storage space to process a large dataset. It was for these
reasons that Google developed the MapReduce framework.

StuConOS 2012 University College London, United Kingdom

MapReduce [4] follows the divide-and-conquer design paradigm,
based on the principle that we can handle more work if we
divide it into smaller tasks and distribute it to multiple work-
ers. The work is handled in two phases: Map, where data is
processed and an interim result is produced; Reduce, where
the results from Map tasks are combined. A typical job
consists of splitting the dataset into evenly sized chunks to
be processed concurrently by a number of mappers, each of
which outputs a result. These results are then collected and
aggregated by the reducers to form the final result.

But how can we leverage MapReduce to perform indexing?
Apache Hadoop [1] is a Java implementation of the frame-
work which allows us to create MapReduce tasks, and run
them on data stored in the Hadoop Distributed Filesystem
(HDFS), effectively creating a distributed indexer. We aim
to investigate the benefits and pitfalls of using such a dis-
tributed indexer, and find if performance can scale linearly
with the number of concurrent mappers. Additionally, we
will try to identify an optimal configuration for a small test
cluster.

In Section 2 we present the Terrier solution, a popular and
open-source distributed indexing platform. In Section 3 we
discuss the software installed on a cluster of computers that
we have set up for testing. Details of the experiment and
the setup of the cluster are given in Section 4, results are
presented in Section 5. In Section 6 we summarise our find-
ings, and draw conclusions about how the configuration of
a cluster can affect results.

2. BACKGROUND
Here we will discuss Terrier and provide a quick survey of
previous work.

2.1 Previous Work
McCreadie et al. [7] introduced the potential for near-linear
performance characteristics of distributed indexing with Ter-
rier, provided that multiple reducers are used and high-level
of data locality can be achieved. The paper shows that
indexing retains sub-linear characteristics when scaling the
data set size. Additionally, the authors report that the solu-
tion compares very favourably with single-machine indexing,
potentially achieving a 6.5× speed-up. The paper does not
address the potential performance effect of adjusting num-
ber of map tasks that run in parallel. Similarly, no previous
work has reported on the ease of installation and deploy-
ment.

2.2 Terrier
Terrier [9] is a solution that provides support for both single-
machine and distributed indexing and retrieval (using Hadoop).
The built-in support for test collections such as ClueWeb09,
and the implementation of many retrieval models, both make
Terrier a solid platform for research and experimentation in
text retrieval. Like other free distributed indexers, Terrier
is an experimental solution currently in development.

2.3 Questions
Terrier is still in the experimental stages of development.
Consequently, most of the information available originates
from the papers which have presented it to the community.
It is for this reason that we believe an unbiased investigation
into its performance is a useful one.

We wish to answer the following questions:

• How quickly can we index a large corpus?

• How quickly can we query a large corpus?

The latter question is a very important one: evaluation typi-
cally places emphasis solely on indexing performance; query-
ing performance is arguably more important, as this is the
bulk of the work that a live search engine must perform.

3. DESIGN
Here we will discuss the design of the experiments and the
setup of the cluster.

3.1 Data
Indexers are used for searching in everything from small
smartphone applications to powerful servers running large
websites. As such, the data to be queried ranges from small
records to large web-page corpora in the tens of terabytes.

Indexing is a popular topic at the Text REtrieval Conference
(TREC) [8], which sees many papers published each year
in the field. Most indexers presented at the conference in
recent years are tested on the ClueWeb09 [6] dataset. This
dataset provides a very large corpus to evaluate text retrieval
methods. It consists of approximately one billion text files
in ten languages along with sample queries, which makes it
useful for a wide range of research applications.

3.2 Cluster
We performed experiments using a small heterogeneous clus-
ter, the sort of cluster most likely to be used in practice by
organisations. The cluster’s specifications are listed in ta-
ble 1, and individual node specifications are listed in table 2.

Table 1: Cluster specifications.

Physical machines 4
CPU cores 18

Memory 19GB
Hard drive storage 7TB

Table 2: Cluster nodes.

hostname memory disk space cores

node0 7.8GB 1.3TB 8
node1 2.0GB 1.8TB 2
node2 4.8GB 1.8TB 4
node3 3.9GB 1.8TB 4

Every node runs a slightly different version of Linux CentOS
5.x and is configured with different firewall policies.

3.3 Tools
The following tools were used to set up and manage the
cluster.

3.3.1 Cloudera Manager
Cloudera (CDH) [2] is a custom distribution of Hadoop and
related software, packaged with Cloudera Manager. Cloud-
era Manager enabled us to set up the cluster aided with
some automation, using a simple web-based interface; later
we were able to remotely control the configuration of every
node in the cluster, start and stop services and monitor the
performance of the cluster in real-time.

3.3.2 Hue
Also included in CDH is Hue [3], a web interface that in-
cludes a File Browser and a Job Browser, both of which were
great tools for monitoring the progress of jobs and viewing
logs of tasks, and proved to be indispensable for debugging.

4. EXPERIMENT
Here we will discuss the experimental plan and setup.

4.1 Hypotheses
Our experiments must answer the questions discussed in sec-
tion 2.3. We therefore formed the following hypotheses,
which we will aim to prove or disprove:

1. The time taken to index a corpus scales linearly with
the number of concurrent mappers.

2. The time taken to query a corpus scales linearly with
the number of concurrent mappers.

The reason we chose to investigate the effect on performance
of adjusting the number of concurrent mappers is twofold;
firstly, oftentimes software ships may ship with suboptimal
settings that may hinder potential performance, hence wast-
ing resources; secondly, our cluster lacked homogeneity and
therefore switching off machines was impractical.

4.2 Experimental procedure
We constructed algorithm 1, aimed at proving our hypothe-
ses defined in section 4.1 and uncovering new performance
information about Terrier.

To test query performance we ran batches of 150 queries
taken from the Trec Web Track. As querying is much faster

Algorithm 1 Experimental procedure.

for all cluster nodes do
Index subset of ClueWeb09B corpus (approx 15GB
compressed).
Record time taken to index.
Perform batch of 150 queries.
Repeat batch of queries for 100 trials.
Record and average trial time.

end for

than indexing, we were able to run 100 trials for each exper-
iment in order to allow for a meaningful statistical analysis.
The results of the experiments will indicate whether a cluster
of machines can quickly index and query a large dataset.

4.3 Cluster Setup
Initial setup was performed with use of Cloudera Manager;
the only requirement was passwordless sudo access setup
on all nodes; otherwise all software was installed automati-
cally. Running demo Hadoop jobs was successful, therefore
we set out to run Terrier. Unfortunately, there were several
problems that had to be overcome. All problems had to be
debugged by inspecting Hadoop logs.

Problem 1. Before we could start running jobs, we had to
fix a bug in Terrier. The job setup code was copying jar file
dependencies from the CLASSPATH to HDFS, without checking
whether the files actually exist on the local hard drive.

Problem 2. In order to be able to control the partitioning
of data into map tasks, we had to add a new configuration
parameter to Terrier configuration architecture.

Problem 3. The cluster was spuriously failing to start jobs
and the logs were pointing towards lack of disk space. It
turned out that Hadoop logs were mapped to /var, which
in turn was mounted on an extremely small disk partition.
Moving the logs to the same partition as HDFS on all nodes
fixed the issue.

Problem 4. An issue that remains only partially solved is
the stream of Java OutOfMemoryExceptions coming from
Terrier code. We were led to believe that because files in
the corpus are quite large (on average ≈ 150MB), and need
to be uncompressed in memory, the JVM was simply running
out of memory. Therefore, we continued to increase max
heap sizes, to a point where at around ≈ 2GB heap sizes,
we decided that the problem was likely pointing to a bug in
Hadoop part of Terrier. We base this claim on the fact that
there seems to be no clear connection between the size of
the file and the probability of failure (a 204.2MB file would
index fine, however the process would fail on a 184.1MB file)
and the process always fails on the same exact files.

In order to rule out possible causes, we ran a single-machine
configuration of Terrier on the files that failed on the Hadoop
configuration and the process was successful. We also think

that this issue may have caused the index jobs to sporad-
ically fail or succeed given the same configuration; it was
also identified that a greater number of concurrent mappers
seems to increase the likelihood of failure. It would be a use-
ful experiment to try to index the files that fail on another
cluster, in order to eliminate the possibility of an error in
the cluster configuration.

4.4 Dataset
We performed our experiments on a subset of the ClueWeb09 [6]
dataset, approximately 14GB compressed or 100GB uncom-
pressed data.

5. RESULTS
Due to the significant differences in specifications between
cluster nodes, we decided that selectively removing machines
would not lead to any meaningful results. Instead, we at-
tempt to explore the indexing performance by adjusting the
number of concurrent mapper tasks on each node and max-
imum number of map tasks. Unfortunately, the volume of
data collected was not sufficient to warrant statistical treat-
ment of execution time measurements from multiple runs to
rule out inherently stochastic properties, therefore we will
only draw general conclusions about the performance of dis-
tributed indexing with Terrier. Results are presented in tab-
ular and graphical form.

5.1 Adjusting Concurrent Map Tasks
We performed the following experiments by adjusting the
number of concurrent map tasks on each of the nodes. The
hardware specifications vary from node to node, so we scaled
the number of tasks according to the number of processor
cores on the machine. In order to be able to increase the
number of concurrent map tasks we had to keep the Java

Heap Size at ≈ 250MB.

5.1.1 Indexing
As shown in table 3 and fig. 1, the peak performance is
achieved at 100% processor core utilisation. Increasing the
number of concurrent map tasks beyond this point imposes
context switching overhead.

Table 3: Results for indexing times adjusting con-
current map tasks.

total concurrent
map tasks time taken

9 2h 15m 5s
18 2h 2m 0s
27 2h 5m 58s
36 2h 36m 16s

Figure 1: Plot for indexing times adjusting concur-
rent map tasks.

10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of concurrent mappers.

T
im

e
 t

a
k
e

n
 t

o
 i
n

d
e

x
 d

a
ta

s
e

t.
 [

s
]

Plot of number of concurrent mappers against time taken to index.

Indexer run.

5.1.2 Querying
Table 4 and fig. 2 show a strong correlation with the re-
sults from indexing the corpus, reaching maximum perfor-
mance somewhere around 100% processor core utilisation
and achieving suboptimal performance at both ends of the
spectrum. When the system operates below the processor
capacity, some mappers may finish sooner than others and
sit idly; similarly, overcapacity may impose unnecessary con-
text switching cost. This is a good result in itself, showing
that we can potentially improve query time with indexing
time.

Table 4: Results for query times adjusting concur-
rent map tasks.

map time taken (s)
tasks min median max stddev

9 103.13 104.11 128.25 3.86
18 89.04 89.60 92.61 0.65
27 95.65 97.05 126.65 3.13
36 100.57 102.13 134.66 5.53

Figure 2: Plot for median querying times adjusting
concurrent map tasks.

10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Number of concurrent mappers.

M
e

d
ia

n
 t

im
e

 t
a

k
e

n
 t

o
 q

u
e

ry
 d

a
ta

s
e

t.
 [

s
]

Plot of number of concurrent mappers against median time taken to query.

Query batch run.

5.2 Adjusting the Maximum Map Tasks
We performed the following experiments by adjusting the
number of maximum mappers. This has the effect of in-
creasing the number of documents processed per-map task.

As we were adjusting maximum map tasks and therefore
leaving the concurrent tasks constant at 100% processor core
utilisation, we were able to increase the maximum java heap
space to ≈ 768MB without fear of running out of physical
memory on any of the nodes. This results in better perfor-
mance than the previous experiment.

5.2.1 Indexing
We repeated the indexing trials as in the previous experi-
ment, adjusting maximum mappers instead. Table 5 and fig. 3
show that limiting the maximum mapper tasks to 25 hinders
performance, but other configurations perform similarly. A
likely cause for this is under-utilised CPU time: each map
task was larger, but the files in the corpus are not of exactly
the same size, therefore some nodes will finish early and be
idle.

Table 5: Results for indexing times adjusting maxi-
mum map tasks.

maximum
map tasks time taken

25 52m 17s
50 48m 9s
75 48m 39s
99 49m 16s

Figure 3: Plot for indexing times adjusting maxi-
mum map tasks.

30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Maximum number of mappers.

T
im

e
 t

a
k
e

n
 t

o
 i
n

d
e

x
 d

a
ta

s
e

t.
 [

s
]

Plot of max number of mappers against time taken to index.

Indexer run.

5.2.2 Querying
We repeated the trials as in the previous experiment, but
running just 25 trials for each different configuration. Ta-
ble 6 and fig. 4 show that querying is unaffected by adjusting
the maximum number of mappers.

Table 6: Results for query times adjusting maximum
map tasks.

max. time taken (s)
tasks min median max stddev

25 97.69 99.38 99.89 0.50
50 98.68 99.32 105.75 1.37
75 98.44 99.31 131.17 8.50
99 98.79 99.88 134.27 8.31

Figure 4: Plot for median querying times adjusting
maximum map tasks.

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Maximum number of mappers.

M
e

d
ia

n
 t

im
e

 t
a

k
e

n
 t

o
 q

u
e

ry
 d

a
ta

s
e

t.
 [

s
]

Plot of max number mappers against median time taken to query.

Query batch run.

6. CONCLUSION
We have assessed the ease of running a distributed indexing
solution based on Terrier, and the performance that can be
achieved. This software proved to be fairly hard to set up,
and we have managed to uncover some issues. The overall
performance, however, was very promising and our results
emphasise the importance of tuning cluster configuration to
improve indexing time.

In summary, we believe the following key points can be
learned from this experience:

• Cloudera Manager and Hue are an excellent Hadoop
distribution. The ability to easily deploy and monitor
the cluster through a web browser proved very valu-
able.

• A cluster with homogeneous nodes is preferable.

• Experiment results are highly dependent on the par-
ticular cluster configuration; it is possible to achieve
better performance by tweaking the number of con-
current mappers.

• Distributed indexing performance scales with the num-
ber of concurrent mappers until 100% core utilisation
is achieved. Optimal performance may be achieved
from the correct configuration, but not from simply
adding mappers.

• Current indexing solutions are experimental software
and seldom work out-of-the-box. Additional time tweak-
ing configuration files must be accounted for when plan-
ning a deployment.

• Debugging distributed software is difficult. Logs are
sparse and often obscure.

References
[1] Apache Software Foundation. Hadoop. URL http://

hadoop.apache.org/.

[2] Cloudera Inc. Cloudera, . URL http://www.cloudera.

com/.

[3] Cloudera Inc. Hue, . URL http://cloudera.github.

com/hue/.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008. ISSN 0001-0782.
doi: 10.1145/1327452.1327492. URL http://doi.acm.

org/10.1145/1327452.1327492.

[5] Google Inc. Google. URL http://www.google.com/.

[6] Lemur Project. ClueWeb09. URL http://

lemurproject.org/clueweb09.php/.

[7] R. McCreadie, C. Macdonald, and I. Ounis. On single-
pass indexing with mapreduce. Proceedings of the An-
nual International ACMSIGIR Conference on Research
and Development in Information Retrieval, pages 742–
743, 2009. URL http://eprints.gla.ac.uk/39994/.
isbn: 9781605584836.

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/
http://www.cloudera.com/
http://cloudera.github.com/hue/
http://cloudera.github.com/hue/
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://www.google.com/
http://lemurproject.org/clueweb09.php/
http://lemurproject.org/clueweb09.php/
http://eprints.gla.ac.uk/39994/

[8] National Institute of Standards and Technology (NIST)
and the Intelligence Advanced Research Projects Ac-
tivity. Text Retrieval Conference. URL http://trec.

nist.gov/.

[9] I. Ounis, G. Amati, Plachouras V., B. He, C. Macdon-
ald, and Johnson. Terrier Information Retrieval Plat-
form. In Proceedings of the 27th European Conference
on IR Research (ECIR 2005), volume 3408 of Lecture
Notes in Computer Science, pages 517–519. Springer,
2005. ISBN 3-540-25295-9.

[10] Yahoo! Inc. Yahoo. URL http://www.yahoo.com/.

http://trec.nist.gov/
http://trec.nist.gov/
http://www.yahoo.com/

	UCL department of computer science
	Research Note
	A Performance Analysis of Distributed Indexing using Terrier
	Amaury Couste
	Jakub Kozłowski
	William Martin
	Abstract

	Introduction
	Background
	Previous Work
	Terrier
	Questions

	Design
	Data
	Cluster
	Tools
	Cloudera Manager
	Hue

	Experiment
	Hypotheses
	Experimental procedure
	Cluster Setup
	Dataset

	Results
	Adjusting Concurrent Map Tasks
	Indexing
	Querying

	Adjusting the Maximum Map Tasks
	Indexing
	Querying

	Conclusion

