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Abstract
Network operators have gravitated toward building net-
works with a BGP-free core. They have done so for
two main reasons. First, there was a point in history
when it was thought to be difficult to do IP forward-
ing lookups quickly enough in large routing tables—a
concern that has largely fallen by the wayside, thanks to
algorithmic and hardware improvements. Second, there
has been a perception in the networking community
that the prevalent approach to scaling intra-domain dis-
semination of external routes, iBGP with route reflec-
tors, is brittle: it requires careful configuration based
on topology, policy, and heuristics. Under misconfigu-
ration or topology changes, iBGP with route reflectors
exhibits a variety of ills, including routing instability,
transient loops, and routing failures. In this paper, we
consider the intra-domain route dissemination problem
from first principles, and show that these pathologies
are not fundamental–rather, they are artifacts of iBGP.
We propose the Link-Ordered Update Protocol (LOUP),
a clean-slate dissemination protocol for external routes
that does not create transient loops, makes stable route
choices in the presence of failures, and achieves policy-
compliant routing without requiring any configuration.
We demonstrate the practical scalability and correctness
of LOUP through simulation and measurements of a
Quagga-based implementation.

1 Introduction

The past decade has seen many network operators adopt
a Border Gateway Protocol-free (BGP-free) core for their
networks, to an extent that educational materials on how
to configure core routers in this fashion are readily avail-
able [5]. While complete statistics on the prevalence of a
BGP-free core are hard to come by, an informal survey
taken in 2010 suggested that at least 36% of respond-
ing network operators had replaced iBGP on their core
routers with some form of label switching [14].

Two primary factors originally drove interest in a
BGP-free network core. First, there was widespread con-
cern that IP forwarding lookups would not keep pace
with rapidly increasing link speeds and increasing for-
warding table sizes. And second, there was a sentiment
that internal BGP (iBGP), typically deployed with Route
Reflectors (RRs), was an unsatisfactory way to dissemi-
nate externally learned routes within an autonomous sys-

tem (AS). Much has been written about iBGP’s sus-
ceptibility to persistent routing instability [11, 12], as
well as its propensity for introducing transient forward-
ing loops and transient routing failures while dissemi-
nating a route update or withdrawal [11, 20]. Real-time
traffic of the sort prevalent on today’s Internet does not
tolerate such transient loops or failures well; Kushman et
al. [18] note that periods of poor quality in VoIP calls cor-
relate closely with BGP routing changes. Even a BGP-
free core does not entirely eliminate iBGP’s role in intra-
AS route dissemination, nor the associated pathologies:
border routers (BRs) must still exchange routes with one
another with iBGP.

Is the move to a BGP-free core warranted? We argue
that it is not. Thanks to algorithmic and hardware ad-
vances, the speed of forwarding lookups is no longer
a worry. More interestingly, though, the routing insta-
bility, transient loops, and transient black holes that of-
ten occur when disseminating a route update (or with-
drawal) learned via eBGP within an AS are not funda-
mental. Rather, they are side-effects of the way in which
the iBGP protocol, and in particular, the iBGP protocol
with RRs, happens to disseminate routes.

We present the Link-Ordered Update Protocol
(LOUP), a simple and robust intra-AS route dissemina-
tion protocol that introduces neither transient loops nor
black holes while propagating an update. LOUP avoids
these pathologies by reliably disseminating updates hop-
by-hop along the reverse forwarding tree from a BR.
We are not the first to observe that careful attention to
the details of route propagation can eliminate transient
anomalies. DUAL [8], the loop-free distance-vector in-
terior gateway protocol (IGP), explicitly validates before
switching to a next hop that doing so will not cause a
forwarding loop. And Consensus Routing [17] augments
eBGP with Paxos agreement to ensure that all ASes have
applied an update for a prefix before any AS deems a
route based on that update to be stable. LOUP uses com-
paratively light-weight mechanisms (i.e., forwarding in
order along a tree) to avoid transients during route dis-
semination within an AS.

Our contributions in this paper include:

• a first-principles exploration of the dynamics of route
dissemination, including how known protocols do dis-
semination and the trade-offs they make

• invariants that, when maintained during route dissem-
ination, avoid transient loops when a single update to
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a prefix is introduced
• LOUP, a route dissemination protocol that enforces

these invariants using ordered dissemination of log en-
tries along a tree

• an evaluation in simulation that demonstrates the cor-
rectness and scalability of LOUP on a realistic Internet
Service Provider topology

• measurements of an implementation of LOUP for
Quagga that show LOUP scales well in memory and
computation, so that it can handle a full Internet rout-
ing table and high update processing rate

2 Intra-AS route dissemination

Internet routing is composed of three components: Ex-
ternal BGP (eBGP) distributes routes between routing
domains and is the instrument for policy routing. An In-
terior Gateway Protocol (IGP) such as OSPF or IS-IS
keeps track of reachability within a routing domain. Fi-
nally, Internal BGP (iBGP) distributes external routes re-
ceived by border routers (BRs) both to all other BRs, so
they can be redistributed to other domains, and also to all
participating internal routers. In this paper we are primar-
ily concerned with iBGP: when a route changes some-
where out there in the Internet, how does this change
propagate across a routing domain?

When a BR receives a route change from a neighbor-
ing routing domain or Autonomous System (AS), it san-
ity checks it and applies a policy filter. This policy filter
can drop the route, or it can modify it. Common mod-
ifications include setting the Local Preference attribute
(akin to a priority field) and setting Community attributes
which can be used to determine how the route is redis-
tributed to other ASs by other BRs.

After policy filtering, the BR runs its decision process,
determining whether it prefers this route to other routes
it may hold for the same IP address prefix. The decision
process is specified in the BGP standard, and consists of
successive rounds of eliminating candidate routes based
on different criteria until only one remains. First in the
decision process is Local Preference, so configured pol-
icy trumps all else. Lower down the list come AS Path
length, and below that IGP distance (the distance to the
BGP Nexthop - usually either the announcing BR itself,
or its immediate neighbor in the neighboring AS).

When a BR receives a route announcement for a new
prefix, if it is not dropped by policy, the BR distributes it
to all the other routers in the domain, so they can reach
this destination. If a BR already has a route to that prefix,
the new route is only sent to the other routers if the BR
prefers the new route. Similarly if a BR hears a preferred
route from another BR to one it previously announced, it
will withdraw the previously announced route.

Having decided to announce or withdraw a route, it

is important to communicate the change reliably and
quickly to the rest of the AS. BGP routing tables are
large - currently over 400,000 prefixes - and multi-
ple BRs can receive different versions of each route.
Periodic announcement of routes doesn’t scale well,
so dissemination needs to be reliable - once a router
has been told a route, it will hold it until it is with-
drawn or superseded. Route dissemination also needs
to be fast - otherwise inter-AS routing can take a
long time to converge. Ideally it would also be consis-
tent - a route change from far across the Internet can
be received by multiple BRs in a short time period,
and their uncoordinated propagation of route changes
across the domain can itself cause disruption.

The simplest way to disseminate routes across an AS
is full-mesh iBGP, where each router opens a connection
to every other router in the domain (Fig. 1a). When an
update needs to be distributed, a BR just sends it down
all its connections. TCP then provides reliable in-order
delivery of all updates to each router, though it provides
no ordering guarantees between different recipients.

In practice, few networks run full-mesh iBGP. The
O(n2) TCP connections it requires dictate that all routers
in a network must be reconfigured whenever a router is
added or retired, and every router must fan out each up-
date to all n− 1 peers causing a load spike with associ-
ated processing delays. Most ISPs use iBGP route reflec-
tors (RRs). These introduce hierarchy; they force propa-
gation to happen over a tree1 (Fig. 1b). Updates are sent
by a BR to its reflector, which forwards them to its other
clients and to other reflectors. Each other reflector for-
wards on to its own clients.

Route reflectors significantly improve iBGP’s scaling,
but they bring a range of problems all their own. In par-
ticular, each BR now only sees the routes it receives di-
rectly via eBGP and those it receives from its route re-
flector. Thus no router has a complete overview of all the
choices available, and this can lead to a range of patholo-
gies, including persistent route oscillations[9].

ISPs attempt to avoid such problems by manually
placing route reflectors according to guidelines that say
“follow the physical topology”; not doing so can cause
suboptimal routing[20]. Despite these issues, almost all
ISPs use route reflectors and, with conservative network
designs, most succeed in avoiding the potential pitfalls.

The Rise of the BGP-free Core

In recent years many ISPs have deployed MPLS within
their networks, primarily to support the provisioning of
VPN services. MPLS also allows some networks to op-
erate a BGP-free core.

1actually, often two overlaid trees for redundancy
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(a) iBGP (b) iBGP + RR (c) RCP

(d) BST (e) LOUP

Figure 1:
Propagation
mechanisms

An MPLS network with a BGP-free core functions in
the same way as BGP with route reflectors, except that
only BRs are clients of the RRs. An internal router that
only provides transit services between BRs does not need
to run BGP; instead the entry BR uses an MPLS label-
switched path to tunnel traffic to the exit BR. A protocol
such as LDP [2] is then used to set up a mesh of MPLS
paths through the AS from each entry BR to each exit
BR. In such a network, internal routers do not have ex-
ternal routes in their routing tables, so they cannot reach
any external networks, except by first following a default
route to a BR that does know BGP routes.

A BGP-free core needs careful configuration, and de-
pends on additional protocols such as LDP or RSVP-TE
for basic connectivity, adding complexity. Why would an
ISP choose to remove iBGP from internal routers in this
way? It isn’t for traffic engineering reasons, as MPLS
traffic engineering can be used to incrementally optimize
a natively-routed AS.

One potential advantage of a BGP-free core is that
core routers need only maintain IGP routes, rather than
the 400,000 or so prefixes in a full routing table, though
they must also hold MPLS state for a subset of the O(n2)
label-switched paths. In general though, due to improve-
ments in hardware and forwarding algorithms [23], the
overall size of routing tables is not the problem it was
once thought to be [6]. Backbone routers tend to be more
capable than border routers; a core router than cannot for-
ward at line rate with a full routing table is not likely to
sell well. If there is any scaling issue, it is unlikely to
be with routing table size, but with churn of the FIB for-
warding table. Even this is unlikely to be an issue, so
long as it is constrained to updating existing forwarding
entries; additions and deletions may be more costly if
they require updating tree-based FIB structures [6].

Another potential advantage of a BGP-free core is that
it reduces the number of clients of iBGP route reflectors.
This has the potential to reduce both processing load on
the RRs and the potential for undesirable configuration
errors resulting in instability. In short, the fewer iBGP
routers you have, the less likely you will be bitten by the
known limitations of iBGP and route reflectors.

Finally, although it doesn’t seem to be well understood
by ISPs, the use of route reflectors can result in transient
forwarding loops every time an external route changes.
This is because the TCP connections used by route re-
flectors do not impose any inter-client ordering on who
learns each update when. While such loops are unlikely
to persist for long, any forwarding loop can cause non-
trivial packet loss and jitter, not just for the looping traf-
fic but also for traffic sharing the same links. Although
MPLS may reduce the prevalence of such loops, it can-
not prevent them - those transient loops that do occur will
traverse the whole network between two (or more) BRs.

Thus the drive towards networks with a BGP-free core
seems to be driven by obsolete concerns about routing
table size and by undesirable properties of iBGP with
route reflectors. Our goal is to revisit the role played by
iBGP, and demonstrate that iBGP’s limitations are not
fundamental. We will show that alternatives to iBGP are
possible with the following properties:
• Not susceptible to configuration errors.
• Stable under all configurations.
• Not prone to routing hot spots.
• Low FIB churn, both in BRs and in internal routers.
• Propagate no more than the minimum required num-

ber of changes to eBGP peers.
• Free of transient loops and unnecessary black holes.
• Play nicely with MPLS traffic engineering, but not

mandate its use.

3 Dissemination Mechanisms

We now examine alternative route dissemination mecha-
nisms that cast light on what is achievable.

3.1 Persistent Route Oscillations
With eBGP, inconsistent policies between ISPs can lead
to persistent BGP oscillations. These can be avoided if
BGP policies obey normal autonomous systems relations
(“obey AR”) [7]. Essentially this involves preferring cus-
tomer routes to peer or provider routes, and that the graph
of customer/provider relationships is acyclic. However,
even when AR is obeyed, BGP’s MED attribute can re-
sult in persistent iBGP route oscillations [10].

Briefly, MED allows an operator some measure of
control over which link traffic from him provider takes
to enter his network. Unfortunately the use of MED
means that there is no unique lexical ordering to alter-
native routes. The decision process essentially takes two
rounds; in the first routes received from the same ISP are
compared, and the ones with higher MED are eliminated;
in the second, the remaining routes are compared, and
an overall winner is chosen. Thus route A can eliminate
route B in the first round, then lose in the second route
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to route C. However, in the absence of route A, route B
may win the second round. Compared pairwise, we have
A > B, B >C, and C > A. To make the correct decision,
routers must see all the routes, not a subset of them.

Route reflectors hide information; only the best route
is passed on. This interacts poorly with MED, resulting
in persistent oscillations [19]. Griffin and Wilfong prove
that so long as policies obey AR, full-mesh iBGP will
always converge to a stable solution [10]. The same is
not true of route reflectors or confederations. To avoid
iBGP route oscillations, it is sufficient to converge to the
same routing solution that would be achieved by full-
mesh iBGP, and we adopt this as a goal.

3.2 Transient Loop Avoidance

Whenever iBGP disseminates routes, its TCP connec-
tions ensure the in-order arrival of updates at each re-
cipient. However as each recipient applies the update as
soon as it can, this results in an arbitrary ordering be-
tween recipients, causing transient loops and black holes
until all the routers have received and processed the up-
date. Route reflectors impose a limited ordering con-
straint (RR clients receive a route after their RR pro-
cesses it), but except in trivial non-redundant topologies
this is insufficient to prevent loops and black holes.

One way to avoid both loops and persistent oscilla-
tions is to centralize routing (Fig. 1c). When an external
update arrives the BR first sends it to the routing con-
trol platform (RCP [3]), which is in charge of running
the decision process for the whole domain and distribut-
ing the results to all routers. As the RCP router has full
knowledge, loops can be avoided by applying updates in
a carefully controlled order. However, to do so requires a
synchronous update approach which, given the RTTs to
each router, will be slower than distributed approaches.

In the case of IGP routing, it is well known how to
build loop-free routing protocols. DUAL [8] is the ba-
sis of Cisco’s EIGRP, widely deployed in enterprise net-
works, and uses a provably loop-free distance vector ap-
proach. DUAL is based on several observations:

• If a metric change is received that reduces the distance
to the destination, it is always safe to switch to the
new shortest path. This is a property of distance vector
routing; if the neighbor sending the change is the new
nexthop, it must have already applied the update, and
so must be closer to the destination. No loop can occur.

• If an increased distance is received, the router can
safely switch to any neighbor that is closer than it pre-
viously was from the destination. These are known as
feasible routes. They are safe because no matter how
far away the router becomes after the update, the router
still never forwards away from the destination.

• In all other circumstances, a router receiving an in-
creased distance cannot safely make its own local de-
cision. DUAL uses a diffusing computation to make
its choice. It locks the current choice of nexthop and
queries its neighbors to see if they have a feasible
route. If they do not, they query their neighbors, and so
on until the computation reaches a router close enough
to the destination that it can make a safe choice. The
responses spread out back across the network, activat-
ing routes in a wave that spreads out from the destina-
tion, and so avoiding loops.
The iBGP route dissemination problem is different

from that solved by DUAL, as no incrementally-updating
distance metrics are involved. Instead, for each prefix
routers must decide between alternative external routes
as those routes propagate across the network. The routes
themselves do not change; rather to avoid loops we must
either control the order in which route changes are re-
ceived or the order in which they are applied.

3.2.1 Wavefront Propagation

DUAL performs hop-by-hop flooding of route changes,
accumulating metric changes along the way. BGP route
dissemination can also be performed using hop-by-hop
flooding (Fig. 1d), with each router sending the messages
it receives to all neighbors. Flooding needs to be done
over one-hop reliable sessions to ensure messages are not
lost. This is the approach taken by BST [16]. Flooding
imposes a topological ordering constraint, guaranteeing
that at all times, a contiguous region of routers have pro-
cessed an update. Essentially an update propagates out
across the domain as a wave-front; this is a necessary
(though not sufficient) condition to avoid transient loops.
None of the other mechanisms above have this property.

To see why this condition is not sufficient, even in the
presence of a new route being propagated (the equivalent
of DUAL receiving an improved route), consider Fig. 2.
BR B had previously received a route to prefix P, and
distributed it to all the routers in the domain. BR A then
receives a better route to P, and this is in the process
of flooding across the domain, forming a wave-front 1©
which is flowing outwards from A. All the routes in the
light-gray region now forward via A; the remainder still
forward via B. Unfortunately flooding does not ensure
that the wave-front remains convex - that a forwarding
path only crosses the wave-front once. As a result tran-
sient loops 3© can occur.

Fig. 5 shows one way that such non-convexity can oc-
cur. Initially all routers forward to some prefix via B2,
but then B1 receives a better route. Link 1-2 would not
be normally used because of its high metric. If, how-
ever, router 1 floods the update from B1 over this link,
then receiving router 2 may direct traffic towards router
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Figure 5: A simple topology exhibits looping

3 which is on the forwarding path to B1. As router 3 has
not yet heard the update, it will direct traffic towards B2
via router 2, forming a loop. This loop will clear eventu-
ally when router 3 hears the update. The update may get
delayed due to network conditions (congestion, packet
loss) or, more likely, due to variable CPU processing de-
lays.

3.2.2 Reverse Forwarding Tree Dissemination

BST’s loops occur when a new route is propagating from
one BR, and that route is preferred to a pre-existing route
from another BR. A sufficient condition for avoiding
such loops is that a router does not adopt the new route
until the next hop for that route has also adopted the
route. With routes that improve, this is essentially what
DUAL’s distance vector mechanism ensures. This condi-
tion transitively guarantees that a packet forwarded using
the new state will not encounter a router still using the
old state. One way to meet this condition for BGP route
dissemination is for a router to only forward a route to
routers that will forward via itself. Thus routes flow from
a BR along the reverse of the forwarding tree that packets
take to get to that BR.

In this paper we discuss a new routing mechanism we
call Link-Ordered Update Protocol (LOUP) that is built
around this principle . It works by propagating messages
over a hop-by-hop tree (Fig. 1e). Unlike the Route Re-
flector tree, LOUP uses one tree per BR, rooted at that
BR. This tree is dynamically built, hop-by-hop, and fol-
lows the underlying IGP routes to get to that BR from
everywhere in the domain. The hop-by-hop nature pre-
serves the wave-front property, and by distributing down
the reverse of the forwarding tree (RFT), it adds addi-
tional desirable ordering constraints that eliminate tran-

sient loops of the form detailed above when improved
routes are being disseminated.

3.2.3 Sending Bad News

Most of the mechanism in DUAL concerns how to pro-
cess bad news - a link went down or a metric increased.
In many ways DUAL solves a more difficult problem
than that of BGP dissemination. Consider the case where
a destination becomes unreachable. DUAL must solve
the distance-vector count-to-infinity problem to remove
routing state, whereas LOUP only needs to remove the
old BGP route which it can do by sending a withdrawal
message along the RFT tree from the BR that originated
the route. This implicit ownership of a route by its origi-
nating BR simplifies the problem.

However, sending bad news is never as simple as send-
ing good news. If a router receives a withdrawal (even
over the RFT), it cannot just pass it on and locally delete
the route from its FIB. If it does, a transient loop may re-
sult. Consider what happens when all routers hold more
than one route to the same destination prefix. Typically
this is when routes tie-break on IGP distance: more than
one BR originates a route, but they are all equally pre-
ferred. Each router chooses the route to the closest exit,
with some routers making one choice and some another.
Such hot-potato routing is common when two ISPs peer
in multiple places.

A loop occurs when one of those routes is withdrawn
(Fig. 4). The routers behind withdrawal wave-front 2©
have already switched to an alternative route via A.
Routers further away have not yet heard the withdrawal
and still forward to B. Traffic loops at wave-front 2©.

3.2.4 Activating withdrawals: “Tell me when...”

Whereas the condition for activating a new route (“good
news”) is simple (the next hop also knows the route), the
general condition for ceasing to using a withdrawn route
is slightly more complex - no router must be using this
route to forward to you. When receiving a withdrawal, a
router can pass the message on to its children on the RFT,
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routes event that occurs
before withdraw withdraw announce announce announce X gets Y gets X gets
event X Y Z = X Z < X Z > X worse than Y better than X better

no route n/a n/a fwd Z on tree n/a n/a n/a

X any n/a fwd Z no-op fwd Z on tree, fwd X n/a fwd X
order on tree withdraw X ? on tree on tree

X = Y only apply withdrawal fwd Z no-op fwd Z on tree, withdraw X fwd Y on tree, fwd X on tree,
when parent does † on tree withdraw X,Y ? † withdraw X ? withdraw Y ?

X > Y fwd Y no-op fwd Z no-op fwd Z on tree, withdraw X fwd Y on tree, fwd X
on tree ‡ on tree withdraw X ? fwd Y on tree ‡ withdraw X ? on tree

Table 1: Effect of route changes on network with zero, one or two existing routes X and Y.

but not yet apply it. It then asks its RFT children to tell
it when they stopped using the losing route. We call this
request a tell-me-when message; it is a separate single-
hop message, sent over the already-open TCP session to
the neighbor. Upon receiving a reply a router knows that
it is now safe to activate the withdrawal because none of
its children are using the route.

In Fig. 4, the withdrawal is not applied until it reaches
5©. The first hop to the left of 5© triggers the reverse acti-

vation of the withdrawal by sending a reply. This causes
the next router to apply the withdrawal, which causes it
to reply, and so on back down the RFT tree from A.

3.2.5 Ordering and Triggered Races

It is easy to show that for single updates, so long as the
IGP is loop-free, the combination of propagating new
updates along the RFT and reverse activation of with-
drawals using the responses to tell-me-when messages is
sufficient to avoid transient loops. Unfortunately iBGP
is not quite as simple as this. In particular, a withdrawal
can trigger an announcement of an alternative route, or
an update can trigger the withdrawal of the previously
best route. Such triggered updates can race each other,
so we also need to consider inter-origin ordering.

There are two cases to consider. First, a route can be
withdrawn, and another route must take over. Second, a
new winning route can trigger the withdrawal of the pre-
vious winning route. In both cases the order in which
the two route changes are applied can lead to transient
loops or black holes. As two (or more) changes are in-
volved, distribution down the RFT, which only ensures
intra-origin ordering is not sufficient.

For LOUP to be free from unwanted transient effects,
it must enforce both inter and intra-origin ordering.

Table 1 shows all the possible external route changes
hat can occur, and their effect on a network containing ei-
ther zero, one, or two existing routes for a prefix. X > Y
indicates route X beats route Y in the decision process
at all routers; X = Y implies the two routes tie-break on
IGP distance - some routers use one exit and some use
the other. We assume changes are propagated down the
RFT tree ensuring intra-origin ordering is maintained.
The entries highlighted in gray show all the cases where

intra-origin ordering is insufficient, and races resulting in
transient loops or unnecessary black holes can occur.

Although there are multiple causes, only three distinct
ordering problems emerge:

? UW-race: an update/withdraw race

† W-order: a withdrawal ordering problem

‡ WA-race: an announce/withdraw race

The W-order case is the withdrawal ordering problem
discussed above, and solved using tell-me-when queries.

For a UW-race to occur, the network must already
know one route to the destination when another better
route arrives via a different BR. This is shown in Fig. 3.
A new better update is flowing out from BR A and is
depicted by wave-front 1©. However, this time it has al-
ready reached BR B. B now withdraws its own route be-
cause it has been obsoleted by the new route. The with-
draw spreads out as wave-front 2©, and the scene is set
for a race. Some routers have not yet heard the new
update. Because there is no enforced inter-origin order-
ing, those routers are exposed. Routers 4© hear the with-
drawal before the update, apply it and temporarily black-
hole any traffic destined for that prefix.

For a loop of type WA-race (‡) to happen, two or more
BRs must hold different routes to the same prefix, with
one route being preferred. In this case, the BRs holding
the less preferred routes will have withdrawn them, and
all the other routers will only hold the best route.

When the best route is withdrawn a WA-race loop can
occur. The withdrawal reaches the BR holding the route
that previously lost, and this is now re-announced. The
withdrawal and announcement now race. This is almost
the inverse of Fig. 3: some routers hear the withdrawal
first and some hear the announcement first. Routers hear-
ing the announcement first will not apply it, as they
still prefer the better route, but they can forward the an-
nouncement to routers that have already heard the with-
drawal. Packets can then loop between the two.

Interestingly, we observe that UW-race and WA-race
cannot occur with BST. Hop-by-hop reliable flooding
ensures that no router ever receives a triggered update
before it receives the triggering event itself. Succinctly,
it ensures that cause always happens before effect. By
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Forwarding updates along the RFT tree can ensure intra-
origin ordering, at the expense of inter-origin ordering.

3.3 General Solution for Loop Avoidance

The simplest way to get both inter-origin and intra-origin
ordering is to separate route change distribution from
route change activation. To distribute changes, we can
use BST-like flooding. This ensures no router ever hears
a triggered change before it hears the triggering change.
Although such route changes are propagated on to neigh-
bors, they are not activated until their activation condi-
tion is met.

In the case of activating a new (or improved) route, the
basic activation condition is that the route has been also
received from its parent over the RFT.

In the case of activating a withdrawal, we can send tell-
me-when queries to all routers that were downstream on
the RFT with respect to the route being withdrawn. This
guarantees no loop can occur between this router and its
downstream neighbors.

Such a guarantee ensures a WA-Race cannot cause a
transient black hole - even though the upstream router
may have only heard the withdrawal and the downstream
router may have heard both the withdrawal and the trig-
gered announcement, no loop can occur because the up-
stream router cannot activate its withdrawal before the
downstream router does.

We note that an update where a previously-winning
route becomes less preferred is also “bad news”. We need
to use tell-me-when requests when switching away from
such a route to avoid potential Update-Announce races (a
worsening route triggers announcement of an alternative)
that are equivalent to a WA-Race.

Finally, a router should not activate a withdrawal if
its only alternative route is an update that has not yet
been activated. This avoids unnecessary black holes in
the UW-Race condition.

These rules are sufficient to prevent transient loops
while distributing both updates and withdrawals as they
provide both intra-ordering and inter-ordering.

3.4 Optimized Solution: LOUP

Although the general solution above is sufficient to avoid
transient loops and easy to understand, it is a little heavy-
weight. It floods many unnecessary messages and can,
in some cases, needlessly delay switching to a working
route when an old route is withdrawn.

If we only send updates and withdrawals over the RFT,
we can eliminate unnecessary messages, but we will need
to add specific additional mechanisms to deal with inter-
origin races. Let us examine each condition in turn.

3.4.1 W-order† and Targeted tell-me-when

The basic tell-me-when message described above was
sent to all downstream neighbors and a response was re-
quired before applying the withdrawal. We can be more
targeted in its use because loops are only a problem if a
router actually has an alternative route. If it does, it can
run the decision process to decide the new exit router
(A in Fig. 4), determine the neighbor towards that exit,
and only send the tell-me-when request to that neighbor.
Upon receiving a reply a router knows that it is now safe
to apply the withdrawal because its downstream neigh-
bor (and transitively, all routers between it and the new
exit point) is already using either the alternative.

3.4.2 UW-race? and Predicated Withdrawals

Flooding updates can avoid the transient black hole in
Fig. 3, but we would prefer a cheaper solution. In LOUP,
the BR that originates such a withdrawal attaches a pred-
icate to it to prevent anyone applying the withdrawal
without having first seen the update that caused it. A
predicated withdrawal is stored by routers as it travels
down the tree, but is not applied until the predicate is
met. In this case, the predicate specifies that the update
that caused the withdrawal must have been heard. This
ensures that no router can end up without a route. For
example in Fig. 3 all the routers in 4© will wait until 1©
reaches them and only then withdraw the route. Note that
forwarding towards B while waiting for the predicate to
be satisfied cannot cause a loop because the traffic will
always reach routers that have heard the update from A,
so will still reach the correct exit router.

3.4.3 WA-race‡ and Decision Modifiers

Targeted tell-me-when only works if a router already has
an alternative route. If one route is globally better, other
alternatives will have been withdrawn from the domain,
leading to the WA-race when the best route is withdrawn
causing the next-best route to be re-announced. One op-
tion is to send tell-me-when to all downstream routers in
this case, but a more elegant solution is possible.

In LOUP we ensure that the re-announcement will al-
ways win, regardless of whether or not a recipient has
heard the withdrawal for the previously-best route. When
the new-best route is re-announced it is tagged with a
decision modifier. This causes all recipients to exclude
the withdrawn route from the set of routes they use when
running the decision process. They behave as if they have
already heard the withdrawal, mimicking the effect of
flooding. Since everyone will reliably receive the with-
drawal via its RFT at some point, this approach is safe.
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3.4.4 LOUP Completeness

Table 1 can be extended to cover three pre-existing routes
(and by inference, an arbitrary number) by adding four
more rows to cover possible partial orderings of three
route preferences. When we do this, we find that three
of the four reduce to cases already covered in the table.
The remaining row (X < Y < Z) results in a more com-
plex chain when Z is withdrawn: both X and Y may be
re-announced, and then X is withdrawn again. The two
announcements racing cause no problem, but there is the
potential for both WA-race and UW-race simultaneously.
Existing LOUP mechanisms are sufficient to handle this.

The table only covers races that are inherent in route
dissemination, as it only covers a single triggering event.
Both races can also occur due to unlucky timing of exter-
nal events. Decision modifiers can prevent loops in an ex-
ternally triggered WA-race, but no router has enough in-
formation to specify the predicate for an externally trig-
gered UW-race, where the old route is externally with-
drawn before the new route has fully propagated. There
is no loop, but a transient black hole may result.

In using solutions targeted at specific known races
rather than the more powerful and heavyweight gen-
eral solution, we risk having missed potential unknown
races. In general, the targeted tell-me-when mechanism
makes withdrawals much safer, but not as safe as the
full tell-me-when mechanism which mirrors DUAL’s dif-
fusing computation. At the moment we cannot guaran-
tee there is no external sequence of very closely timed
events that can cause a transient loop. We have searched
for such sequences in our simulator, running more than
100,000 randomly generated scenarios. The only tran-
sient loop we found was when a BR sends an update im-
mediately followed by a withdraw within a link-RTT, and
these both cross in transit with a another update. The full
tell-me-when mechanism would prevent this case, but it
would also be prevented by BGP’s existing MRAI timer
which prohibits such fast churn. We can however show
that LOUP always reaches the same solution as full-mesh
iBGP, and so is free from persistent oscillations if the do-
mains obey AR.

3.5 Freedom from Configuration Errors

Full-mesh iBGP requires all the peerings are config-
ured. The configuration is simple, but all routers must
be reconfigured whenever routers are added or removed.
Route reflectors and confederations add configured struc-
ture to an AS, and require expert knowledge to fol-
low heuristics to avoid sub-optimal routing or persistent
oscillations. Running a BGP-free core adds improves
iBGP’s scaling somewhat, at the expense of requiring
additional non-trivial mechanisms just to route traffic

across the network core. Why should it be so complex
to simply to route traffic to external destinations that are
already known by an ASes BRs? All this configuration
significantly increases the likelihood of outages caused
by configuration errors.

Hop-by-hop dissemination mechanisms such as BST
and LOUP can be configuration-free. All that is required
is to enable the protocol. ISPs don’t always want auto-
configuration though, if the price of it is traffic concen-
tration or routing hotspots without any controls to relieve
them. We will need to show that LOUP does not cause
such hotspots. In any event, the default view provided
can always be tuned on an as-needed basis using MPLS-
TE, OSPF metrics, or a range of other possibilities.

4 Protocol Design and Implementation

We now describe the instantiation of ordered update dis-
semination along an RFT in the LOUP protocol. The pro-
tocol includes two main aspects: how to build the RFT,
and how to disseminate updates along the RFT reliably
despite topology changes.

4.1 RFT Construction
Each LOUP router derives a unique ID (similar to BGP-
ID) that it uses to identify routes it originates into the
AS. LOUP routers periodically send single-hop link-
local-multicast Hello messages to allow auto-discovery
of peers. A Hello contains the sender’s ID and AS num-
ber. Upon exchanging Hellos containing the same AS
number, a pair of LOUP routers establish a TCP con-
nection for a peering. All LOUP protocol messages apart
from Hellos traverse these TCP connections, and are sent
with an IP TTL of 1.

A LOUP router must know the IDs of all LOUP
routers in its AS to build and maintain the RFT. This
list is built by a gossip-like protocol that operates over
LOUP’s TCP-based peerings. Essentially, a LOUP router
announces the full set of LOUP router IDs it knows to its
neighbors each time that set grows (and to bootstrap, it
announces its own ID when it first peers with a neighbor).
These gossip messages need not be sent periodically, as
they are disseminated reliably with TCP. LOUP routers
time out IDs from this list upon seeing them become un-
reachable via the IGP.

The RFT rooted at a router X is the concatenation of
the forwarding paths from all routers to X—the inverse
of the relevant adjacencies in routers’ routing tables. To
build and maintain the RFT, each LOUP router periodi-
cally sends each of its neighbors a Child message. LOUP
router Y will send its neighbor X a Child message stating,
“you are my parent in the RFT for this set of IDs.” This
set of IDs is simply the set of all IGP-learned destination
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IDs in Y ’s routing table with a next hop of X . Upon re-
ceiving a Child message on interface i, LOUP router X
subsequently knows that it should forward any message
that originated at any ID mentioned in that Child mes-
sage down the appropriate RFT on interface i.

4.2 Reliable RFT Dissemination

An origin LOUP router that wishes to send an update
(e.g., a BR injecting an update received over eBGP)
sends that update to all routers in its AS over the RFT
rooted at itself. LOUP routers forward such updates over
their one-hop TCP peerings with their immediate neigh-
bors on the appropriate RFT. During a period when no
topology changes occur in an RFT, TCP’s reliable in-
order delivery guarantees that all updates disseminated
down the RFT will reach all routers in the AS.

When the topology (and thus the RFT) changes, how-
ever, message losses may occur: if the distance between
two routers that were previously immediate neighbors
changes and exceeds a single hop, the IP TTL of 1 on
the TCP packets LOUP sends over its peerings will cause
them to be dropped before they are delivered. For RFT-
based update dissemination to be reliable under topology
changes, then, some further mechanism is needed.

To make update dissemination over the RFT robust
against topology changes, the LOUP protocol structures
updates as a log. Each router maintains a log for each
origin. A log consists of a series of operations, each with
a sequence number, ordered by these sequence numbers;
this sequence number space is per-origin. An operation
may either be a route Update or a route Withdrawal.
When a LOUP router receives an operation for dissemi-
nation over the RFT on a TCP peering with a neighbor,
it only accepts the operation and appends it to the appro-
priate origin’s log if that operation’s sequence number is
one greater than that of the greatest sequence number of
any operation already in that origin’s log. That is, a router
only accepts operations from an origin for RFT dissemi-
nation in contiguous increasing sequence number order.

Should a LOUP router ever receive an operation for
RFT dissemination with a sequence number other than
the next contiguous sequence number, or should a tem-
porary partition occur between erstwhile single-hop-
neighbor routers, LOUP may need to recover missing
operations for the origin in question. A LOUP router
does so by communicating the next sequence number
it expects for each origin’s log to its current RFT par-
ent. LOUP includes this information in Child messages,
which routers send their parents for RFT construction
and maintenance, as described above. Should an RFT
parent find that it holds operations in a log that have not
yet been seen by its RFT child, it forwards the operations
in question to that child.

Provided that the topology within an AS remains sta-
ble long enough for LOUP to establish parent-child adja-
cencies with its periodic Child messages, LOUP’s single-
hop, IP TTL 1 TCP connections coupled with its log
mechanism guarantee reliable dissemination of opera-
tions down the RFT, even when topology changes tem-
porarily disrupt the RFT.

When a BR wishes to distribute a route Update or
Withdrawal, it acts as an origin: it adds this operation to
its log with the next unused sequence number, and sends
it down the RFT. As nodes receive the operation, they ap-
ply it to their RIBs. The end effect is the same as that of
full-mesh iBGP because the origin BR disseminates its
Update or Withdrawal to every router in the AS, just as
full-mesh iBGP does.

We note that a log for an origin will only contain a sin-
gle operation per prefix. When a Withdrawal of a prefix
follows an Update for that prefix, the recipient can im-
mediately delete the earlier Update and store the later
Withdrawal.2 The recipient must store the Withdrawal
because a child on the RFT may subsequently need to be
sent the Withdrawal (if its Child message indicates that
it has not yet seen it).

5 Evaluation

We evaluated LOUP to examine both its correctness and
scalability. To be correct LOUP must:

• Always converge to the same solution as full-mesh
iBGP. This guarantees no persistent oscillations if
eBGP policy obeys AR.

• Not create transient loops, so long as the underlying
IGP topology is loop-free.

We assess scalability by looking at:

• How is the processing load distributed between
routers?

• How are FIB changes distributed? Do LOUP routers
update the FIB more than iBGP routers?

• How much churn does LOUP propagate into neigh-
boring ASes?

• What is the actual cost of processing updates? Can
LOUP handle bursts of updates quickly enough?

• Can the implementation hold the global routing ta-
ble in a reasonable memory footprint? LOUP does not
hide information, so how well does it compare to BGP
with RRs?

2The absence of the deleted earlier Update in the log, no-
ticeable from the gap in sequence numbers in log entries, im-
plicitly records the superseded Update. This way, when a par-
ent communicates log entries to its child, it can refer to super-
seded Updates as “null” operations with sequence numbers, so
that sequence numbers still advance contiguously, as a child
expects.
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5.1 Methodology
We implemented LOUP, iBGP with RRs and a generic
flooding protocol that we will call BST* in a purpose-
build event-driven network simulator3. We also have a
real-world Quagga-based LOUP implementation that we
will compare to Quagga’s BGP [15].

We have explored LOUP’s behavior on a wide range of
synthetic topologies, including grids, cliques, and trees.
These scenarios included varying degrees of link and
router failure and the presence of MED attributes. In all
cases LOUP’s mechanisms worked as expected, requir-
ing no explicit configuration and converging to the same
solution as full-mesh iBGP.

To illustrate LOUP’s behavior in a realistic scenario,
we simulate a network based on that of Hurricane Elec-
tric (HE), an ISP with an international network. We use
publicly available data: HE’s complete topology includ-
ing core router locations and iBGP data that reveals all
next hops in the backbone [1]. These next hops are the
addresses of either customer routers or customer-facing
routers (nexthop-self). We assume there is an attachment
point in the geographically closest POP to each distinct
next hop, create a router for each attachment point and
assign it to the closest backbone router. For iBGP-RR,
we place RRs on the core routers and fully-mesh them.
Recent studies suggest this model is not unrealistic [4].

We explore two different levels of redundancy. In the
baseline redundancy case all clients in a POP connect
to two aggregation routers, which in turn connect to the
core router. In the more redundant case each aggregation
router is additionally connected to the nearest POP. Un-
less explicitly specified all simulation results are from the
more connected case.

We model speed-of-light propagation delay and add a
uniform random processing delay in [0, 10] ms. We do
not however model queues of updates that might form in
practice, so our simulations should produce shorter-lived
transients than might be seen in real backbones.

5.2 Correctness
To examine transient loops we compare the behavior of
LOUP, BST*, and iBGP in two scenarios involving a sin-
gle prefix: the announcement of a new “best” route for a
prefix, and the withdrawal of one route when two routes
tie-break on IGP distance. We compare both the less re-
dundant and the more redundant topologies to observe
the effect of increased connectivity. Figures 6 and 8 show
the protocols’ behavior when a single BR propagates an
update, and all routers prefer that update to a route they
are already using for the same prefix. As a result, this

3We wanted to implement BST, but there is no clear spec,
so it probably differs from BST in some respects.

update triggers a withdrawal for the old route. And Fig-
ures 7 and 9 show the protocols’ behavior in the tie-break
withdrawal case.

We are interested in how the prefix’s path from each
router evolves over time. Define the correct BR before
the change occurs as the old exit and the correct BR after
the change occurs and routing converges as the new exit.
In these four figures, we introduce the initial change at
time t = 0.1 seconds and every 100 µs we check every
router’s path to the destination. Either a packet correctly
reaches the new BR, still reaches the old BR, is dropped,
or encounters a loop. The y-axis shows the number of
routers whose path has each outcome. We plot the mean
of 100 such experiments, each with randomly chosen
BRs as the old and new exits.

Figures 6 and 8 confirm that LOUP incurs no transient
loops or black holes and its convergence time is similar to
that of the other protocols. BST* and iBGP-RR perform
as expected; BST* does not cause black holes, but IBGP-
RR causes both loops and black holes. On the less con-
nected topology, there is limited opportunity for races to
propagate far, so BST incurs relatively few loops. When
it does loop, many paths are affected - the BST results
have high variance. The more redundant the network, the
more opportunity there is for BST to cause loops, as is
evident from Figure 8.

Figs 7 and 9 demonstrate the importance of enforcing
ordering on withdrawals. LOUP does not cause loops,
but it takes longer to converge because the withdrawal
first must propagate to the “tie” point and then be ac-
tivated along the reverse path. All other protocols loop
transiently because the BR immediately applies the with-
drawal resulting in a loop like that in Fig. 4.

5.3 Scalability

To what extent do the different protocols concentrate pro-
cessing load in a few routers? We take a set of 1000
routes from HE’s iBGP data set, taking care to pre-
serve all alternatives for each prefix we select, and inject
them rapidly into the simulated HE network consisting of
about 3700 routers. We rank the routers in terms of the
messages sent or received, showing only the 450 busi-
est. The results are presented in Figs 10 and 13. In addi-
tion Figs 11 and 14 isolate only the BRs and demonstrate
what the load would be in a BGP-free core environment.

Due to its flooding nature BST incurs a significant cost
in all scenarios. LOUP is more expensive than iBGP, but
not by a big margin. This is mostly due to the fact that
route reflectors are able to shield their clients from some
updates, unlike BST* and LOUP.

Running a large-scale routing protocol on commodity
hardware is likely to be very different from running it
on high-end routing platforms[6]. In particular FIB mod-
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Figure 6: Transients on update (less connected)
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Figure 7: Transients on withdrawal (less connected)
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Figure 8: Transients on update (more connected)
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Figure 9: Transients on withdrawal (more connected)

ifications may be more expensive because they need to
propagate from the control plane to the line cards. Gen-
erally FIB updates where an entry for a prefix already
exists in the routing table are less costly than FIB adds or
deletes where the trie may need to be rebalanced.

Figs 12 and 15 show the distribution of FIB operations
during the experiment above. Even though iBGP pro-
cesses fewer messages, those messages are more likely
to cause FIB updates, and much more likely to cause ex-
pensive FIB adds or deletes. Route reflectors hide infor-
mation - this may lead to path exploration during which
the FIB is modified multiple times. LOUP and BST ex-
hibit virtually identical behavior because they exchange
the same information.

To evaluate CPU usage we run our Quagga-based
LOUP implementation on commodity x86 hardware. We
set up a simple topology, consisting of three single-core
2Ghz AMD machines (A, B and C) connected with two
1GBps links. In BGP’s case we open an eBGP session
from A to B and and iBGP session from B to C. In
LOUP’s case we perform no configuration. We inject one
view of the global routing table (approx 400,000 routes)
at A, which forwards it to B, which forwards it to C. We
look at the load on the middle box (B), as it has to both
receive and send updates and does the most work.

Task LOUP BGP
Updating the RIB 1981 5042
Updating the FIB 6544 16874
Serialization 3222 7477
Low-level IO 7223 6447
Other 2824 5369
Total (million cycles) 21797 41212
Total (seconds) 10.8 20.6

Both protocols spend most of the time updating the
FIB and doing low-level IO. Running the decision pro-

cess and updating the RIB datastructures is almost neg-
ligible. LOUP is much faster than BGP, but it seems
that Quagga’s BGP spends unnecessary time updating
the FIB, and is not fundamental.

LOUP’s memory usage, shown below, is directly de-
pendent on the number of active alternatives that exist for
a prefix (everything that does not break on IGP distance
will be withdrawn).

BGP (1) LOUP (1) LOUP (2) LOUP (3)
73.2 MB 46.7 MB 68.2 MB 89.8 MB

Memory usage is shown when we injected the same
route feed from 1, 2 and 3 different BRs in our exper-
imental network. We only present results for BGP with
one view, because the RRs hide all but the winning routes
from their clients. Because BGP has to maintain multiple
RIBs for each session its memory footprint is higher than
LOUP’s. Based on HE’s data, in a large ISP there will be
on average 5-6 alternatives for a prefix. LOUP’s memory
usage grows linearly we expect the protocol to easily run
on any modern-day platform in a network like HE’s with
around 200MB of RAM.

6 Related Work

There has been significant work on carefully disseminat-
ing routing updates so as to improve the stability of rout-
ing and ameliorate pathologies such as loops and black
holes. We have discussed DUAL’s approach to loop-
free IGP routing [8], BST’s reliable flooding approach
to intra-AS route dissemination [16], and RCP’s cen-
tralized approach to intra-AS route dissemination [3] at
length in Sections 2 and 3. To recap: LOUP tackles loop-
free intra-AS dissemination of externally learned routes,
a different problem than loop-free IGP routing, as taken
on by DUAL and oFIB [22]; the non-convexity of BST’s
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flooding causes transient loops that LOUP avoids; and
RCP centralizes the BGP decision process for an AS,
but does not propagate the results synchronously to all
routers, and so does not achieve the freedom from tran-
sient loops and black holes that LOUP does. We note
that loop-free IGPs like DUAL (and its implementation
in EIGRP) complement LOUP nicely: running LOUP
atop DUAL would prevent both IGP loops and transient
loops present in today’s route dissemination by iBGP
with RRs. DUAL’s “query” messages served as the in-
spiration for LOUP’s “tell-me-when” mechanism in the
“chatty” protocol described in Section 3.2.4.

Consensus Routing [17], briefly discussed in Sec-
tion 1, adds Paxos-based agreement to eBGP to avoid
using a route derived from an update before that up-
date has propagated to some ASes. LOUP’s combina-
tion of ordered, reliable dissemination of updates along
an RFT with update logs is significantly lighter-weight
than Paxos-based agreement, yet still avoids introducing
loops within an AS during dissemination of an update or
withdrawal. Bayou’s logs of sequence-number-ordered
updates [24] and ordered update dissemination [21] in-
spired the analogous techniques in LOUP; we show how
to apply these structures to achieve robust route dissemi-
nation, rather than weakly consistent storage.

In our own prior work [13] (to appear in October
2012), we first proposed ordered, RFT-based dissemina-
tion as a means to avoid transient loops and black holes.
In this paper, we have additionally described a full rout-
ing protocol built around these principles, and evaluated
the scalability of a full implementation of that protocol
atop the Quagga open-source routing platform.

7 Conclusion

The prevalence of real-time traffic on today’s Internet
demands greater end-to-end path reliability than ever
before. The vagaries of iBGP with route reflectors—
transient routing loops and black holes, route instability,
and a brittle, error-prone reliance on configuration—have
sent network operators running into the arms of MPLS,
in an attempt to banish iBGP and its ills from the core of
their networks. By exploring the fundamental dynamics
of route dissemination, we have articulated why iBGP
with route reflectors (and to an extent, alternatives like
BST) introduce such pathologies. Based on these funda-
mentals, we have described a simple technique, ordered
dissemination of updates along a reverse forwarding tree,
that avoids them. And we have illustrated how to ap-
ply this technique in a practical, scalable routing proto-
col, LOUP, seen through to a prototype implementation.
While earlier work has drawn upon consistency tech-
niques from the distributed systems community to im-
prove the robustness of routing, LOUP achieves strong
robustness with lighter-weight mechanisms. As such, we
believe LOUP offers a compelling alternative to a BGP-
free core.
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