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Abstract

Dependence is a relation that determines which parts of a system in-

fluence the computation of another part. Dependence analysis underpins

many activities in computer science, such as model checking, debugging,

slicing, security. We are interested in dependence analysis for slicing for

finite state machine-based models. In this paper we survey existing de-

pendence relations defined for slicing at the model-level as there has been

recently much interest from the slicing community.

We survey definitions of dependence, in particular data, control, interference
and any other dependence relations that are defined by finite state machine
(FSM) slicing approaches. We only consider graphical FSM notations.

1 Data Dependence for Slicing FSMs

There have been two general approaches to defining data dependence. The first
is based on the idea that an element x is required to evaluate y. For example, a
variable y is defined in terms of x. This is not limited to variables, but can be
applied to other elements. For example, to execute a transition, a trigger event,
source state and all ancestor states are required. We call this approach the uses
approach from the uses relation defined by [HTW98] (see Definition 1).

The second is based on definition-clear paths of variables, i.e. a variable v
is defined in an element x and used in an element y and there exists a path
from x to y where v is not modified. We call this approach definition-clear
paths. These types of definitions are given at different levels of granularity
which could lead to more precise slices. For example, [Oja07] define data de-
pendence between parts of transitions, rather than transitions, and slicing can
remove these parts i.e. trigger events, guards or actions. We further divide these
definitions according to whether they apply within an automaton or state ma-
chine (i.e. intra-automaton) or between parallel automaton or state machines
(i.e. inter-automaton).

Table 1 groups the key papers on FSM slicing that define data dependence
according to the classification that we have described. In the rest of this section
we describe each data dependence definition in turn.
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Table 1: A classification of key papers that define data dependence for FSM
slicing.
Uses Definition-Clear Paths
[HTW98] Intra-Automaton Inter-Automaton
[CABN98] [KSTV03] [WDQ02]
[SPH08] [Oja07] [Lan06]
[FL05] [LG08] Janowska and

[ACH+09] Janowski [JJ06]

1.1 Uses Approach

The authors in [HTW98] have defined data dependence for RSML specifications
as the set of elements required to determine the value of a particular variable,
transition, function and macros (expressions in guards are defined as mathe-
matical functions and macros are defined for frequently used conditions). Data
dependence for variables, macros, and functions is simple as it uses the elements
that are visible in the definition. Data dependence for transitions requires that
transitions are dependent on their guarding conditions, their source state, and
all ancestors of the source state (because of state hierarchy).

Definition 1 (Data Dependence for RSML) Let A be the union of sets of
states, transitions, variables, constants, functions and macros in an RSML spec-
ification. [HTW98] define data dependence by the relation uses, which is a
mapping A 7→ A where uses(x, y) means that y is required to evaluate x.

The authors in [FL05] and [CABN98] have defined a general notion of de-
pendence that is similar to Definition 1. In addition, [FL05] state that a target
state and an action of a transition t depend on its source state, triggering event
and guard.

According to [SPH08], a variable in an assignment is data dependent on
variables in the assigned expression.

1.2 Definition-Clear Paths Approach: Intra-Automaton

The authors in [KSTV03] have defined data dependence for EFSMs between
variables on transitions. In particular, it is defined as a definition-clear path
between a variable’s definition at a transition t1 and its use at transition t2.
This definition is also adopted by [ACH+09].

Definition 2 (Data Dependence for EFSMs) Transition t2 data depends [KSTV03]
on transition t1 with respect to variable v if:

1. v ∈ D(t1), where D(t1) is a set of variables defined by transition t1,
i.e. variables defined by actions and variables defined by the event of t1
that are not redefined in any action of t1;
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2. v ∈ U(t2), where U(t1) is a set of variables used in a condition and actions
of transition t1;

3. there exists a path from target(t1) to source(t2) whereby v is not modified.

The authors in [LG08] have introduced a (intra-automata) data dependence
definition for communicating automata (IOSTs). Similarly to Definition 2, they
extend the definitions of define and use because variables can be used in transi-
tion guards and can be defined or used in actions (variable substitutions). Their
extensions must also be able to handle communicating actions, which is not re-
quired for Definition 2. Definition 3 shows how D(t) and U(t) in Definition 2 is
extended for communicating actions, i.e. what is required in addition.

Definition 3 (Definition/Use for Communicating Automata) [LG08] Let
t be a transition and v a variable. Then v ∈ D(t) if an action (c?v) is performed
that causes the system to wait on some channel c for the reception of a value to
be assigned to v. v ∈ U(t) if an action (c!v) is performed that causes the system
to emit a message having the argument v on channel c.

The data dependence definition defined by [LG08] is similar to Definition 2,
with an additional condition (condition three in Definition 4) that is required
because of the semantics of IOSTSs as it may be possible that v is redefined at
t2 by a input action.

Definition 4 (Data Dependence for Communicating Automata) A tran-
sition t2 is data dependent [LG08] on a transition t1 if there exists a variable v
such that:

1. v ∈ D(t1);

2. there exists a path π from the target(t1) to the source(t2) where v is not
defined;

3. and one of the following is true: a) v is used in the guard(t1); or b) v is
not defined at action(t1) and v ∈ U(t) where t ∈ π.

The authors in [Oja07] have defined data dependence for UML state ma-
chines between nodes in a CFG. The nodes of the CFG represent different parts
of UML state machine transitions. Each transition can correspond to several
nodes. Table 2 lists the different types of CFG nodes defined and what part of
the transitions they represent. Also, the last column shows whether the nodes
have a D and U set. D is the set of variables that are defined by the part of the
transition. U is the set of variables that are used by the part of the transition.
Ojala differentiates between variables that are defined when entering the state
and those that are defined when exiting the state. D and U sets are used to
define definition-clear paths between CFG nodes. This notion of data depen-
dence is similar to Definition 10 as it applies to parts of transitions and also to
concurrent state machines.
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CFG Part of D/U sets
nodes Transition
BRANCH Triggers D = union of

and D sets of its
guards elements.

U = union of
U sets of its
elements.

SIMPLE Actions D, U
SEND Actions D, U

Components of Part of D/U
BRANCH node Transition sets
Element Trigger D, U

and guard
Parameter Event D

parameter

Table 2: CFG nodes and what parts of a transition they represent. The sub-
structure of the BRANCH node is given in a separate table. Note that the end
node is of type BRANCH and has no sub-structure. D is the set of variables
that are defined by the part of the transition. U is the set of variables that are
used by the part of the transition.

Definition 5 (Data Depedence for UML state machines) Paths are
defined as a sequence a1, .., ai where each aj ∈ {a1, .., ai} is either a SIMPLE,
SEND or end node, or b.e where b is a BRANCH node and e its element. Data
dependence [Oja07] is defined in terms of definition-clear paths. Definition-clear
paths with respect to variable v are paths p1, p2, ..., p(n−1), pn where v is defined
at p1 (i.e. v ∈ D(p1)), v is used at pn (v ∈ U(pn)) and v is not defined in
p2, .., p(n−1). The following definition-clear paths with respect to a variable v
are defined:

• between a SIMPLE node s1 and a SIMPLE, SEND or end node s2;

• between a SIMPLE node s1 and an element e in a BRANCH node b;

• between a parameter p (which is in an element and BRANCH) and a
SIMPLE, SEND or end node s2;

• between a parameter p in an element e1 in a BRANCH b1 and an ELE-
MENT e2 in a BRANCH node b2;

Also, a parameter p is data dependent on a node q if q evaluates an expression
whose value gets assigned to p when an event is received. Node q is one of the
CFG nodes that are created when a generated event occurs (either in the same
UML state machine or in another).

1.3 Definition-Clear Paths Approach: Inter-Automaton

The authors in [WDQ02] have defined three data dependence definitions for
extended hierarchical automata (EHA): one for sequential automaton (not con-
current) and two for concurrent automaton. Note that variables are updated on
states, rather than transitions. Since EHA are concurrent and hierarchical, the
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definition of D and U differs from Definition 2 and it applies to states rather
than transitions. A variable v is used at state x (i.e. v ∈ U(x)) if v is refer-
enced in the actions of state x or it is referenced in the actions of any sub-state
or transitions in the sub-EHA of x and can be defined and referenced outside
the sub-EHA of x. The set of defined variables D(x) at a state x includes all
variables that have been defined (have values assigned to them) in the actions
in sub-EHA of x and can be defined and referenced outside the sub-EHA of x.
Internal variables of a state x are local variables that can only be defined and
used in sub-EHA of x. U and D can also apply to transitions.

Definition 6 (Sequential Data Dependence for EHA) A state or transi-
tion y in a sequential automaton A that uses a variable v (i.e. v ∈ U(y)) is
sequential data dependent [WDQ02] on a state or transition x in A that defines
v (i.e. v ∈ D(x)) if there is path in A from x to y where v is not modified.

Sequential data dependence is defined as a definition-clear path between
states or transitions in the same sequential automaton. Parallel data dependence
is defined as a definition-clear path between states and transitions in concurrent
automata.

Definition 7 (Parallel Data Dependence (PDD) for EHA) Let A and B
be two different sequential automata, and sA is a state in A, tA is a transition
in A, sB is a state in B and tB is a transition in B. If A and B are sub-

states of C then sB is parallel data dependent [WDQ02] on sA (sA
PDD
−−−→ sB)

iff U(sA) ∩ D(sB) 6= ∅. Similarly sA
PDD
−−−→ tB, or tA

PDD
−−−→ sB, or tA

PDD
−−−→ tB

iff U(sA)∩D(tB) 6= ∅, or U(tA)∩D(sB) 6= ∅, or U(tA)∩D(tB) 6= ∅ respectively.

Refinement data dependence [WDQ02] is defined between states and tran-
sitions of concurrent automata. Some state x2 is refinement dependent on x1,
where x2 is in a sub-sequential automaton of an element x1, if the value of some
variable computed at x1 is the value that x2 will return, or some event gener-
ated in x1 is used to synchronise with some concurrent state of x2. It differs
from parallel data dependence as it computes dependencies in sub-states rather
than across concurrent states.

Definition 8 (Refinement Data Dependence (RDD) for EHA) GE(s) is
the set of all events that are generated in the actions in sub-states of state s and
can be used as the trigger events of transitions outside of s. Similarly GE(t),
for a transition t, is the set of events generated in the action of t. If A is a
sequential automaton, sA is a state of A, b is a superstate of sA, sb is a state
of b, and tb is a transition of b, then:

• sA
RDD
−−−→ sb iff D(sb) ∩ D(sA) 6= ∅, or GE(sA) ∩ GE(sb) 6= ∅.

• sA
RDD
−−−→ tb iff D(tb) ∩ D(sA) 6= ∅, or GE(sA) ∩ GE(tb) 6= ∅.
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[Lan06] adopts the dependence relations defined by [WDQ02] but points
out in [LH07] that parallel data dependence can produce a false dependency
if the execution chronology is not taken into account. To get rid of these
false dependencies, their tool applies the following rule after calculating parallel

data dependencies: x 6
PDD
→ y iff x

SO
−−→ y, where

SO
−−→ is a Lamport-like [Lam78]

happens-before relation on state machines. This happens-before relation is de-
fined as using two other relations: the statechart concurrent relation and the
statechart sequential order.

The authors in [Lan06] have also introduced a new data dependence rela-
tion called global data dependence in order for slicing a collection of statechart
diagrams. By a collection of statechart models, they mean a statechart that
may have many concurrent state machines at the top level. These are not dealt
with by [WDQ02], who only deals with concurrency in sub-states. Global data
dependence is defined between states and transitions with respect to global vari-
ables. Global variables are variables used by statecharts to communicate and
they don’t belong to any statechart but can be accessed by all.

Definition 9 (Global Data Dependence for EHA) Let A, B be two dif-
ferent statecharts. A state sB ∈ B or a transition tB ∈ B is global data

dependent [Lan06] on a state sA ∈ A or transition tA ∈ A ( sA
GDD
−−−→ sB,

sA
GDD
−−−→ tB, tA

GDD
−−−→ sB, tA

GDD
−−−→ tB) iff:

• some global output variables (defined in actions) of a state or transition
of A are used in the input of the state or transition of B;

• or some trigger events of a transition or state of B are generated by a
state or transition of A.

The authors in [JJ06] have defined data dependence between variables found
in boolean expressions of guards and atomic assignments of transitions of timed
automata. Compared to Definition 2 and Definition 4, it is of finer granularity,
i.e. it applies to parts of transitions rather than transitions leading to slices that
can remove parts of transitions. Also, it applies to transitions of a set of timed
automata that run in parallel.

Definition 10 (Data Dependence for Timed Automata) Let the atomic
assignments of actions x and the boolean expressions of guards y of a transition t
be called operations (opers(t)), thus x ∈ opers(t) and y ∈ opers(t). Let t1 ∈ Ti,
t2 ∈ Tj, where i, j = 1, .., n and n refers to the number of timed automata that
run in parallel. An operation a2 in t2 is data dependent [JJ06] on operation a1

in t2 if there is a variable v, which occurs in a1 and a2, if v ∈ D(a1)∩U(a2) as
in Definition 2 and one of the following holds:

1. t1 = t2, a2 follows a1 (actions are sequences so follows is well defined [JJ06])
and v /∈ D(a3) for any a3 ∈ opers(t1) between a1 and a2;

2. there exists a path from target(t1) to the source(t2) such that v is not
re-defined in any operations in transitions contained in the path;
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Table 3: Papers that are categorised according to the type of control dependence
definitions.

Event-Flow Transition/Guard Program-like
Heimdahl and [WDQ02] [KSTV03]
Whalen [HW97] [Lan06] [JJ03]
[CABN98] [SPH08] [Oja07]

[LG08]
[ACH+09]

3. i 6= j i.e. the automata are different.

2 Control Dependence for Slicing FSMs

One of the challenges facing any attempt to slice a FSM is the problem of how to
correctly account for control dependence. It is common for state machines mod-
elling such things as non-terminating systems not to have a final computation
point or ‘exit state’. Moreover, FSM are interactive, i.e. there is an interplay
between the environment and the model, where events are generated by the
environment and trigger transitions in the model. Thus it is not only conditions
that decide whether a transition occurs, but also whether a specific event occurs
in the environment.

There have been three general approaches to defining control dependence.
The first defines control dependence between events. We classify these defini-
tion as Event-flow. The second defines control dependence between transitions
and guarding conditions and we classify these as Transition/Guard. The third
defines control dependence similarly to how control dependence is defined by
program slicing techniques. We call these definitions Program-like. The major-
ity of the literature has focused on traditional definitions. In Table 3 the papers
on FSM slicing are categorised according to the type of control dependence
definition that they define.

2.1 Event-Flow Definitions

[HW97] were the first to define a control dependence-like definition for FSMs,
in particular for RSML specifications. It differs from the traditional notion as
it defines control flow in terms of dependency between events and generated
events rather than as a structural property of the graph. Their definition can
be applied to non-terminating systems or systems that have multiple exit nodes.
However, it cannot be applied to any finite state machine, such as EFSMs, that
do not generate events.

Definition 11 (Control flow for RSML) Let E be the set of all events and
T the set of all transitions. The relation trigger(T → E) represents the trigger
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event of a transition. The relation action(T → E2) represents the set of events
that make up the action caused by executing a transition. follows(T → T ) is
defined as: (t1, t2) ∈ follows iff trigger(t1) ∈ action(t2).

[CABN98] use the same control dependence relation as in Definition 11.

2.2 Transition/Guard Definitions

The authors in [WDQ02] have defined two control dependence definitions for
EHA that are adopted by [LH07]: transition control dependence and refinement
control dependence. Transition control dependence is defined between a state
and transitions and can be applied to any FSM that may be non-terminating.
They states that if a variable is defined in a state or transition x and used in
the guarding condition of a transition t and not redefined on the path from x
to t, then t is transition control dependent on x.

Definition 12 (Transition Control Dependence (TCD)) Let A be an EHA
automaton, t a transition of A and CV (t) be set of variables reference in the
guard of a transition t.

1. If a variable is defined in a state v or a transition r and used in the guard

of t and not redefined on the path from v or r to t, then v
TCD

−−→ t or

r
TCD

−−→ t.

2. If B,C be two EHA automaton, s is a state in C and A,B is a sub-

state of s, q is a state in B, p is a transition in B, then t
TCD

−−→ p iff
CV (t) ∩ D(q) 6= ∅ (or CV (t) ∩ D(p) 6= ∅).

Refinement control dependence is defined between states of an automaton
and its sub-sequential automaton. It can be applied to possibly non-terminating
hierarchical FSMs.

Definition 13 (Refinement Control Dependence) If state v is the initial
state of a direct sub-sequential automaton of state u, then v is refinement control
dependent on state u.

These definitions of control dependence resemble data dependence, i.e. if
the structure is flattened these correspond to data dependence as described
in Definition 2. From the combined dependence relations defined by [WDQ02]
(i.e. Definition 6, 7, 8, 12, 13 and 24), the hierarchical layer of an EHA for the
sequential automaton of a state or transition can be determined. For example,
if the sequential automaton of a state or transition x is found on the nth layer,
then x depends on elements that belong to the sequential automata that are
local in (n − 1)th to (n + 1)th layer of the EHA, which makes slicing efficient.

According to [SPH08], a variable assigned in a conditional assignment control
depends on variables used in the conditions because these variables determine
which branch of the condition is taken. This definition of control dependence
also resembles data dependence.
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Table 4: Classifying which FSM slicing approaches adopt or are based on
NTICD and NTSCD.

Non-Termination Sensitive (NTSCD) Non-Termination Insensitive (NTICD)
[JJ03] [KSTV03]
[Oja07] (NTSCD & DOD) [ACH+09]
[LG08]

2.3 Program-like Definitions

In program slicing, two general types of control dependence definitions are de-
scribed: non-termination insensitive and non-termination sensitive. Traditional
control dependence, as used in [HRB90] is non-termination insensitive, with the
consequence that the semantics of a program slice dominates the semantics of
the program from which it is; slicing may remove non-termination, but it will
never introduce it. A non-termination sensitive formulation was proposed as
early as 1993 by [Kam93], but has not been taken up in subsequent slicing
research. Non-termination sensitive slicing tends to produce very large slices,
because all iterative constructs that cannot be statically determined to termi-
nate must be retained in the slice, no matter whether they have any effect other
than termination on the values computed at the slicing criterion. These ‘loop
shells’ must be retained in order to respect the definition of non-termination
sensitivity.

In moving slicing from the program level to the state based model level, the
choice of whether FSM slicing should be non-termination sensitive or insensitive
needs to be made. Both types of control dependence have been defined in the
literature for FSM slicing and we consider each of these. The choice of which
to use depends on the application of slicing. For example, non-termination
sensitive control dependence (NTSCD) is desired when slicing FSMs for the
purpose of model checking, as loops are kept and liveness properties can still be
checked. Non-termination insensitive control dependence (NTICD) is preferred
when slicing FSM for model comprehension as this will produce smaller slices.
Table 4 classifies the papers on FSM slicing according to whether their control
dependence definitions are non-termination sensitive or insensitive.

The following definitions of control dependence are given in terms of execu-
tion paths. Since a path is commonly presented as a (possibly infinite) sequence
of nodes, a node is in a path if it is in the sequence. A transition is in a path if
its source state is in the path and its target state is both in the path and im-
mediately follows its source state. A maximal path is any path that terminates
in an end node or final transition, or is infinite.

[KSTV03] present a definition of control dependence for EFSMs in terms of
post dominance that requires execution paths to lead to an exit state. This defi-
nition captures the traditional notion of control dependence for static backward
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slicing. However it can only determine control dependence for state machines
with exactly one exit state, failing if there are multiple exit states or if the state
machine is possibly non-terminating. For example, it can be applied to the
ATM illustrated in Figure ?? but not to the ATM illustrated in Figure ??.

Definition 14 (Post Dominance [KSTV03]) Let Y and Z be two states
and T be an outgoing transition from Y .

• State Z post-dominates state Y iff Z is in every path from Y to an exit
state.

• State Z post-dominates transition T iff Z is on every path from Y to the
exit state though T . This can be rephrased as Z post-dominates target(T ).

Definition 15 (Insensitive Control Dependence (ICD)) Transition Tk is
control dependent [KSTV03] on transition Ti if:

1. source(Tk) post-dominates transition Ti (or target(Ti)), and

2. source(Tk) does not post-dominate source(Ti).

In program slicing, [RAB+05] define control dependence for arbitrary CFGs
(with a start node) of non-terminating programs, i.e. that may not have an
exit node. They give definition for both non-termination sensitive (NTSCD)
and non-termination insensitive control dependence (NTICD). The difference
between these definitions lies in the choice of paths. NTSCD is given in terms
of maximal paths, while NTICD is given in terms of control sinks (see Defi-
nition 21). This seminal work has inspired control dependence definitions for
FSM models hereafter, except for the definition by [JJ03] . We first discuss all
the NTSCD definitions and then NTICD definitions.

In [JJ03, JJ06] a NTSCD definition of control dependence is given for po-
tentially non-terminating timed automata. Although they were the first to give
such a definition for FSMs which is similar to the definition in [RAB+05] (both
in terms of maximal paths), they have not been widely cited by other FSM
slicing approaches.

In [JJ06], control dependence is defined in terms of post-dominance between
states, where post-dominance is defined in terms of maximal paths and does not
require a unique exit state like in Definition 14.

Definition 16 (Post Dominance [JJ06]) Let X1 and X2 be two states. State
X1 post-dominates state X2 iff every maximal path from X1 goes though X2.

Definition 17 (NTSCD-JJ [JJ06]) A state S2 is control dependent on a

state S1 (S1
NTSCD
−−−−−→ S2) in the same automaton, if S1 does not post domi-

nate (using Definition 16) S2 and there is a path π from S1 to S2 such that
every state, except for S1, in π post dominates S2.
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The earlier definition of control dependence given in [JJ03], differs from that
given in [JJ06] as it includes an additional clause that states that all outgoing
transitions from S1 must have non-trivial guarding conditions. Thus the defini-
tion in [JJ03] is similar to Definition 20 but for states, rather than transitions.

[Oja07] adopts the NTSCD and decisive order dependence definitions, as
in [RAB+05], which is given between nodes in a CFG. NTSCD cannot capture
certain dependencies within loops, and hence Ranganath et al. defined decisive
order dependence (DOD).

Definition 18 (NTSCD [RAB+05] ) In a CFG, a node nj is non-termination

sensitive control dependent on a node ni (ni
NTSCD

−−−−→ nj) iff ni has at least two
successors nk and nl such that: for all maximal paths π from nk, where nj ∈ π;
and there exists a maximal path π0 from nl where nj 6∈ π0.

Definition 19 (Decisive Order Dependence (DOD)) Two nodes p1 and

p2 are decisively order dependent [RAB+05] on n (n
DOD

−−→ p1, p2) if:

1. all maximal paths from n contain both p1 and p2,

2. n has a successor from which all maximal paths contain p1 before p2,

3. n has a successor from which all maximal paths contain p2 before p1.

[LG08]1 adapt Ranganath et al.’s NTSCD definition for Input/Output Sym-
bolic Transition Systems (IOSTS). It is given in terms of transitions in an
IOSTS model, rather than in terms of nodes in a CFG. The first clause of
Definition 20 concerning the non-triviality of guards is introduced in order to
avoid a transition being control dependent on transitions that are executed non-
deterministically even though they are NTSCD control dependent. This clause
prevents this property from being a purely structural property on graphs.

Definition 20 (NTSCD-LG [LG08]) A transition Tj is control dependent
on a transition Ti if Ti has a sibling transition Tk such that:

1. Ti has a non-trivial guard, i.e. a guard whose value is not constant under
all variable valuations;

2. for all maximal paths π from Ti, the source of Tj belongs to π;

3. there exists a maximal path π0 from Tk such that the source of Tj does not
belong to π0.

FSM models differ from CFGs is several ways. They can have multiple start
and exit nodes, more than two edges between two states and more than two
successors from a state. Moreover, in CFGs, decisions (Boolean conditions)
are made at the predicate nodes while in state machines they are made on

1Labbé et al.’s definition of control dependence in [LGP07] differs slightly from Labbé et
al. [LG08], so we evaluate the most recent.
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transitions. Labbé et al. take such differences into account when adapting
NTSCD.

[ACH+09] have defined a new control dependence definition by extending
Ranganath et al.’s NTICD definition and subsuming Korel et al.’s definition in
order to capture a notion of control dependence for EFSMs that has the follow-
ing properties. First, the definition is general in that it should be applicable to
any reasonable FSM variant. Second, it is applicable to non-terminating FSMs
and / or those that have multiple exit states. Third, by choosing FSM slicing
to be non-termination insensitive (in order to coincide with traditional program
slicing) it produces smaller slices than traditional non-termination sensitive slic-
ing.

Following [RAB+05], the paths considered are sink-bounded paths, i.e. those
that terminate in a control sink as in Definition 21. A control sink is a region
of the graph which, once entered, is never left. These regions are always SCCs,
even if only the trivial SCC, i.e. a single node with no successors.

Definition 21 (Control Sink) A control sink, K, is a set of nodes that form
a strongly connected component such that, for each node n in K each successor
of n is in K.

Unlike NTICD, sink-bounded paths are unfair, i.e. we drop the fairness con-
dition in the Ranganath et al.’s definition of sink paths. For non-terminating
systems this means that control dependence can be computed within control
sinks.

Definition 22 (Unfair Sink-bounded Paths) A maximal path π is sink-bounded
iff there exists a control sink K such that π contains a transition from K.

Definition 23 (Unfair Non-termination Insensitive Control Dependence)
(UNTICD) A transition Tj is control dependent on a transition Ti iff:

1. for all paths π ∈ UnfairSinkPaths(target(Ti)), the source(Tj) belongs to
π;

2. there exists a path π ∈ UnfairSinkPaths(source(Ti)) such that the source(Tj)
does not belong to π.

UNTICD is in essence a version of NTICD modified to EFSMs (rather than
CFGs) and given in terms of unfair sink-bounded paths.

Table 5 compares the transitive closure of control dependence definitions
given in terms of transitions. Note that ICD∗ denotes the transitive closure of
ICD. Similarly for NTSCD−JJ∗, NTSCD−LG∗, and UNTICD∗. NTSCD
and DOD as given by [Oja07] are not in the table as they are defined between
states, rather than transitions.
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Table 5: Comparison of transitive closure of control dependence definitions.

Definition Comparison of Transitive Closures
ICD [KSTV03] ICD∗ ⊆ NTSCD-JJ∗

NTSCD-JJ [JJ06] UNTICD∗ ⊆ NTSCD-JJ∗

NTSCD-LG [LG08] NTSCD-LG∗ ⊆ NTSCD-JJ∗

UNTICD [ACH+09] UNTICD∗ ⊆ NTICD-JJ∗

3 Interference Dependence for Slicing FSMs

Most FSM slicing approaches handle communication and synchronisation by
introducing new dependencies, such as interference dependence. As with slicing
concurrent programs, the computation of interference dependencies can be com-
plex, if the possible orders of execution must be considered to compute precise
dependencies [Kri03]. Even if the computed dependencies are precise, the slicing
algorithm can be imprecise if it just assumes transitivity of the dependencies
and traverses the reachable dependencies. As we discuss below, only a few FSM
slicing approaches try to compute precise dependencies.

The authors in [WDQ02] have defined synchronisation dependence between
transitions and states. It states that if the trigger event of some transition in an
element (state or transition) x is generated by the action of an element y and the
automaton which x and y belong to are concurrent, then x is synchronisation
dependent on y. However, their slicing algorithm traverses the dependencies
(including the various data and control dependencies) and assumes transitivity
and thus is imprecise.

Definition 24 (Synchronisation Dependence (SD)) A state sA or transi-
tion tA is synchronisation dependent on a concurrent state sB or transition tB

(sA
SD
−−→ sB, or sA

SD
−−→ tB, or tA

SD
−−→ sB, or tA

SD
−−→ tB) iff some events

generated by the latter are used as trigger events of the other.

The authors in [LH07] have adopted Definition 24 but also introduce a new
dependence relation for a collection of statecharts. Global synchronisation de-
pendence is similar to Definition 24 except that it is between statecharts and
involves global generated events.

Definition 25 (Global Synchronisation Dependence (GSD)) Let A and
B be two different statecharts. A state sA or transition tA is global synchro-

nisation dependent on a state sB ∈ B or transition tB ∈ B (sA
GSD
−−−→ sB, or

sA
GSD
−−−→ tB, or tA

GSD
−−−→ sB, or tA

GSD
−−−→ tB) iff some global events generated

by the latter are used as the trigger of the other.

They use a Lamport-like [Lam78] happens-before relation to ensure that the
dependencies exist only between states and transitions where the source state
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or transition can happen before the target state or transition. Although this
increases the precision of the dependence relations, the slicing algorithm is based
on the (transitive) traversal of the dependencies and thus is imprecise.

The authors in [GR02] have also introduced dependencies to model and
slice Argos specifications: transition, hierarchy and trigger edges model the
dependencies between states and sub-states. Their slicing algorithm traverses
the dependencies with no special handling of intransitivity.

The authors in [Oja07] have defined interference dependence for UML state
machines between parts of transitions. This definition is similar to the one
in [HCD+99] for multi-threaded Java programs. Their slicing algorithm is based
on traversal of the dependencies and thus is imprecise.

Definition 26 (Interference Dependence [Oja07]) A node nj is interfer-
ence dependent on a node or parameter ni if v ∈ U(nj), w ∈ D(ni), v = w and
the access to v and w are not local to nj or ni (ni and nj are in different state
machines or different instances of the same state machine).

The authors in [LG08] have defined a communication dependence relation
for communicating automata (IOSTSs) that identifies dependencies owing to
communicating actions. These dependencies are inter-automata, unlike their
data and control dependencies (Definition 4 and Definition 20) that are intra-
automata. A communication dependence is defined between two transitions t1
and t2 in two different IOSTSs if there exists a channel that potentially allows
a data or control flow to occur between t1 and t2.

Definition 27 (Communication Dependence [LG08]) Transitions ti and
tj are communication dependent iff there exists a channel c such that:

1. The action aj = c?x occurs and the system waits on channel c for the
reception of a value to be assigned to the attribute variable x; and b) the
action ai = c!t occurs for the system to emit a message, with t as argu-
ment, on the channel c.

2. The action aj = c? occurs and the system waits for a signal to occur on
the channel c; and b) The action ai = c! occurs and the system emits a
message on channel c with no arguments.

The authors in [LG08] have presented a slicing algorithm based on travers-
ing the dependencies, however, as communication dependence is not transitive,
they accept the reduced precision. [GR08] have compiled statecharts into Java
programs which are then sliced dynamically. These types of approaches are
different to those discussed in this section as they analyse concrete executions
and reduce the machine according to a specific test case similar to dynamic
program slicing. Because the synchronization and communication can directly
be observed and don’t have to be approximated by static analysis, concurrency
and communication don’t cause problems there.
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4 Other Dependence Relations for Slicing FSMs

The authors in [JJ06] have defined two new dependencies: clock and time de-
pendence. Their slicing algorithm is based on traversal of the dependencies and
thus is imprecise. Clock dependence is defined between two states in the same
timed automaton.

Definition 28 (Clock Dependence) A state s2 is clock dependent on a state
s1 in the same timed automaton if one of the following holds:

1. there exists a clock x in the set of clocks of the automaton and a transition
t, where s1 = source(t), such that x is defined in the clock assignment of
t and is in the set of clocks of s2, and target(t) = s2, or

2. there exists a path π from target(t) to s2 such that the clock assignment
for all transitions t′ contained in π with respect to x is equal to x.

Time dependence is defined between two states, s1 and s2, of the same
process if s2 is reachable from s1 and time has elapsed in s2.

Definition 29 (Time Dependence) For two states s1, s2 in the same au-
tomaton, s2 is time dependent on s1 if s2 is reachable from s1 and:

1. all transitions going out of s2 (i.e. source(t) = s2) are urgent and always
one transition is enabled. Heuristics are used to check the last condition;

2. the state invariant has a constraint of the form x = 0, where x is a clock
and the clock assignments of all incoming transitions set x to x0.

If the given conditions are violated then time in state s2 cannot lapse.

The authors in [SPH08] have defined adaptive dependence, whereby a func-
tional variable is influenced by the adaptive variables occurring in the config-
uration guards. The adaptive variables in the configuration guards determine
whether the functional assignments are executed.
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